Effect of Serotonin Modulation on Dystrophin-Deficient Zebrafish Janelle M

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Serotonin Modulation on Dystrophin-Deficient Zebrafish Janelle M © 2020. Published by The Company of Biologists Ltd | Biology Open (2020) 9, bio053363. doi:10.1242/bio.053363 RESEARCH ARTICLE Effect of serotonin modulation on dystrophin-deficient zebrafish Janelle M. Spinazzola1,2, Matthias R. Lambert1,2, Devin E. Gibbs1,*, James R. Conner1, Georgia L. Krikorian1, Prithu Pareek1, Carlo Rago3,‡ and Louis M. Kunkel1,2,4,5,6,§ ABSTRACT pathways (Acharyya et al., 2007; Allen et al., 2016; Feron et al., 2009; Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting Garbincius and Michele, 2015; Spinazzola et al., 2015) that lead to disease caused by mutation of the dystrophin gene. Pharmacological cycles of myofiber degeneration, regeneration, and fibrosis (Cros therapies that function independently of dystrophin and complement et al., 1989; Marshall et al., 1989). The consequent muscle weakness strategies aimed at dystrophin restoration could significantly improve causes loss of independent ambulation between 10 and 12 years of patient outcomes. Previous observations have suggested that age, and premature death occurs in the late twenties to early thirties serotonin pathway modulation ameliorates dystrophic pathology, and typically due to cardiorespiratory failure (Emery et al., 2015). re-application of serotonin modulators already used clinically would Although glucocorticoid therapy, combined with advances in potentially hasten availability to DMD patients. In our study, we used respiratory supportive care, have improved quality of life and dystrophin-deficient sapje and sapje-like zebrafish models of DMD for extended life expectancy (Biggar et al., 2006; Gloss et al., 2016; rapid and easy screening of several classes of serotonin pathway Sheehan et al., 2018), there is no cure for DMD. Currently, there are modulators as potential therapeutics. None of the candidate drugs several treatment strategies under investigation aimed at restoration tested significantly decreased the percentage of zebrafish exhibiting of dystrophin expression, such as viral delivery of micro-dystrophin the dystrophic muscle phenotype in the short-term birefringence assay and read-through of translation stop codons (Verhaart and Aartsma- or lengthened the lifespan in the long-term survival assay. Although we Rus, 2019). Notably, Eteplirsen and Golodirsen, two drugs that act did not identify an effective drug, we believe our data is of value to the to promote dystrophin production by restoring the translational DMD research community for future studies, and there is evidence that reading frame of dystrophin, have recently been approved by the suggests serotonin modulation may still be a viable treatment strategy FDA (Aartsma-Rus and Corey, 2020; Frank et al., 2020; Mendell with further investigation. Given the widespread clinical use of selective et al., 2013). However, these therapies are not expected to cure serotonin reuptake inhibitors, tricyclic antidepressants and reversible DMD given that they result in production of a low abundance of inhibitors of monoamine oxidase, their reapplication to DMD is an truncated, partially functional forms of dystrophin protein, and a attractive strategy in the field’s pursuit to identify pharmacological dramatic change in the course of the disease will likely require a therapies to complement dystrophin restoration strategies. combinatorial treatment approach (Verhaart and Aartsma-Rus, 2019). Thus, identification of therapies that improve pathology KEY WORDS: Duchenne muscular dystrophy, Zebrafish, Serotonin, independent of dystrophin and work complementarily with genetic- Drug screening based approaches would be of significant value to