Retrograde Metamorphism of the Lower Devonian Littleton Formation in the New Salem Area, West -Central Massachusetts

Total Page:16

File Type:pdf, Size:1020Kb

Retrograde Metamorphism of the Lower Devonian Littleton Formation in the New Salem Area, West -Central Massachusetts RETROGRADE METAMORPHISM OF THE LOWER DEVONIAN LITTLETON FORMATION IN THE NEW SALEM AREA, WEST -CENTRAL MASSACHUSETTS BY KURT T. HOLLOCHER I mm 1--------1 Sample NS 71 Retrograded Garnet CONTRIBUTION NO. 3 7 DEPARTMENT OF GEOLOGY 8 GEOGRAPHY UNIVERSITY OF MASSACHUSETTS AMHERS~ MASSACHUSETTS RETROGRADE 1'1ETAMORPHISM OF THE LOWER DEVONIAN LITTLETON FORMATION IN THE NEVI SALEM AREA, WEST-CENTRAL MASSACHUSETTS by Kurt T. Hollocher Contribution No. 37 Department of Geology and Geography University of Massachusetts Amherst, Massachusetts April, 1981 iii TABLE OF CONTENTS ABSTRACT •..•.•..•••••••••.•••••.•••.•••.••.•.•••••••••••••....•....•• 1 INTRODUCTION. • . • . • . • • . • • . • • • • . • • . • • • • . • . • • • • • . • • • • • . • . 3 Location •.••••••.••••.•.•••.•..•.•••••••••.•••••••.••.•.•.•....•• 3 Geography and Quaternary Cover ..•••.••.•.•.•.......•.•.••..••••. 3 Regional Setting and Stratigraphy •.•.••••••••.•.••••..•••.•.••.. 5 Introduction ...••.•..••.•.••.••..••.••.•••........•........ 5 Stratigraphy... • . • • . • . • . • . • . • . • • . • • • • • • . • . • . 8 Deformation and metamorphism •••..••..•.•••••• ·. • • • . • • . 10 Previous Work. • • . • • • • • • • • • • • • • . • • • • • • • • • • • • • • • . • • • • • . • . • . • . 12 Purpose of Study .••••.•••••.•••••••••••••••.••.••.••.•......... 13 Methods of Investigation •••••••••••.••.•.••..........•.•......• 14 General methods. • • • . • • • • . • • • • • • • • • • • . • • • . • • • . • • . 14 Polished thin sections •.••••••••••••••••••••.•.•••.••...•. 14 Electron microprobe analysis •.•.•••..•.••.•...••......•... 16 Acknowledgements. • • • . • • • • • . • . • . • • • • • • • • • • • • • • . • • . • • • • • • . • • 17 DESCRIPTION OF ROCKS. • . • • • • • • • • • • • • • . • • • • • • • • • • • . • • . • . • • • • . • . • . • . 17 Part ridge Formation. • • • • • • • • • • . • • • • • • • • • • • • • . • • . • • • • • • • • • • . • • 17 Clough Quartzite •••••••••••••••••••.•••••••••••••.•••..••••..•• 18 Fitch Formation. • • • • • . • • • • • • • • • • • • • • • • • • • • • • • • . • • • . • • • • • • • • • • • • 18 Littleton Formation •••••••••••.••••••••••••.•.•.•••••.••...•.•• 18 Distribution of Metamorphic Zones ••.•.••••••••••..•••••••..•.•• 20 Description of Analyzed Samples ••••••••••••••..•••••••••.•••••• 23 UOlA .•.•••••••.••••.•••.•.•••••••••••.••••.••••••.••••.••• 23 NS118 ••••••••••••••••••••••••••••••.•••••.•••••••.•••••.•• 26 iv NS18. • . • . • . 26 NS87 .......................•.............................. 26 NS85....... • . • . 27 NS90 ....................•...•...............•............. 27 NS71 ....................•..•........•..................... 27 MINERALOGY AND CRYSTAL CHEMISTRY .•.................................. 28 Introduction ..................•................................ 28 Analyses ....................................................... 29 Sillimanite ............•.......................••.............. 30 Field occurrence. 30 Textures in thin section .................................. 32 Staurolite. • . 34 Field distribution and habit .........•.•.................. 34 Appearance in thin section ................................ 35 Structural formula and crystal chemistry .................. 39 Structural formula recipe ...•...•......................... 41 Chemical analyses. • . 42 Garnet .................•...............•.•....................• 45 Field distribution and habit ..•...•.....................•. 45 Textures in thin section ...........•....•.•...•.......... 46 Chemical zoning. • . • . • . 48 Rim compositions. • • . • . • . • • . • . 