Information for Authors [Slides]: Concepts in Animal Parasitology

Total Page:16

File Type:pdf, Size:1020Kb

Information for Authors [Slides]: Concepts in Animal Parasitology Scott Gardner and Sue Gardner University of Nebraska-Lincoln April 11, 2018 Textbook for undergraduate and graduate students Collaboratively written Peer reviewed Kept as up to date as the authors would like Available free online or at-cost in hard copy Free to use by anyone as long as the use is noncommercial No charges nor payment to authors A desire to assist students Technological capability Appeal by UNL administrators to create OERs Organization for Economic Cooperation and Development, Open Educational Resources: A Catalyst for Innovation (2015) http://dx.doi.org/10.1787/9789264247543-en Fostering new forms of learning for the 21st century Fostering teachers' professional development Containing educational costs Improving the quality of educational resources Widening the distribution of high quality educational resources Reducing barriers to learning opportunities Creation: Authors, Reviewers, Editors Production: Editors, Copyeditor/Proofreader, Publisher Hosting and Distribution: Repositories, Printer lulu.com (at-cost) Though cladistic concepts will be integrated, the book will be from the perspective of parasitologists, not cladists, so the organization of the groups will be justified but not claimed to be definitive The book will be arranged in four parts: Part 1: Introductory Concepts Part 2: Endoparasites Part 3: Ectoparasites Part 4: Auxiliary Concepts Auxiliary concepts will include: Medical parasitology Veterinary parasitology Wildlife parasitology Archaeoparasitology e-Parasitology Other auxiliary sections can be added Peer review: Rigorous, but open and collegial Translations: English, Spanish, Portuguese, French Versioning: Old versions of chapters may be held in an archive so they may be accessible 10-50 pages, 8.5 x 11 or A4 12-point Times New Roman, double-spaced Lots of color, grayscale, or BxW illustrations References: - Include lots of them, preferably with DOIs - Name-year in-line citation style - Journal of Parasitology–style references Chapter title (required): Section title (required, if applicable): Author(s) (required): Affiliation(s) (required): Email address(es) (required): Introduction to the chapter/section topic (required; images are optional): Discuss the major features of the parasite(s) (may include morphological and/or molecular characters, required; images are optional): Discuss this organism/these organisms in relation to others in their group (may include the systematics and taxonomy, phylogenies, required; images are optional): Discuss this organism/these organisms in relation to other organisms (may include information on the hosts, reservoirs, and vectors, life cycles, ecology, and biodiversity and biogeography, required; images are optional): Discuss the most important groups relative to any relevant aspect (required; images are optional): Example: The Aspidogastrea (K. Rohde) . Main characteristics . Life cycles . Taxonomy and phylogeny . A countertrend to sacculinization . Infection process and localisation in host, functional morphology . Ecology . References Text and images courtesy of K. Rohde I. PART ONE: INTRODUCTORY CONCEPTS 1. Introduction to Parasitology 2. Collecting Parasites a. Field methods b. Laboratory methods c. Hand drawing and imaging 3. Identifying Parasites a. Morphological methods b. Molecular methods 4. Parasites in Relation to Each Other a. Parasite systematics and taxonomy b. Phylogenetic methods in parasitology 5. Parasites in Relation to Other Organisms a. Hosts, reservoirs, and vectors b. Life cycles c. Parasite biodiversity and biogeography (alpha, beta, and gamma levels) d. Behavioral parasitology 6. Parasites in Time and Space a. Parasite evolution and coevolution b. Parasite community ecology c. Ecological niche modeling Image courtesy of Gardner, et al. II. PART TWO: ENDOPARASITE GROUPS 3. Platyhelminths (Phylum Platyhelminthes) 1. Introduction to Endoparasite Groups a. Trematoda Rudolphi, 1808 (Class) 2. Parasitic Protistans i. Aspidogastrea (Subclass) a. Parasitic amoeba ii. Digenea (Subclass) b. Flagellates (general) 1. Diplostomida (Order) i. Trypanosoma (specifically T. cruzi) 2. Plagiorchiida (Order) ii. Leishmania a. Hematoloechidae (Family) c. Haemoprotozoans / Apicomplexans b. Echinostomata (Suborder) (e.g. Plasmodium, leucocytozooans, c. Hemiurata (Suborder) and others) d. Opisthorchiata (Suborder) d. Other apicomplexans (e.g. Eimeria, e. Lecithodendriidae (Family) Isospora, Toxoplasma, and others) 3. Other groups to be added later e. Ciliates (e.g. Balantidium) b. Cestodes (Class Cestoda) f. Microsporidians i. Cyclophyllidea (Order) g. Myxozoans / Cnidarians 1. Taenia (Genus) h. Mesozoans 2. Echinococcus (Genus) 3. Hymenolepis (Genus) ii. Pseudophyllidea (Order) iii. Tetraphyllidea (Order) iv. Proteocephalata (Order) v. Amphilinidea (Order) vi. (Elasmobranch parasite orders (?)) 4. Nematodes (Phylum Nemata) a. Oxyurids (Order Oxyurida) b. Ascarids (Order Ascarida) c. Filarioids (Order Filariata) d. Trichurids (Order Trichurata) e. Heterakoidea (Superfamily Heterakoidea) f. Strongylids (Order Strongylata) g. Trichostrongylids (Superfamily Trichostrongyloidea) h. Spirurids (Order Spiurata) (i). Camallanians (Order Camallanata) 5. Nematomorphs (Phylum Nematomorphata) 6. Acanthocephalans (Phylum Acanthocephalata) Image courtesy of Dursahinhan, et al. III. PART THREE: ECTOPARASITE GROUPS 1. Introduction to Ectoparasite Groups 2. Ectoparasitic Platyhelminths (Phylum Platyhelminthes) a. Monogenes (Class Monogenea) b. Triclads (Order Tricladida) 3. Parasitic Hirudinians (Class Hirudinia) 4. Parasitic Arthropods (Phylum Arthropoda) a. Parasitic crustaceans (Class Crustacea) b. Pentastomids (Class Pentastomida) c. Parasitic insects (Class Insecta) i. Siphonapterans (Order Siphonaptera) ii. Dipterans (specifically, bat flies) (Order Diptera) iii. Hemipterans (Order Hemiptera) iv. Hymenopterans (Order Hymenoptera) v. Strepsipterans (Order Strepsiptera) vi. Psocodeans, general (mallophages) (Order Psocodea) vii. Sucking and chewing forms (anoplurans) (Order Psocodea) d. Parasitic arachnids (Subclass Arachnida) Image courtesy of Springer et al. i. Mites (Order Acari) ii. Ticks (Order Acari) IV. PART FOUR: AUXILIARY CONCEPTS 1. Introduction to Auxiliary Concepts 2. A Short Introduction to the DAMA Protocol 3. A Short Introduction to Human Parasitology 4. A Short Introduction to Paleaoparasitology 5. A Short Introduction to Veterinary Parasitology 6. A Short Introduction to Wildlife Parasitology 7. A Short Introduction to e-Parasitology May add others Who / What: - Look at the outline to see who will be working on what areas - Let us know what needs to be corrected When: - Writing deadline: November 30, 2018 - Reviewing deadline: January 31, 2019 Manuscript Preparation Guidelines (forthcoming) References Style Guide Parts 2 and 3 Template (optional) Permission to Publish agreement (forthcoming) How to Submit your contribution Publisher: Zea Books (UNL Libraries) Authors and reviewers should complete a Permission to Publish agreement In revision now and will be available soon Gives noncommercial users permission to use and re-use all the content for free Generous termination clause Consult the Manuscript Preparation Guidelines Submit an MS Word .doc or .docx, or an .rtf: Via the UNL DigitalCommons site at https://digitalcommons.unl.edu/parasittext Author Corner: Submit Your Paper or Article or Send the file to Scott Gardner at [email protected] https://pdxscholar.library.pdx.edu/pdxopen/ As noted in the 2014 Scientific Electronic Library Online analytic study, our goals include: ▪ Credibility ▪ Professionalization SciELO ▪ Internationalization ▪ Sustainability We have some time for questions and discussion Scott Gardner [email protected] Sue Gardner [email protected] Thank you for attending! .