patients. Interestingly, there are several previous studies suggesting serotonin INTRODUCTION modulation may be a candidate strategy to treat muscular dystrophy. Duchenne muscular dystrophy (DMD) is a progressive x-linked Serotonin is a neurotransmitter most commonly associated with the muscle-wasting disease that affects approximately one in 4000 male regulation of homeostatic processes including sleep, appetite, births (Emery et al., 2015) in which mutations in the dystrophin gene emotions and perception (Mohammad-Zadeh et al., 2008). Thus, result in production of a truncated, non-functional dystrophin protein serotonin, its precursors and products, and serotonin modulators such (Hoffman et al., 1987; Monaco et al., 1986). Absence of dystrophin at as selective serotonin reuptake inhibitors (SSRIs), tricyclic the sarcolemma increases muscle susceptibility to contraction-induced antidepressants and reversible inhibitors of monoamine oxidase damage (Dellorusso et al., 2001) and causes alterations in signaling (RIMAs) are commonly prescribed clinically to treat insomnia, depression and anxiety (Taciak et al., 2018). However, even prior to the discovery of the dystrophin gene, treatment of dystrophic chickens 1Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA. with the serotonin antagonist methysergide was found to prevent 2 3 Department of Pediatrics, Harvard Medical School, Boston, MA, USA. DMD muscle weakness and reduce serum creatine kinase (Bhargava et al., Therapeutics Inc., Seattle, WA, USA. 4The Stem Cell Program, Boston Children’s Hospital, Boston, MA, USA. 5Harvard Stem Cell Institute, Cambridge, MA, USA. 1977; Hudecki and Barnard, 1976). More recently, investigation of 6The Manton Center for Orphan Disease Research at Boston Children’s Hospital, serotonin modulators have been investigated in C. elegans, mouse and Boston, MA, USA. *Present address: UCLA Biomedical Science Research Building, University of zebrafish models of DMD. In a C. elegans model of DMD, treatment California, Los Angeles, CA, USA. ‡Present address: District 2 Capital, Huntington, with serotonin or the SSRIs fluoxetine, imipramine or trimipramine NY, USA. suppressed muscle degeneration, and reduction of serotonin levels §Author for correspondence ([email protected]) caused degeneration of non-dystrophic muscles (Carre-Pierrat et al., 2006). Mdx mice treated with the tricyclic antidepressant amitriptyline M.R.L., 0000-0001-8300-3124; P.P., 0000-0002-2722-6398; L.M.K., 0000-0001- exhibited decreased forelimb muscle pro-inflammatory cytokines 6126-0242 TNF-α andIL-6(Manningetal.,2014),andGureletal.foundthat This is an Open Access article distributed under the terms of the Creative Commons Attribution serotonin, in combination with histamine, improved grip strength and License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, 5cv distribution and reproduction in any medium provided that the original work is properly attributed. lowered contraction-induced injury in mdx mice (Gurel et al., 2015). In dystrophin-deficient sapje zebrafish, fluoxetine was found to Received 1 May 2020; Accepted 16 July 2020 prevent muscle pathology and disruption of muscle membrane Biology Open 1 RESEARCH ARTICLE Biology Open (2020) 9, bio053363. doi:10.1242/bio.053363 integrity, and transcriptome analysis indicated changes in calcium Table 1. List of candidate drugs tested homeostasis as a potential mechanism of extracellular serotonin- No. Drug Class induced rescue of dystrophin deficiency (Waugh et al., 2014). Zebrafish have emerged as a powerful preclinical genetic model 1 Serotonin 2 5-hydroxy-L-tryptophan Precursor to serotonin to study muscle development and diseases, complement murine 3 Tryptophan Precursor to serotonin studies, and accelerate the discovery of potential therapeutics. The 4 Melatonin Product of serotonin