57 Discussion of garnet stoichiometry ........................ 62 Biotite .......... ,• ............•.........•.•..•................. 63 Field distribution and appearance ..•••.....•.•..........•. 63 v Appearance in thin section .•..•..•....•................... 64 Chemistry... • . • • . 66 Muscovite .•..................•..•..•..•......•...•............• 80 Field habit. • . • • . • . • . • . • • . • . 80 Appearance in thin section •......•...••..••............... 80 Chemistry. • . • . • • . • . • . 82 Chlorite. • . • • . • . • • • • . • . • . 100 Field appearance ..•.•.•..........•...•......•..•......... 100 Optical properties ........•.•••.......•...••............. 101 Appearance in thin section •......•••...•.•...........•... 102 Chemistry •........•...•..•...........••.................. 103 Chloritoid ....•....•...•..•.......•.•••...••.........•.•...... 117 Field occurrence •.••.••.••.....•.•...•..••....•..••..•... 117 Appearance in thin section •.••.•••..•.•.....••.....•..•.. 117 Chemistry. • . • . • . • . • . • • . • . • . • • . • . 119 Plagioclase ..•.........•.•.•••..••..•....•.••.•.••••......•... 119 Field appearance. • • . • . • • • • • . • • . • • . • . • • • . • . • . 119 Appearance in thin section ..•.•.•.....•.....•••.•..••.... 121 Chemistry. 12 2 K-feldspar. 125 Occurrence. 125 Chemistry ................................................ 126 Ilmenite. 129 Occurrence and habit •....••••..•.••••••.••••••••••.••.••• 129 Chemistry ................................................ 130 vi Anatase ......•.................•.....................•........ 138 Occurrence and h~it ........ o•••o••o••o•o•••·••••o······· 138 Chemistry. • . • . • . 141 Stability .......•................•..................... o. 141 Sphene .........•......................... o •••••••••••••••••••• 144 Occurrence ... o •••••••••••••••••• o •••••••••••••••••••••••• 144 Chemistry .......................... o •••••••••••••• o •••••• 145 Rutile ... o •••••••••••••••••••• o ••••••••••••••••••••••••••••••• 151 Apatite ....................... o. o •••••••••••• o •••••••• o 0 •••••• 152 Tourmaline ............ o o o •• o ••• o •••••••••••• o • • • • • • • • • • • • • • • • • 154 Zircon .................•..... o •• o ••••••••••••••••• o o •••••••••• 155 Graphite .....•.............. o ••••••••••••••••••••••••••••••••• 155 Allanite. o ••• o •••••••••••••••••••••••••••••••••••••••••••••••• 156 Pyrite ........... o •••••••••••••••••••••••••••••••••••••••••••• 157 Quartz ..........................•............................. 158 Weathering Products ....•....•.......•......................... 158 Cathode Luminescence......... • . 159 PHASE RELATIONS. • . • . • . • . • . 160 Introduction •.................•...........................•... 160 Feldspars. • . • . • . • . • • . 160 Micas .....................•.........•...........•......•.....• 162 Alkali-Alumina System .•..... 0 ••••••••••••••••••••••••••••••••• 166 Ti0 -FeO-H 0 System ....••.•...•....•........•.......•......... 168 2 2 AKFM Tetrahedron ......•.......•.......•.•........•...........• 170 Muscovite Projection ....••...............••...•••.•........... 172 vii RETROGRADE REACTIONS. 17 4 Introduction ..................•............................... 174 Sillimanite-Out Reaction .......................•.......•...... 176 Staurolite-Out Reaction ....................................... 180 K-feldspar-In Reaction ........•...•........................... 183 Garnet-Out Reactions ................•......................... 187 Introduction .•.............•............................. 187 Garnet rim, biotite present reaction ..................... 189 Garnet core, biotite present reaction .................... 191 Garnet core, biotite absent reaction .•................... 191 Biotite-Out Reactions .•.•..................................... 194 Chloritoid-In Reactions ....................................... 