Recommended publications
  • Literature Review
    2. LITERATURE REVIEW 2.1 Taxonomy of Dicrocoelium spp. The taxonomy of Dicrocoelium spp. (LA RUE, 1957) is as follows: Phylum Plathelminthes Superclass Trematoda Class Digenea Superorder Epitheliocystida Order Plagiorchiida Suborder Plagiorchiata Superfamily Plagiorchioidea Family Dicrocoeliidae Subfamily Dicrocoeliinae Genus Dicrocoelium 2.2 Species Dicrocoelium dendriticum (RUDOLPHI, 1819) is the species of Dicrocoelium with the widest distribution, found in a range from Portugal to central Asia and also in North America. D. hospes (LOOSS, 1907) is present in western, central and eastern Africa, while D. chinensis (TANG et al., 1978) is distributed in China, east Siberia and Japan. Further, D. suppereri (HINAIDY, 1983) and D. orientalis, (SUDARIKOV AND RYJIKOV, 1951) are morphologically identical with D. chinensis and are considered to be synonyms. Interestingly, D. suppereri has been recently found in a mufflon in Austria, far from localities where D. chinensis is usually reported. Possibly it was imported, and came to Europe with infected sika deer (Cervus nippon) in the 19th century. Other members of the genus Dicrocoelium are avian parasites. Dicrocoelium species differ in some morphological characteristics, geographic distribution and ecological features. 3 2.3 Morphology Dicrocoelium spp. (δικροσ: bifid; κοιλια: gut) are characterised by a lancet shaped body, with an oral and a ventral sucker. The body size is 5–10 mm in length and 2–3 mm in width, semitransparent and pied, with a black uterus and white vitellaria visible to the naked eye. The eggs are oval, dark brown, typically operculate, small (38– 45 µm x 22–30 µm), with two characteristic dark points (so called “eye spots”), and contain a miracidium (EUZÉBY, 1971).
    [Show full text]
  • BIO 475 - Parasitology Spring 2009 Stephen M
    BIO 475 - Parasitology Spring 2009 Stephen M. Shuster Northern Arizona University http://www4.nau.edu/isopod Lecture 12 Platyhelminth Systematics-New Euplatyhelminthes Superclass Acoelomorpha a. Simple pharynx, no gut. b. Usually free-living in marine sands. 3. Also parasitic/commensal on echinoderms. 1 Euplatyhelminthes 2. Superclass Rhabditophora - with rhabdites Euplatyhelminthes 2. Superclass Rhabditophora - with rhabdites a. Class Rhabdocoela 1. Rod shaped gut (hence the name) 2. Often endosymbiotic with Crustacea or other invertebrates. Euplatyhelminthes 3. Example: Syndesmis a. Lives in gut of sea urchins, entirely on protozoa. 2 Euplatyhelminthes Class Temnocephalida a. Temnocephala 1. Ectoparasitic on crayfish 5. Class Tricladida a. like planarians b. Bdelloura 1. live in gills of Limulus Class Temnocephalida 4. Life cycles are poorly known. a. Seem to have slightly increased reproductive capacity. b. Retain many morphological characters that permit free-living existence. Euplatyhelminth Systematics 3 Parasitic Platyhelminthes Old Scheme Characters: 1. Tegumental cell extensions 2. Prohaptor 3. Opisthaptor Superclass Neodermata a. Loss of characters associated with free-living existence. 1. Ciliated larval epidermis, adult epidermis is syncitial. Superclass Neodermata b. Major Classes - will consider each in detail: 1. Class Trematoda a. Subclass Aspidobothrea b. Subclass Digenea 2. Class Monogenea 3. Class Cestoidea 4 Euplatyhelminth Systematics Euplatyhelminth Systematics Class Cestoidea Two Subclasses: a. Subclass Cestodaria 1. Order Gyrocotylidea 2. Order Amphilinidea b. Subclass Eucestoda 5 Euplatyhelminth Systematics Parasitic Flatworms a. Relative abundance related to variety of parasitic habitats. b. Evidence that such characters lead to great speciation c. isolated populations, unique selective environments. Parasitic Flatworms d. Also, very good organisms for examination of: 1. Complex life cycles; selection favoring them 2.