zebrafish dystrophin associated protein complex (DAPC) localizes 5 Cisapride Serotonin receptor agonist to the muscle cell membrane and functions similarly as in mammals 6 Citalopram hydrobromide SSRI (Guyon et al., 2003). The highly ordered sarcomeric structure of 7 Escitalopram SSRI zebrafish somatic muscle can be observed as bright chevrons on a 8 Fluoxetine SSRI 9 Fluvoxamine maleate SSRI dark background by rotating polarized light through the transparent 10 Paroxetine hydrochloride SSRI zebrafish embryo. This optical property, known as birefringence, 11 Sertraline hydrochloride SSRI results from the diffraction of polarized light through the pseudo- 12 Clomipramine Tricyclic antidepressant crystallin array of muscle sarcomeres, and can thus be used as an (serotonin selective) assay to detect the disorganized muscle structure characteristic of 13 Imipramine hydrochloride Tricyclic antidepressant diseased muscle repeatedly and noninvasively. The two DMD (serotonin selective) 14 Amitriptyline Tricyclic antidepressant zebrafish lines, sapje and sapje-like, harbor mutations in the (non selective) dystrophin gene that both result in absence of the dystrophin muscle 15 Moclobemide RIMA protein causing extensive muscle degeneration, inflammation, and 16 Pirlindole mesylate RIMA fibrosis similar to the pathogenesis of human DMD (Bassett and 17 Toloxatone RIMA Currie, 2004; Guyon et al., 2009). Mutant fish exhibit a patchy birefringence pattern detectable 4 days post fertilization (dpf) and death occurs prematurely, typically beginning around 12 dpf. homozygous mutant muscle phenotype detected by birefringence In this study, we used sapje and sapje-like zebrafish to assess assay (Fig. 1B). In short, 1 dpf embryos resulting from heterozygous serotonin and 16 serotonin precursors, products and modulating pair matings were treated either a candidate drug, 0.1% dimethyl drugs as DMD therapeutics. We performed both short-term sulfoxide (DMSO) control, or E2 water (untreated). On 4 dpf, fish birefringence
Recommended publications
  • Summary of Product Characteristics
    Package leaflet: Information for the patient Fluoxetine 20mg Capsules, hard fluoxetine Read all of this leaflet carefully before you start taking this medicine because it contains important information for you. • Keep this leaflet. You may need to read it again. • If you have further questions, ask your doctor or pharmacist. • This medicine has been prescribed for you only. Do not pass it on to others. It may harm them, even if their signs of illness are the same as yours. •If you get any side effects, talk to your doctor or pharmacist. This includes any possible side effects not listed in this leaflet. What is in this leaflet 1. What Fluoxetine is and what it is used for 2. What you need to know before you take Fluoxetine 3. How to take Fluoxetine 4. Possible side effects 5. How to store Fluoxetine 6. Contents of the pack and other information 1. What Fluoxetine is and what it is used for The name of your medicine is Fluoxetine 20mg Capsules, hard. It contains the active substance fluoxetine. Fluoxetine belongs to a group of medicines called selective serotonin reuptake inhibitor (SSRI) antidepressants. Fluoxetine can be given to treat the following conditions: Adults: • Major depressive episodes • The symptoms of a condition called obsessive-compulsive disorder (OCD). • The eating disorder bulimia nervosa. This medicine is used alongside psychotherapy for the reduction of binge-eating and purging. Children and adolescents aged 8 years and above: • Moderate to severe major depressive disorder, if the depression does not respond to psychological therapy after 4-6 sessions. Fluoxetine should be offered to a child or young person with moderate to severe major depressive disorder only in combination with psychological therapy.