197 Introduction .•....................•...................... 197 Garnet-chlorite continuous reaction ....•......•..•....... 198 Phengitic muscovite continuous reaction .................. 200 Manganese stabilization of chloritoid .•.......•.......... 201 Ilmenite-Out, Anatase-In Reaction .........................•... 205 Sulfide-Silicate Reactions ...•.........•.•........•........... 207 Summary of Retrograde Reactions... • • . • . • . 210 Mobility of Chemical Components ....•......... o •••••••••••••••• 212 CONDITIONS OF METAMORPHISM. • • . • • • . • . • . 215 Introduction •...•.•..•....•.••............•.. o •••••••••••••••• 215 Published Data on Univariant Reactions ....•.......••.......... 216 Introduction ••....•......•...•..•..•.•...•••.•........... 216 Explanation of reactions ...•.•.••.•..••..•.••.. o o o o o. o • • • 217 viii Probable field of prograde metamorphism ..•............... 220 Probable field of retrograde metamorphism ........•.....•. 222 Coexisting Mineral P-T Estimates .•.•...•..•................... 222 Garnet-biotite thermometers ...........•.................• 222 Muscovite-paragonite solvus .............................. 224 White mica-alkali feldspar solvi. ........•............... 226 Muscovite celadonite component ........................... 226 Alkali feldspar sol vus. • . 228 Cordierite equilibria ...................•...............• 229 Garnet-plagioclase calcium partitioning .........•........ 230 Biotite-muscovite titanium partitioning .................. 231 Independent Constraints for Metamorphic Conditions ....•....... 232 Prograde metamorphism .................................... 232 Retrograde metamorphism ......•..•••............•........• 233 Discussion of Prograde P and T ................................ 236 Discussion of Retrograde P and T ....•.••...•.................. 237 METAMORPHIC FLUID COMPOSITION ...........................•.....•...• 238 TIMING OF RETROGRADE METAMORPHISM .................•................ 242 WATER FOR RETROGRADE HYDRATION REACTIONS ..............•.....••..... 243 Quantity .......•.........•..........•..•....•....•........•..
Recommended publications
  • Expedition 369 Thin Sections, Site U1512
    Site U1512 core descriptions Thin sections THIN SECTION LABEL ID 369-U1512A-5R-4-W 72/75-TSB-TS1 Thin section no.: 1 Observer: CW Unit/subunit: II-a Thin section summary: A silty clay with moderately developed lamination and rare burrows. The sediment sample is moderately sorted and is comprised of silt-sized angular mineral grains including common quartz and trace amounts of feldspar hosted within a clay-rich matrix. Rare grains are sand sized. Other minerals/bioclasts present in common and trace amounts include muscovite mica, biotite mica, tubular bioclast fragments and poorly developed/fragmented radiolarians. Plane-polarized: 43920161 Cross-polarized: 43920141 Sediments and Sedimentary Rock Complete Lithology Name: silty clay Remarks: GRAIN SIZE Gravel Sand Silt Clay Percent 0 5 25 70 COMPOSITION Siliciclastic Calcareous Biosiliceous Mineral grains (%) 94 5 1 Cement (%) 94 5 1 MINERAL GRAIN ROUNDNESS MINERAL GRAIN SORTING angular moderate Mineral grain Abundance Quartz C Microcline feldspar T Clay D Calcite R D=dominant, A=abundant, C=common, R=rare, T=trace 369-U1512A-5R-4-W 72/75-TSB-TS1 Page 1 of 1 Site U1512 core descriptions Thin sections THIN SECTION LABEL ID 369-U1512A-13R-5-W 26/29-TSB-TS2 Thin section no.: 2 Observer: CW Unit/subunit: II-b Thin section summary: A possible sideritic siltstone, with quartz, glauconite, and Fe-oxide. The rock sample is moderately sorted and is comprised of silt-sized siderite grains hosted within a clay-rich matrix. Silt-sized quartz grains are common throughout. Pore spaces are also comprised of quartz cements. The rock sample is likely reworked from a proximal source area on the slope due to the angularity of the grains.