    [Show full text]
  • Platyhelminthes: Amphilinidea)
    Ahead of print online version FOLIA PARASITOLOGICA 60 [1]: 43–50, 2013 © Institute of Parasitology, Biology Centre ASCR ISSN 0015-5683 (print), ISSN 1803-6465 (online) http://folia.paru.cas.cz/ A reinvestigation of spermiogenesis in Amphilina foliacea (Platyhelminthes: Amphilinidea) Magdaléna Bruňanská1, Larisa G. Poddubnaya2 and Willi E. R. Xylander3 1 Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovak Republic; 2 I.D. Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Yaroslavl Province, Russia; 3 Senckenberg Museum für Naturkunde Görlitz, Postfach 300 154, 02806 Görlitz, Germany Abstract: Spermiogenesis in the amphilinidean cestode Amphilina foliacea (Rudolphi, 1819) was examined using transmission electron microscopy. The orthogonal development of the two flagella is followed by a flagellar rotation and their proximodistal fu- sion with the median cytoplasmic process. This process is accompanied by extension of both the mitochondrion and nucleus into the median cytoplasmic process. The two pairs of electron-dense attachment zones mark the lines where the proximodistal fusion of the median cytoplasmic process with the two flagella takes place. The intercentriolar body, previously undetermined inA. foliacea, is composed of three electron-dense and two electron-lucent plates. Also new for this species is the finding of electron-dense material in the apical region of the differentiation zone at the early stage of spermiogenesis, and the fact that two arching membranes appear at the base of the differentiation zone only when the two flagella rotate towards the median cytoplasmic process. The present data add more evidence for a close relationship between the Amphilinidea and the Eucestoda.
    [Show full text]
  • Glossidiella Peruensis Sp. Nov., a New Digenean (Plagiorchiida
    ZOOLOGIA 37: e38837 ISSN 1984-4689 (online) zoologia.pensoft.net RESEARCH ARTICLE Glossidiella peruensis sp. nov., a new digenean (Plagiorchiida: Plagiorchiidae) from the lung of the brown ground snake Atractus major (Serpentes: Dipsadidae) from Peru Eva Huancachoque 1, Gloria Sáez 1, Celso Luis Cruces 1,2, Carlos Mendoza 3, José Luis Luque 4, Jhon Darly Chero 1,5 1Laboratorio de Parasitología General y Especializada, Facultad de Ciencias Naturales y Matemática, Universidad Nacional Federico Villarreal. 15007 El Agustino, Lima, Peru. 2Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal Rural do Rio de Janeiro. Rodovia BR 465, km 7, 23890-000 Seropédica, RJ, Brazil. 3Escuela de Ingeniería Ambiental, Facultad de Ingeniería y Arquitecturas, Universidad Alas Peruanas. 22202 Tarapoto, San Martín, Peru. 4Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro. Caixa postal 74540, 23851-970 Seropédica, RJ, Brazil. 5Programa de Pós-Graduação em Biologia Animal, Universidade Federal Rural do Rio de Janeiro. Rodovia BR 465, km 7, 23890-000 Seropédica, RJ, Brazil. Corresponding author: Jhon Darly Chero ([email protected]) http://zoobank.org/30446954-FD17-41D3-848A-1038040E2194 ABSTRACT. During a survey of helminth parasites of the brown ground snake, Atractus major Boulenger, 1894 (Serpentes: Dipsadidae) from Moyobamba, region of San Martin (northeastern Peru), a new species of Glossidiella Travassos, 1927 (Plagiorchiida: Plagiorchiidae) was found and is described herein based on morphological and ultrastructural data. The digeneans found in the lung were measured and drawings were made with a drawing tube. The ultrastructure was studied using scanning electron microscope. Glossidiella peruensis sp. nov. is easily distinguished from the type- and only species of the genus, Glossidiella ornata Travassos, 1927, by having an oblong cirrus sac (claviform in G.