    [Show full text]
  • Novel Neuroprotective Compunds for Use in Parkinson's Disease
    Novel neuroprotective compounds for use in Parkinson’s disease A thesis submitted to Kent State University in partial Fulfillment of the requirements for the Degree of Master of Science By Ahmed Shubbar December, 2013 Thesis written by Ahmed Shubbar B.S., University of Kufa, 2009 M.S., Kent State University, 2013 Approved by ______________________Werner Geldenhuys ____, Chair, Master’s Thesis Committee __________________________,Altaf Darvesh Member, Master’s Thesis Committee __________________________,Richard Carroll Member, Master’s Thesis Committee ___Eric_______________________ Mintz , Director, School of Biomedical Sciences ___Janis_______________________ Crowther , Dean, College of Arts and Sciences ii Table of Contents List of figures…………………………………………………………………………………..v List of tables……………………………………………………………………………………vi Acknowledgments.…………………………………………………………………………….vii Chapter 1: Introduction ..................................................................................... 1 1.1 Parkinson’s disease .............................................................................................. 1 1.2 Monoamine Oxidases ........................................................................................... 3 1.3 Monoamine Oxidase-B structure ........................................................................... 8 1.4 Structural differences between MAO-B and MAO-A .............................................13 1.5 Mechanism of oxidative deamination catalyzed by Monoamine Oxidases ............15 1 .6 Neuroprotective effects
    [Show full text]
  • The Effects of Phenelzine and Other Monoamine Oxidase Inhibitor
    British Journal of Phammcology (1995) 114. 837-845 B 1995 Stockton Press All rights reserved 0007-1188/95 $9.00 The effects of phenelzine and other monoamine oxidase inhibitor antidepressants on brain and liver 12 imidazoline-preferring receptors Regina Alemany, Gabriel Olmos & 'Jesu's A. Garcia-Sevilla Laboratory of Neuropharmacology, Department of Fundamental Biology and Health Sciences, University of the Balearic Islands, E-07071 Palma de Mallorca, Spain 1 The binding of [3H]-idazoxan in the presence of 106 M (-)-adrenaline was used to quantitate 12 imidazoline-preferring receptors in the rat brain and liver after chronic treatment with various irre- versible and reversible monoamine oxidase (MAO) inhibitors. 2 Chronic treatment (7-14 days) with the irreversible MAO inhibitors, phenelzine (1-20 mg kg-', i.p.), isocarboxazid (10 mg kg-', i.p.), clorgyline (3 mg kg-', i.p.) and tranylcypromine (10mg kg-', i.p.) markedly decreased (21-71%) the density of 12 imidazoline-preferring receptors in the rat brain and liver. In contrast, chronic treatment (7 days) with the reversible MAO-A inhibitors, moclobemide (1 and 10 mg kg-', i.p.) or chlordimeform (10 mg kg-', i.p.) or with the reversible MAO-B inhibitor Ro 16-6491 (1 and 10 mg kg-', i.p.) did not alter the density of 12 imidazoline-preferring receptors in the rat brain and liver; except for the higher dose of Ro 16-6491 which only decreased the density of these putative receptors in the liver (38%). 3 In vitro, phenelzine, clorgyline, 3-phenylpropargylamine, tranylcypromine and chlordimeform dis- placed the binding of [3H]-idazoxan to brain and liver I2 imidazoline-preferring receptors from two distinct binding sites.
    [Show full text]
  • Long-Lasting Analgesic Effect of the Psychedelic Drug Changa: a Case Report
    CASE REPORT Journal of Psychedelic Studies 3(1), pp. 7–13 (2019) DOI: 10.1556/2054.2019.001 First published online February 12, 2019 Long-lasting analgesic effect of the psychedelic drug changa: A case report GENÍS ONA1* and SEBASTIÁN TRONCOSO2 1Department of Anthropology, Philosophy and Social Work, Universitat Rovira i Virgili, Tarragona, Spain 2Independent Researcher (Received: August 23, 2018; accepted: January 8, 2019) Background and aims: Pain is the most prevalent symptom of a health condition, and it is inappropriately treated in many cases. Here, we present a case report in which we observe a long-lasting analgesic effect produced by changa,a psychedelic drug that contains the psychoactive N,N-dimethyltryptamine and ground seeds of Peganum harmala, which are rich in β-carbolines. Methods: We describe the case and offer a brief review of supportive findings. Results: A long-lasting analgesic effect after the use of changa was reported. Possible analgesic mechanisms are discussed. We suggest that both pharmacological and non-pharmacological factors could be involved. Conclusion: These findings offer preliminary evidence of the analgesic effect of changa, but due to its complex pharmacological actions, involving many neurotransmitter systems, further research is needed in order to establish the specific mechanisms at work. Keywords: analgesic, pain, psychedelic, psychoactive, DMT, β-carboline alkaloids INTRODUCTION effects of ayahuasca usually last between 3 and 5 hr (McKenna & Riba, 2015), but the effects of smoked changa – The treatment of pain is one of the most significant chal- last about 15 30 min (Ott, 1994). lenges in the history of medicine. At present, there are still many challenges that hamper pain’s appropriate treatment, as recently stated by American Pain Society (Gereau et al., CASE DESCRIPTION 2014).