    [Show full text]
  • Depositional Setting of Algoma-Type Banded Iron Formation Blandine Gourcerol, P Thurston, D Kontak, O Côté-Mantha, J Biczok
    Depositional Setting of Algoma-type Banded Iron Formation Blandine Gourcerol, P Thurston, D Kontak, O Côté-Mantha, J Biczok To cite this version: Blandine Gourcerol, P Thurston, D Kontak, O Côté-Mantha, J Biczok. Depositional Setting of Algoma-type Banded Iron Formation. Precambrian Research, Elsevier, 2016. hal-02283951 HAL Id: hal-02283951 https://hal-brgm.archives-ouvertes.fr/hal-02283951 Submitted on 11 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Depositional Setting of Algoma-type Banded Iron Formation B. Gourcerol, P.C. Thurston, D.J. Kontak, O. Côté-Mantha, J. Biczok PII: S0301-9268(16)30108-5 DOI: http://dx.doi.org/10.1016/j.precamres.2016.04.019 Reference: PRECAM 4501 To appear in: Precambrian Research Received Date: 26 September 2015 Revised Date: 21 January 2016 Accepted Date: 30 April 2016 Please cite this article as: B. Gourcerol, P.C. Thurston, D.J. Kontak, O. Côté-Mantha, J. Biczok, Depositional Setting of Algoma-type Banded Iron Formation, Precambrian Research (2016), doi: http://dx.doi.org/10.1016/j.precamres. 2016.04.019 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Metamorphism
    Title page INTRODUCING METAMORPHISM Ian Sanders DUNEDIN EDINBURGH LONDON Contents Contents v Preface ix Acknowledgements x 1 Introduction 1 1.1 What is metamorphism? 1 1.1.1 Protoliths 1 1.1.2 Changes to the minerals 1 1.1.3 Changes to the texture 3 1.1.4 Naming metamorphic rocks 3 1.2 Metamorphic rocks – made under mountains 3 1.2.1 Mountain building 3 1.2.2 Directed stress, pressure and temperature in a mountain’s roots 4 1.2.3 Exhumation of a mountain’s roots 6 1.3 Metamorphism in local settings 6 1.3.1 Contact metamorphism 7 1.3.2 Hydrothermal metamorphism 7 1.3.3 Dynamic metamorphism 9 1.3.4 Shock metamorphism 9 2 The petrography of metamorphic rocks 11 2.1 Quartzite and metapsammite 11 2.1.1 Quartzite 11 2.1.2 Metapsammite 13 2.2 Metapelite 13 2.2.1 Slate 14 2.2.2 Phyllite and low-grade schist 16 2.2.3 Minerals and textures of medium-grade schist 17 2.2.4 The regional distribution of minerals in low- and medium-grade schist 20 2.2.5 Pelitic gneiss and migmatite 22 2.2.6 Metapelite in a contact aureole 23 2.2.7 The significance of Al2SiO5 for inferring metamorphic conditions 23 2.3 Marble 24 2.3.1 Pure calcite marble 24 2.3.2 Impure marble 26 2.3.3 Metasediments with mixed compositions 29 CONTENTS 2.4 Metabasite 30 2.4.1 Six kinds of metabasite from regional metamorphic belts 31 2.4.2 The ACF triangle for minerals in metabasites 36 2.4.3 P–T stability of metabasites, and metamorphic facies 38 vi 2.4.4 A metabasite made by contact metamorphism 40 2.5 Metagranite 41 2.5.1 Granitic gneiss and orthogneiss 41 2.5.2 Dynamic metamorphism
    [Show full text]
  • The Metamorphosis of Metamorphic Petrology
    Downloaded from specialpapers.gsapubs.org on May 16, 2016 The Geological Society of America Special Paper 523 The metamorphosis of metamorphic petrology Frank S. Spear Department of Earth and Environmental Sciences, JRSC 1W19, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590, USA David R.M. Pattison Department of Geoscience, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada John T. Cheney Department of Geology, Amherst College, Amherst, Massachusetts 01002, USA ABSTRACT The past half-century has seen an explosion in the breadth and depth of studies of metamorphic terranes and of the processes that shaped them. These developments have come from a number of different disciplines and have culminated in an unprece- dented understanding of the phase equilibria of natural systems, the mechanisms and rates of metamorphic processes, the relationship between lithospheric tecton- ics and metamorphism, and the evolution of Earth’s crust and lithospheric mantle. Experimental petrologists have experienced a golden age of systematic investigations of metamorphic mineral stabilities and reactions. This work has provided the basis for the quantifi cation of the pressure-temperature (P-T) conditions associated with various metamorphic facies and eventually led to the development of