    [Show full text]
  • Proceedings of the Helminthological Society of Washington 52(1) 1985
    Volumes? V f January 1985 Number 1 PROCEEDINGS ;• r ' •'• .\f The Helminthological Society --. ':''.,. --'. .x; .-- , •'','.• ••• •, ^ ' s\ * - .^ :~ s--\: •' } • ,' '•• ;UIoftI I ? V A semiannual journal of. research devoted to He/m/nfho/ogy and jail branches of Parasifo/ogy -- \_i - Suppprted in part by the vr / .'" BraytpnH. Ransom Memorial Trust Fund . - BROOKS, DANIEL R.,-RIGHARD T.O'GnADY, AND DAVID R. GLEN. The Phylogeny of < the Cercomeria Brooks, 1982 (Platyhelminthes) .:.........'.....^..i.....l. /..pi._.,.,.....:l^.r._l..^' IXDTZ,' JEFFREY M.,,AND JAMES R. .PALMIERI. Lecithodendriidae (Trematoda) from TaphozQUS melanopogon (Chiroptera) in Perlis, Malaysia , : .........i , LEMLY, A. DENNIS, AND GERALD W. ESCH. Black-spot Caused by Uvuliferambloplitis (Tfemato^a) Among JuVenileoCentrarchids.in the Piedmont Area of North S 'Carolina ....:..^...: „.. ......„..! ...; ,.........„...,......;. ;„... ._.^.... r EATON, ANNE PAULA, AND WJLLIAM F. FONT. Comparative "Seasonal Dynamics of ,'Alloglossidium macrdbdellensis (Digenea: Macroderoididae) in Wisconsin and HUEY/RICHARD. Proterogynotaenia texanum'sp. h. (Cestoidea: Progynotaeniidae) 7' from the Black-bellied Plover, Pluvialis squatarola ..;.. ...:....^..:..... £_ .HILDRETH, MICHAEL^ B.; AND RICHARD ;D. LUMSDEN. -Description of Otobothrium '-•I j«,tt£7z<? Plerocercus (Cestoda: Trypanorhyncha) and Its Incidence in Catfish from the Gulf Coast of Louisiana r A...:™.:.. J ......:.^., „..,..., ; , ; ...L....1 FRITZ, GA.RY N. A Consideration^of Alternative Intermediate Hosts for Mohiezia
    [Show full text]
  • Diplomarbeit
    DIPLOMARBEIT Titel der Diplomarbeit „Microscopic and molecular analyses on digenean trematodes in red deer (Cervus elaphus)“ Verfasserin Kerstin Liesinger angestrebter akademischer Grad Magistra der Naturwissenschaften (Mag.rer.nat.) Wien, 2011 Studienkennzahl lt. Studienblatt: A 442 Studienrichtung lt. Studienblatt: Diplomstudium Anthropologie Betreuerin / Betreuer: Univ.-Doz. Mag. Dr. Julia Walochnik Contents 1 ABBREVIATIONS ......................................................................................................................... 7 2 INTRODUCTION ........................................................................................................................... 9 2.1 History ..................................................................................................................................... 9 2.1.1 History of helminths ........................................................................................................ 9 2.1.2 History of trematodes .................................................................................................... 11 2.1.2.1 Fasciolidae ................................................................................................................. 12 2.1.2.2 Paramphistomidae ..................................................................................................... 13 2.1.2.3 Dicrocoeliidae ........................................................................................................... 14 2.1.3 Nomenclature ...............................................................................................................