    [Show full text]
  • POISONING with ANTIDEPRESSANTS and DEPRIVATION (1999-2003) • Monoamine Oxidase Inhibitors
    ADMISSION EPISODES TO POISONS TREATMENT POISONING WITH UNIT, CARDIFF 1997 ANTIDEPRESSANTS SIMPLE AND NARCOTIC ANALGESICS 57% HYPNOTICS/ANXIOLYTICS 33% ANTIDEPRESSANTS 22% NEUROLEPTIC DRUGS 7% ANTI-INFLAMMATORY DRUGS 6% Philip A Routledge Dept Pharmacology, Therapeutics and Toxicology 0 200 400 600 800 1000 Wales College of Medicine Number of admission episodes Cardiff University WALES, UK WHY ARE ANTIDEPRESSANTS MORTALITY FOR ANTIDEPRESSANT STILL USED? POISONING BY ENGLISH STRATEGIC HEALTH AUTHORITY, 2000-2003 • Depression is common • The morbidity and mortality is high • Non-drug treatments are often unsatisfactory Morgan O et al. Health Statistics Quarterly 2005; 27: 6-12 MORTALITY FOR ANTIDEPRESSANT POISONING POISONING WITH ANTIDEPRESSANTS AND DEPRIVATION (1999-2003) • Monoamine Oxidase Inhibitors • Tricyclic Antidepressants (TCAs) • Selective Serotonin Reuptake Inhibitors (SSRIs) • Others Morgan O et al. Health Statistics Quarterly 2005; 27: 6-12 1 MONOAMINE OXIDASE ENZYMES MONOAMINE OXIDASE (MAOs) INHIBITORS (MAOIs) Dopamine Phenylephrine Tyramine Serotonin (5HT) Norepinephrine Norepinephrine Tyramine • First generation MAOIs Dopamine – Phenelzine (Nardil) Phenylephrine – Tranylcypromine Tyramine – Isocarboxazid MAOI -A MAOI-B • Reversible inhibitors (RIMAs) – Moclobemide (Manerix) MAOI FIRST GENERATION MONOAMINE REVERSIBLE INHIBITORS OF OXIDASE INHIBITORS (MAOIs) RIMA MONOAMINE OXIDASE A (RIMAs) Dopamine Dopamine Phenylephrine Phenylephrine Tyramine Serotonin Serotonin (5HT) (5HT) Norepinephrine Norepinephrine Norepinephrine Norepinephrine
    [Show full text]
  • Package Leaflet: Information for the User Moclobemide 150 Mg Film
    Package leaflet: Information for the user Moclobemide 150 mg film-coated tablets Moclobemide 300 mg film-coated tablets Moclobemide Read all of this leaflet carefully before you start taking this medicine because it contains important information for you. - Keep this leaflet. You may need to read it again. - If you have any further questions, ask your doctor or pharmacist. - This medicine has been prescribed for you only. Do not pass it on to others. It may harm them, even if their signs of illness are the same as yours. - If you get any side effects, talk to your doctor or pharmacist. This includes any possible side effects not listed in this leaflet. See section 4. What is in this leaflet 1. What Moclobemide is and what it is used for 2. What you need to know before you take Moclobemide 3. How to take Moclobemide 4. Possible side effects 5. How to store Moclobemide 6. Contents of the pack and other information 1. What Moclobemide is and what it is used for Moclobemide film-coated tablets contain the active substance moclobemide. This active substance should make your symptoms better. Moclobemide belongs to a group of medicines known as ‘reversible monoamine oxidase A inhibitors’. These increase the levels of some of the chemical messengers in the brain, for example serotonin and dopamine. This should help to improve your depression (feeling sad, low, worthless or incapable). Medicines which have this effect are called antidepressants. Moclobemide is used to treat major bouts of depression (feeling very low or sad) 2. What you need to know before you take Moclobemide DO NOT take Moclobemide if you are allergic to moclobemide or any of the other ingredients of this medicine (listed in section 6).