internally con- sistent databases of thermodynamic data on nearly all important crustal minerals. In parallel, the development of the thermodynamic theory of multicomponent, multi- phase complex systems underpinned development of the major methods of quantita- tive phase equilibrium analysis and P-T estimation used today: geothermobarometry, petrogenetic grids, and, most recently, isochemical phase diagrams. New analytical capabilities, in particular, the development of the electron micro- probe, played an enabling role by providing the means of analyzing small volumes of materials in different textural settings in intact rock samples.
    [Show full text]
  • Thin Section Petrography for Ceramic Glaze Microstructures
    minerals Commentary Breaking Preconceptions: Thin Section Petrography For Ceramic Glaze Microstructures Roberta Di Febo 1,2,3,*, Lluís Casas 4 , Jordi Rius 5, Riccardo Tagliapietra 6 and Joan Carles Melgarejo 7 1 Dept. de Ciències de l’Antiguitat i Edad Mitjana, Facultat de Filosofia i Lletres, Universitat Autònoma de Barcelona (UAB), Edifici B, 08193 Bellaterra, Spain 2 Institut Català d’Arqueologia Clàssica (ICAC), Unitat d’Estudis Arqueomètrics (UEA), Plaça d’en Rovellat, s/n, 43003 Tarragona, Spain 3 U Science Tech, MECAMAT group, University of Vic—Central University of Catalonia, C. De la Laura 13, 08500 Catalonia, Spain 4 Departament de Geologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; [email protected] 5 Institute de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Spain; [email protected] 6 Renishaw S.p.A Via dei Prati 5, 10044 Pianezza (TO), Italia; [email protected] 7 Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +34-977-249-133 Received: 16 December 2018; Accepted: 12 February 2019; Published: 15 February 2019 Abstract: During the last thirty years, microstructural and technological studies on ceramic glazes have been essentially carried out through the use of Scanning Electron Microscopy (SEM) combined with energy dispersive X-ray analysis (EDX). On the contrary, optical microscopy (OM) has been considered of limited use in solving the very complex and fine-scale microstructures associated with ceramic glazes.
    [Show full text]
  • Geology and Petrology of the Hirao Limestone and the Tagawa Metamorphic Rocks−With Special Reference to the Contact Metamorphism by Cretaceous Granodiorite
    GeologyJournal and of Mineralogicalpetrology of the and Hirao Petrological Limestone Sciences, and the Volume Tagawa 99 ,metamorphic page 25─41, 2004 rocks 25 Geology and petrology of the Hirao Limestone and the Tagawa metamorphic rocks−with special reference to the contact metamorphism by Cretaceous granodiorite * ** *** Mayuko FUKUYAMA , Kensaku URATA and Tadao NISHIYAMA *Graduate School of Science and Technology, Kumamoto University, Kurokami 2-39-1, Kumamoto 860-8555 **Department of Geography, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo 192-0397 ***Department of Earth Sciences, Kumamoto University, Kurokami, 2-39-1, Kumamoto 860-8555 The Hirao Limestone located in northeast Kyushu is bordered on the north by unmetamorphosed Paleozoic stra- ta (the Kagumeyoshi Formation), and on the south by the Tagawa metamorphic rocks, a member of the Sangun Metamorphic Rocks. They are thermally metamorphosed due to the Cretaceous Hirao granodiorite intrusion. As a result, neither the fossil record nor the record of the regional (Sangun) metamorphism has been preserved. We investigated the geologic relationships among these units. The tectonic collage model associated with ac- cretionary processes proposed by Kanmera and Nishi (1983) seems the most reasonable. The Hirao Limestone and the uppermost part of the Tagawa metamorphic rocks may be a large olistolith formed during the accretion of the Palaeozoic formation. Petrological studies show that the area was thermally metamorphosed as revealed by widespread occur- rences of biotite in pelitic rocks both in the Tagawa metamorphic rocks and in the Kagumeyoshi Formation. Garnet occurrences in the pelitic schists close to the Hirao granodiorite suggest about 700°C for the peak meta- morphic temperature of contact metamorphism, based on garnet-biotite geothermometers.