    [Show full text]
  • Research Note Phylogenetic Position of Pleurogenoides Species
    ©2020 Institute of Parasitology, SAS, Košice DOI 10.2478/helm-2020-0006 HELMINTHOLOGIA, 57, 1: 71 – 77, 2020 Research Note Phylogenetic position of Pleurogenoides species (Plagiorchiida: Pleurogenidae) from the duodenum of Indian skipper frog, Euphlyctis cyanophlyctis (Amphibia: Dicroglossidae) inhabiting the Western Ghats, India A. CHAUDHARY1,*, K. SHINAD2, P. K. PRASADAN2, H. S. SINGH1 1Molecular Taxonomy Laboratory, Department of Zoology, Chaudhary Charan Singh University, Meerut (U.P.)- 250004, India, E-mail: [email protected]; 2Ecological Parasitology and Tropical Biodiversity Laboratory, Department of Zoology, Kannur University, Mananthavady Campus, Wayanad, Kerala 670645, India Article info Summary Received September 10, 2019 Two species of digenetic trematodes of the genus Pleurogenoides viz., P. cyanophlycti Shinad & Accepted October 30, 2019 Prasadan (2018a) and P. euphlycti Shinad & Prasadan (2018b) have been described from India. Information regarding the molecular data of various species of the genus Pleurogenoides Travas- sos, 1921 is virtually lacking. This study addresses the application of molecular markers to validate the phylogenetic position of P. cyanophlycti and P. euphlycti. In the present study, two species P. cyanophlycti and P. euphlycti were collected between January 2016 to October 2017, infecting the freshwater frogs inhabiting the Western Ghats, India. In the present study, the two species were identifi ed morphologically and by PCR amplifi cation of the 28S ribosomal RNA gene. Phylogenetic tree results clearly demonstrate that both P. cyanophlycti and P. euphlycti belongs to the family Pleurogenidae Looss, 1899. Based on these results, we presented and discussed the phylogenetic relationships of P. cyanophlycti and P. euphlycti within family Pleurogenidae from India. Phylogenetic analyses showed that P.
    [Show full text]
  • High Prevalence of Clonorchis Sinensis and Other Zoonotic Trematode Metacercariae in Fish from a Local Market in Yen Bai Province, Northern Vietnam
    ISSN (Print) 0023-4001 ISSN (Online) 1738-0006 Korean J Parasitol Vol. 58, No. 3: 333-338, June 2020 ▣ BRIEF COMMUNICATION https://doi.org/10.3347/kjp.2020.58.3.333 High Prevalence of Clonorchis sinensis and Other Zoonotic Trematode Metacercariae in Fish from a Local Market in Yen Bai Province, Northern Vietnam 1,6 1 2 3 4 5 5, Fuhong Dai , Sung-Jong Hong , Jhang Ho Pak , Thanh Hoa Le , Seung-Ho Choi , Byoung-Kuk Na , Woon-Mok Sohn * 1Department of Environmental Medical Biology, Chung-Ang University College of Medicine, Seoul 06974, Korea; 2Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea; 3Department of Immunology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam; 4Society of Korean Naturalist, Institute of Ecology and Conservation, Yangpyeong 12563, Korea; 5Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea, 6Department of Parasitology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu 215123, P.R. China Abstract: A small survey was performed to investigate the recent infection status of Clonorchis sinensis and other zoo- notic trematode metacercariae in freshwater fish from a local market of Yen Bai city, Yen Bai province, northern Vietnam. A total of 118 fish in 7 species were examined by the artificial digestion method on March 2016. The metacercariae of 4 species of zoonotic trematodes, i.e., C. sinensis, Haplorchis pumilio, Haplorchis taichui, and Centrocestus formosanus, were detected. The metacercariae of C. sinensis were found in 62 (69.7%) out of 89 fish (5 species), and their intensity of infection was very high, 81.2 per fish infected.