    [Show full text]
  • Antidepressants the Old and the New
    Antidepressants The Old and The New October, 1998 iii In 1958 researchers discovered that imipramine had antidepressant 1 activity. Since then, a number of antidepressants have been HIGHLIGHTS developed with a variety of pharmacological mechanisms and side effect profiles. All antidepressants show similar efficacy in the treatment of depression when used in adequate dosages. Choosing the most PHARMACOLOGY & CLASSIFICATION appropriate agent depends on specific patient variables, The mechanism of action for antidepressants is not entirely clear; concurrent diseases, concurrent drugs, and cost. however they are known to interfere with neurotransmitters. Non-TCA antidepressants such as the SSRIs have become Tricyclic antidepressants (TCAs) block the reuptake of both first line agents in the treatment of depression due to their norepinephrine (NE) and serotonin (5HT). The relative ratio of relative safety and tolerability. Each has its own advantages and their effect on NE versus 5HT varies. The potentiation of NE and disadvantages for consideration in individualizing therapy. 5HT results in changes in the neuroreceptors and is thought to be TCAs may be preferred in patients who do not respond to or the primary mechanism responsible for the antidepressant effect. tolerate other antidepressants, have chronic pain or migraine, or In addition to the effects on NE and 5HT, TCAs also block for whom drug cost is a significant factor. muscarinic, alpha1 adrenergic, and histaminic receptors. The extent of these effects vary with each agent resulting in differing Secondary amine TCAs (desipramine and nortriptyline) have side effect profiles. fewer side effects than tertiary amine TCAs. Maintenance therapy at full therapeutic dosages should be Selective serotonin-reuptake inhibitors (SSRIs) block the 2 considered for patients at high risk for recurrence.
    [Show full text]
  • 'Gating' Residues Ile199 and Tyr326 in Human Monoamine Oxidase B
    The ‘gating’ residues Ile199 and Tyr326 in human monoamine oxidase B function in substrate and inhibitor recognition Erika M. Milczek1,*, Claudia Binda2, Stefano Rovida2, Andrea Mattevi2 and Dale E. Edmondson1 1 Departments of Chemistry and Biochemistry, Emory University, Atlanta, Georgia, USA 2 Department of Genetics and Microbiology, University of Pavia, Italy Keywords The major structural difference between human monoamine oxidases A dipartite to monopartite cavity conversion; (MAO A) and B (MAO B) is that MAO A has a monopartite substrate inhibitor specificity; monoamine oxidase B; cavity of 550 A˚3 volume and MAO B contains a dipartite cavity struc- mutations of gating residues; structure of ture with volumes of 290 A˚3 (entrance cavity) and 400 A˚3 (substrate methylene blue complex cavity). Ile199 and Tyr326 side chains separate these two cavities in MAO Correspondence B. To probe the function of these gating residues, Ile199Ala and Ile199Ala- D. E. Edmondson, Department of Tyr326Ala mutant forms of MAO B were investigated. Structural data on Biochemistry, Emory University, 1510 the Ile199Ala MAO B mutant show no alterations in active site geometries Clifton Road, Atlanta, GA 30322, USA compared with wild-type enzyme while the Ile199Ala-Tyr326Ala MAO B Fax: +1 404 727 2738 mutant exhibits alterations in residues 100–103 which are part of the loop Tel: +1 404 727 5972 gating the entrance to the active site. Both mutant enzymes exhibit catalytic E-mail: [email protected] properties with increased amine KM but unaltered kcat values. The altered *Present address KM values on mutation are attributed to the influence of the cavity struc- Department of Chemistry, Princeton ture in the binding and subsequent deprotonation of the amine substrate.