    [Show full text]
  • The Dalradian Rocks of the North-East Grampian Highlands of Scotland
    Revised Manuscript 8/7/12 Click here to view linked References 1 2 3 4 5 The Dalradian rocks of the north-east Grampian 6 7 Highlands of Scotland 8 9 D. Stephenson, J.R. Mendum, D.J. Fettes, C.G. Smith, D. Gould, 10 11 P.W.G. Tanner and R.A. Smith 12 13 * David Stephenson British Geological Survey, Murchison House, 14 West Mains Road, Edinburgh EH9 3LA. 15 [email protected] 16 0131 650 0323 17 John R. Mendum British Geological Survey, Murchison House, West 18 Mains Road, Edinburgh EH9 3LA. 19 Douglas J. Fettes British Geological Survey, Murchison House, West 20 Mains Road, Edinburgh EH9 3LA. 21 C. Graham Smith Border Geo-Science, 1 Caplaw Way, Penicuik, 22 Midlothian EH26 9JE; formerly British Geological Survey, Edinburgh. 23 David Gould formerly British Geological Survey, Edinburgh. 24 P.W. Geoff Tanner Department of Geographical and Earth Sciences, 25 University of Glasgow, Gregory Building, Lilybank Gardens, Glasgow 26 27 G12 8QQ. 28 Richard A. Smith formerly British Geological Survey, Edinburgh. 29 30 * Corresponding author 31 32 Keywords: 33 Geological Conservation Review 34 North-east Grampian Highlands 35 Dalradian Supergroup 36 Lithostratigraphy 37 Structural geology 38 Metamorphism 39 40 41 ABSTRACT 42 43 The North-east Grampian Highlands, as described here, are bounded 44 to the north-west by the Grampian Group outcrop of the Northern 45 Grampian Highlands and to the south by the Southern Highland Group 46 outcrop in the Highland Border region. The Dalradian succession 47 therefore encompasses the whole of the Appin and Argyll groups, but 48 also includes an extensive outlier of Southern Highland Group 49 strata in the north of the region.
    [Show full text]
  • Optical Mineralogy in a Nutshell
    Optical Mineralogy in a Nutshell Use of the petrographic microscope Slides borrowed/adapted from Jane Selverstone (University of New Mexico) and John Winter (Whitman College) Why use the petrographic microscope? • Identify minerals (no guessing!) • Determine rock type • Determine crystallization sequence • Document deformation history • Observe frozen-in reactions • Constrain P-T history • Note weathering/alteration • Fun, powerful, and cheap! The petrographic microscope Also called a polarizing microscope In order to use the scope, we need to understand a little about the physics of light, and then learn some tools and tricks… Polarized Light Microscopy Isotropic materials, which include gases, liquids, unstressed glasses and cubic crystals, demonstrate the same From Nikon optical properties in all directions. They have only one refractive index and no restriction on the vibration direction of light passing through them. Anisotropic materials, in contrast, which include 90 percent of all solid substances, have optical properties that vary with the orientation of incident light with the crystallographic axes. Anisotropic materials act as beam splitters and divide light rays into two parts. The technique of polarizing microscopy exploits the interference of the split light rays, as they are re-united along the same optical path to extract information about these materials. What happens as light moves through the scope? plane polarised light (single vibration direction) unpolarised light (all possible vibration directions) 1) Light passes
    [Show full text]
  • How Do Metamorphic Fluids Move Through Rocks? an Investigation of Timescales, Infiltration Mechanisms and Mineralogical Controls