    [Show full text]
  • (Digenea, Platyhelminthes)1 Authors: Sean
    bioRxiv preprint doi: https://doi.org/10.1101/333518; this version posted May 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Title: Nuclear and mitochondrial phylogenomics of the Diplostomoidea and Diplostomida 2 (Digenea, Platyhelminthes)1 3 Authors: Sean A. Lockea,*, Alex Van Dama, Monica Caffarab, Hudson Alves Pintoc, Danimar 4 López-Hernándezc, Christopher Blanard 5 aUniversity of Puerto Rico at Mayagüez, Department of Biology, Box 9000, Mayagüez, Puerto 6 Rico 00681–9000 7 bDepartment of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Via 8 Tolara di Sopra 50, 40064 Ozzano Emilia (BO), Italy 9 cDepartament of Parasitology, Instituto de Ciências Biológicas, Universidade Federal de Minas 10 Gerais, Belo Horizonte, Minas Gerais, Brazil. 11 dNova Southeastern University, 3301 College Avenue, Fort Lauderdale, Florida, USA 33314- 12 7796. 13 *corresponding author: University of Puerto Rico at Mayagüez, Department of Biology, Box 14 9000, Mayagüez, Puerto Rico 00681–9000. Tel:. +1 787 832 4040x2019; fax +1 787 265 3837. 15 Email [email protected] 1 Note: Nucleotide sequence data reported in this paper will be available in the GenBank™ and EMBL databases, and accession numbers will be provided by the time this manuscript goes to press. 1 bioRxiv preprint doi: https://doi.org/10.1101/333518; this version posted May 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Ontogenesis and Phylogenetic Interrelationships of Parasitic Flatworms
    W&M ScholarWorks Reports 1981 Ontogenesis and phylogenetic interrelationships of parasitic flatworms Boris E. Bychowsky Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Aquaculture and Fisheries Commons, Marine Biology Commons, Oceanography Commons, Parasitology Commons, and the Zoology Commons Recommended Citation Bychowsky, B. E. (1981) Ontogenesis and phylogenetic interrelationships of parasitic flatworms. Translation series (Virginia Institute of Marine Science) ; no. 26. Virginia Institute of Marine Science, William & Mary. https://scholarworks.wm.edu/reports/32 This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. /J,J:>' :;_~fo c. :-),, ONTOGENESIS AND PHYLOGENETIC INTERRELATIONSHIPS OF PARASITIC FLATWORMS by Boris E. Bychowsky Izvestiz Akademia Nauk S.S.S.R., Ser. Biol. IV: 1353-1383 (1937) Edited by John E. Simmons Department of Zoology University of California at Berkeley Berkeley, California Translated by Maria A. Kassatkin and Serge Kassatkin Department of Slavic Languages and Literature University of California at Berkeley Berkeley, California Translation Series No. 26 VIRGINIA INSTITUTE OF MARINE SCIENCE COLLEGE OF WILLIAM AND MARY Gloucester Point, Virginia 23062 William J. Hargis, Jr. Director 1981 Preface This publication of Professor Bychowsky is a major contribution to the study of the phylogeny of parasitic flatworms. It is a singular coincidence for it t6 have appeared in print the same year as Stunkardts nThe Physiology, Life Cycles and Phylogeny of the Parasitic Flatwormsn (Amer. Museum Novitates, No. 908, 27 pp., 1937 ), and this editor well remembers perusing the latter under the rather demanding tutelage of A.C.