    [Show full text]
  • Chemical Composition of Traditional and Analog Ayahuasca
    Journal of Psychoactive Drugs ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ujpd20 Chemical Composition of Traditional and Analog Ayahuasca Helle Kaasik , Rita C. Z. Souza , Flávia S. Zandonadi , Luís Fernando Tófoli & Alessandra Sussulini To cite this article: Helle Kaasik , Rita C. Z. Souza , Flávia S. Zandonadi , Luís Fernando Tófoli & Alessandra Sussulini (2020): Chemical Composition of Traditional and Analog Ayahuasca, Journal of Psychoactive Drugs, DOI: 10.1080/02791072.2020.1815911 To link to this article: https://doi.org/10.1080/02791072.2020.1815911 View supplementary material Published online: 08 Sep 2020. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ujpd20 JOURNAL OF PSYCHOACTIVE DRUGS https://doi.org/10.1080/02791072.2020.1815911 Chemical Composition of Traditional and Analog Ayahuasca Helle Kaasik a, Rita C. Z. Souzab, Flávia S. Zandonadib, Luís Fernando Tófoli c, and Alessandra Sussulinib aSchool of Theology and Religious Studies; and Institute of Physics, University of Tartu, Tartu, Estonia; bLaboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil; cInterdisciplinary Cooperation for Ayahuasca Research and Outreach (ICARO), School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil ABSTRACT ARTICLE HISTORY Traditional ayahuasca can be defined as a brew made from Amazonian vine Banisteriopsis caapi and Received 17 April 2020 Amazonian admixture plants. Ayahuasca is used by indigenous groups in Amazonia, as a sacrament Accepted 6 July 2020 in syncretic Brazilian religions, and in healing and spiritual ceremonies internationally.
    [Show full text]
  • Official Protocol Title: NCT Number: NCT02750761
    Official Protocol Title: A Phase 1, Single-Administration Pharmacokinetic and Safety Study of Oral and IV Tedizolid Phosphate in Hospitalized Subjects 2 to <12 Years Old NCT number: NCT02750761 Document Date: 23-Jun-2017 Tedizolid Phosphate (MK-1986) 1 Protocol TR701-120/MK-1986-013, Amendment 4 THIS PROTOCOL AND ALL OF THE INFORMATION RELATING TO IT ARE CONFIDENTIAL AND PROPRIETARY PROPERTY OF MERCK SHARP & DOHME CORP., A SUBSIDIARY OF MERCK & CO., INC., WHITEHOUSE STATION, NJ, U.S.A. SPONSOR: Cubist Pharmaceuticals, LLC, A wholly-owned indirect subsidiary of Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc. (hereafter referred to as the Sponsor or Merck) Weystrasse 20, Lucerne 6 Switzerland Protocol-specific Sponsor Contact information can be found in the Investigator Trial File Binder (or equivalent). TITLE: A Phase 1, Single-Administration Pharmacokinetic and Safety Study of Oral and IV Tedizolid Phosphate in Hospitalized Subjects 2 to <12 Years Old IND NUMBER: [106,307 (IV) and 125,076 (Oral Suspension)] EudraCT NUMBER: 2015-004595-29 23-Jun-2017 Confidential 04PPD9 Tedizolid Phosphate (MK-1986) 2 Protocol TR701-120, Amendment 4 SUMMARY OF CHANGES: TR701-120 Amendment 4 PRIMARY REASON(S) FOR THIS AMENDMENT: Section Change Rationale 1.0 Synopsis Updated dose for 6 to <12 years from 5 mg/kg to The dose level for the two age groups was adjusted Methodology; 4mg/kg, dose for 2 to <6 years from 5 mg/kg to 6 based on the results of the first interim analysis of the Investigational mg/kg based on the data from interim safety and safety and pharmacokinetic data.