    How do metamorphic fluids move through rocks? An investigation of timescales, infiltration mechanisms and mineralogical controls Barbara I. Kleine ©Barbara I. Kleine, Stockholm University 2015 ISBN 978-91-7649-120-1 Cover picture: A relict of glaucophane from Fabrika Beach. Printed in Sweden by Holmbergs, Malmö 2015 Distributor: Publit Abstract This thesis aims to provide a better understanding of the role of mountain building in the carbon cycle. The amount of CO2 released into the atmosphere due to metamorphic processes is largely unknown. To constrain the quantity of CO2 released, fluid-driven reactions in metamorphic rocks can be studied by tracking fluid-rock interactions along ancient fluid flow pathways. The thesis is divided into two parts: 1) modeling of fluid flow rates and durations within shear zones and fractures during greenschist- and blueschist-facies metamorphism and 2) the assessment of possible mechanisms of fluid infiltration into rocks during greenschist- to epidote-amphibolite-facies metamorphism and controlling chemical and mineralogical factors of reaction front propagation. On the island Syros, Greece, fluid-rock interaction was examined along a shear zone and within brittle fractures to calculate fluid flux rates, flow velocities and durations. Petrological, geochemical and thermodynamic evidence show that the flux of CO2-bearing fluids along the shear zone was 100-2000 times larger than the fluid flux in the surrounding rocks. The time- averaged fluid flow velocity and flow duration along brittle fractures was calculated by using a governing equation for one-dimensional transport (advection and diffusion) and field-based parameterization. This study shows that fluid flow along fractures on Syros was rapid and short lived.
    [Show full text]
  • Petrographic Descriptions of Thin Sections of Drill Cuttings from KCM No
    Petrographic descriptions of thin sections of drill cuttings from KCM No. 1 Forest Federal well, Hidalgo County, New Mexico 6f ?s Antonius J. Budding and Ronald F. Broadhead New Mexico Institute of Nining and Technology 1977 Open File Report of the Neb7 Mexico Bureau of Mines and Mineral Resources Socorro, Neb7 Mexico ~ ' Open-file ~ =Port 75 Introduction. This report contains petrographic descripdons of thin sections prepared from drill cuttings of the KCM No. 1 ForestFederal well, . Hidalgo County, New Mexico. The descriptionsare intended to be used in conjunction with the thin sections and can serve as a guide to their study. Each description is accompanied by a photomicrograph and sketches of pertinent parts of the thin section. The reader is referred to Circular 152 of the New Mexico Bureau of Mines andMineral Resources, entitled "Geology, PetroleumSource Rocks, andThermal Metamorphism in KCM No. 1 Forest Federal Well, Hidalgo County, New I.Iexico", compiled by SamThompson 111, for addi- tionalinformation. Thin sections prepared from drill cuttings of KCM No. 1 FF-well. Depth ft.in NameRock 50 micriticlimestoneSilty 210 Quartz Latite 230 Quartz Latite 270a Sandy dolomitic Limestone 270b Sandy dolomitic Limestone 320 Argillaceous Limestone 380 Limestone 450 Biomicritic Limestone 480 Biomicritic Limestone 5 20 Micritic Limestone 640 Limestone 760 Dolomitic Limes tone 800 Calcareous Mudstone 1080 Calcareous Mudstone 1210 Calcareous Mudstone 1230 Sandy, Calcareous Mudstone 1810 Argillaceous Limestone 1920 Micritic Limestone 2010 Tremolite-bearing Limestone 2280 Diopside Marble 2360 Diopside-wollastonite Marble 2460 Wollastonite hornfels and Quartz Monzonite 2640 Wollastonite Marble 2660 Cherty Limestone 2820a Wollastonite' MazbTe 2820b Wollastonite Marble 2960 Quartz Monzonite 3130a Quartz Monzonite 3130b Quartz Monzonite 3380 Diopside Marble 3680a Diopside Marble 3680b Wollastonite Marble 3740a Marble .