    [Show full text]
  • D070p001.Pdf
    DISEASES OF AQUATIC ORGANISMS Vol. 70: 1–36, 2006 Published June 12 Dis Aquat Org OPENPEN ACCESSCCESS FEATURE ARTICLE: REVIEW Guide to the identification of fish protozoan and metazoan parasites in stained tissue sections D. W. Bruno1,*, B. Nowak2, D. G. Elliott3 1FRS Marine Laboratory, PO Box 101, 375 Victoria Road, Aberdeen AB11 9DB, UK 2School of Aquaculture, Tasmanian Aquaculture and Fisheries Institute, CRC Aquafin, University of Tasmania, Locked Bag 1370, Launceston, Tasmania 7250, Australia 3Western Fisheries Research Center, US Geological Survey/Biological Resources Discipline, 6505 N.E. 65th Street, Seattle, Washington 98115, USA ABSTRACT: The identification of protozoan and metazoan parasites is traditionally carried out using a series of classical keys based upon the morphology of the whole organism. However, in stained tis- sue sections prepared for light microscopy, taxonomic features will be missing, thus making parasite identification difficult. This work highlights the characteristic features of representative parasites in tissue sections to aid identification. The parasite examples discussed are derived from species af- fecting finfish, and predominantly include parasites associated with disease or those commonly observed as incidental findings in disease diagnostic cases. Emphasis is on protozoan and small metazoan parasites (such as Myxosporidia) because these are the organisms most likely to be missed or mis-diagnosed during gross examination. Figures are presented in colour to assist biologists and veterinarians who are required to assess host/parasite interactions by light microscopy. KEY WORDS: Identification · Light microscopy · Metazoa · Protozoa · Staining · Tissue sections Resale or republication not permitted without written consent of the publisher INTRODUCTION identifying the type of epithelial cells that compose the intestine.
    [Show full text]
  • Identification of the Avian Tracheal Trematode Typhlocoelum
    Parasitology Identification of the avian tracheal trematode Typhlocoelum cucumerinum cambridge.org/par (Trematoda: Cyclocoelidae) in a host–parasite–environment system: diagnosis, Research Article life cycle and molecular phylogeny Cite this article: Assis JCA, López-Hernández D, Favoretto S, Medeiros LB, Melo AL, Martins 1 1 2 NRS, Pinto HA (2021). Identification of the Jordana C. A. Assis , Danimar López-Hernández , Samantha Favoretto , avian tracheal trematode Typhlocoelum 3 1 3 1 cucumerinum (Trematoda: Cyclocoelidae) in a Lilian B. Medeiros , Alan L. Melo , Nelson R. S. Martins and Hudson A. Pinto host–parasite–environment system: diagnosis, 1 life cycle and molecular phylogeny. Laboratório de Biologia de Trematoda, Department of Parasitology, Institute of Biological Sciences, Universidade Parasitology 148, 1383–1391. https://doi.org/ Federal de Minas Gerais, Belo Horizonte, Brazil; 2Department of Veterinary Medicine, Universidade Federal de 10.1017/S0031182021000986 Lavras, Lavras, Brazil and 3Laboratório de Doenças das Aves, Department of Preventive Veterinary Medicine, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil Received: 27 April 2021 Revised: 1 June 2021 Accepted: 1 June 2021 Abstract First published online: 9 June 2021 Typhlocoelum cucumerinum is a tracheal parasite of birds widely distributed across the globe. Key words: Nevertheless, aspects of the biology of this cyclocoelid are still poorly understood. Herein, we Typhlocoelinae; life cycle; domestic waterfowl; report the finding of T. cucumerinum in definitive and intermediate hosts from an urban phylogeny waterbody of Brazil. The parasite was initially detected during the necropsy of domestic Muscovy ducks (Cairina moschata) found dead in the locality. Coproparasitological tests in Author for correspondence: Jordana C. A.
    [Show full text]