    [Show full text]
  • Differential Inhibition of Neuronal and Extraneuronal Monoamine Oxidase Graeme Eisenhofer, Ph.D., Jacques W
    Differential Inhibition of Neuronal and Extraneuronal Monoamine Oxidase Graeme Eisenhofer, Ph.D., Jacques W. M. Lenders, M.D., Ph.D., Judith Harvey-White, B.S., Monique Ernst, M.D., Ph.D., Alan Zametkin, M.O., Dennis L. Murphy, M.O., and Irwin J. Kopin, M.D. Tiiis study examined wlzetlzcr tile neuronal and 1-dcprcnyl tlzan with dcbrisoquin (255'¼, compared to a cxtmneuronal sites of action of two 1110110a111i11e oxidase 27% increase). Tlze comparable decreases in plasma (MAO) inlzibitors, 1-deprenyl and debrisoq11i11, could be concentrations of DHPG indicate a similar inhibition of disti11g11islzcd by their effects 011 plasma concentrations of intmncuronal MAO by both drugs. Much larger increases cateclw/a111ine metabolites. Plas111a co11centratio11s of tlzc in 110m1ct11nephrine after 1-deprenyl than after debrisoquin i11tra11euro11al dea111inatcd metabolite of" 11orepi11eplzrine, arc consistent with a site of action of the latter drug directed diiiydroxypiienylglycol WHPG), were decreased by 77'½, at the neuronal rather than the extraneuronal compartment. after debrisoquin and by 64'½, after l-dcpm1yl ad111i11istmtio11. Thus, differential changes in deaminated and O-methylated Plasma conccntmtions of the extmneuronal O-111etlzyl11tcd 11111i11c metabolites allm:us identification of neuronal and 111etabolitc of 11orcpineplzri11e, normctaneplzrine, were extra neuronal sites of action of MAO inhibitors. incrrnsed s11bst11ntiall11 more during treatment zpitfz [Neuropsychopharmacology 15:296-301, 1996] KEY IVORDS: Monoa111inc oxidase; Monomnine oxidase a family with an X-linked point mutation of the MAO-A inhibitors; Catec/10/11mi11es; Met11bolis111; Norcpincplzrine; gene where afflicted males exhibit impaired impulse Non11et1111cpl1ri11c control provides the most compelling evidence for a The monoamine oxidases (MAO) A and B catalyze the role of MAO in the expression of behavior (Brunner et deamination of biogenic amines and represent targets al.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0011643 A1 Dilisa Et Al
    US 2015 0011643A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0011643 A1 DiLisa et al. (43) Pub. Date: Jan. 8, 2015 (54) TREATMENT OF HEART FAILURE AND (60) Provisional application No. 61/038,230, filed on Mar. ASSOCATED CONDITIONS BY 20, 2008, provisional application No. 61/155,704, ADMINISTRATION OF MONOAMINE filed on Feb. 26, 2009. OXIDASE INHIBITORS (71) Applicants:Nazareno Paolocci, Baltimore, MD Publication Classification (US); Univeristy of Padua, Padova (IT) (51) Int. Cl. (72) Inventors: Fabio DiLisa, Padova (IT): Ning Feng, A63L/38 (2006.01) Baltimore, MD (US); Nina Kaludercic, (52) U.S. Cl. Baltimore, MD (US); Nazareno CPC ..... ... A61 K31/138 (2013.01) Paolocci, Baltimore, MD (US) USPC .......................................................... S14/651 (21) Appl. No.: 14/332,234 (22) Filed: Jul. 15, 2014 (57) ABSTRACT Related U.S. Application Data Administration of monoamine oxidase inhibitors is useful in (63) Continuation of application No. 12/407,739, filed on the prevention and treatment of heart failure and incipient Mar. 19, 2009, now abandoned. heart failure. Patent Application Publication Jan. 8, 2015 Sheet 1 of 2 US 201S/0011643 A1 Figure 1 Sial 8. Sws-L) Cleaved Š Caspase-3 ) Figure . Prevention of caspase-3 productief) fron cardiomyocytes Lapoi) reatment with clorgyi Be. Patent Application Publication Jan. 8, 2015 Sheet 2 of 2 US 201S/0011643 A1 Figure 2 8:38:8 ::::::::8: US 2015/0011643 A1 Jan. 8, 2015 TREATMENT OF HEART FAILURE AND in the art is a variety of MAO inhibitors and their pharmaceu ASSOCATED CONDITIONS BY tically acceptable compositions for administration, in accor ADMINISTRATION OF MONOAMINE dance with the present invention, to mammals including, but OXIDASE INHIBITORS not limited to, humans.
    [Show full text]