    [Show full text]
  • Data of Geochemistry
    Data of Geochemistry ' * Chapter W. Chemistry of the Iron-rich Sedimentary Rocks GEOLOGICAL SURVEY PROFESSIONAL PAPER 440-W Data of Geochemistry MICHAEL FLEISCHER, Technical Editor Chapter W. Chemistry of the Iron-rich Sedimentary Rocks By HAROLD L. JAMES GEOLOGICAL SURVEY PROFESSIONAL PAPER 440-W Chemical composition and occurrence of iron-bearing minerals of sedimentary rocks, and composition, distribution, and geochemistry of ironstones and iron-formations UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1966 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 45 cents (paper cover) CONTENTS Page Face Abstract. _ _______________________________ Wl Chemistry of iron-rich rocks, etc. Continued Introduction. _________ ___________________ 1 Oxide facies Continued Iron minerals of sedimentary rocks __ ______ 2 Hematitic iron-formation of Precambrian age__ W18 Iron oxides __ _______________________ 2 Magnetite-rich rocks of Mesozoic and Paleozoic Goethite (a-FeO (OH) ) and limonite _ 2 age___________-__-._____________ 19 Lepidocrocite (y-FeO(OH) )________ 3 Magnetite-rich iron-formation of Precambrian Hematite (a-Fe2O3) _ _ _ __ ___. _ _ 3 age._____-__---____--_---_-------------_ 21 Maghemite (7-Fe203) __ __________ 3 Silicate facies_________________________________ 21 Magnetite (Fe3O4) ________ _ ___ 3 Chamositic ironstone____--_-_-__----_-_---_- 21 3 Silicate iron-formation of Precambrian age_____ 22 Iron silicates 4 Glauconitic rocks__-_-____--------__-------- 23 4 Carbonate facies______-_-_-___-------_---------- 23 Greenalite. ________________________________ 6 Sideritic rocks of post-Precambrian age._______ 24 Glauconite____ _____________________________ 6 Sideritic iron-formation of Precambrian age____ 24 Chlorite (excluding chamosite) _______________ 7 Sulfide facies___________________________ 25 Minnesotaite.
    [Show full text]
  • Petrography, Mineralogy, and Reservoir Characteristics of the Upper Cretaceous Mesaverde Group in the East-Central Piceance Basin, Colorado
    Petrography, Mineralogy, and Reservoir Characteristics of the Upper Cretaceous Mesaverde Group in the East-Central Piceance Basin, Colorado U.S. GEOLOGICAL SURVEY BULLETIN 1 787-G Chapter G Petrography, Mineralogy, and Reservoir Characteristics of the Upper Cretaceous Mesaverde Group in the East-Central Piceance Basin, Colorado By JANET K. PITMAN, CHARLES W. SPENCER, and RICHARD M. POLLASTRO A multidisciplinary approach to research studies of sedimentary rocks and their constituents and the evolution of sedimentary basins, both ancient and modern U.S. GEOLOGICAL SURVEY BULLETIN 1787 EVOLUTION OF SEDIMENTARY BASINS-UINTA AND PICEANCE BASINS DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U. S. GEOLOGICAL SURVEY Dallas L Peck, Director Any use of trade, product, or firm names in tl is publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. UNITED STATES GOVERNMENT PR NTING OFFICE: 1989 For sale by the Books and Open-File Reports Section U.S. Geological Survey Federal Center Box 25425 Denver, CO 80225 Library of Congress Cataloging-in-Publication Data Pitman, Janet K. Petrography, mineralogy, and reservoir characteristics of the Upper Cretaceous Mesaverde Group in the East-Ce tral Piceance Basin, Colorado / by Janet K. Pitman, Charles W. Spencer, and Richard M. Pollastro. p. cm. (Evolution of sedimentary basins-Uinta and Piceance basins ; ch. G) (U.S. Geological Survey bulletin ; 1787-G) Bibliography: p. Supt. of Docs, no.: I 19.3: 1787-G 1. Geology Colorado Piceance Creek Watershed. 2. Gas, Natural Colorado Piceance Creek Watershed. 3. Mesaverde Group. 4. Geology, Stratigraphic Cretaceous. I. Spencer, Charles Winthrop, 1930- . II.
    [Show full text]