Homology, an (Un)Solved Problem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
February 29, 1964 NATURE PHYSIOLOGY of COLOUR
No. 4922 February 29, 1964 NATURE 859 leads inevitably to cancer. The present state of knowledge fibres" are present. Again (p. 118), von Gelei's evidence of morphology in 'pre-cancerous' lesions does not permit for "m elanin-dispersing fibres" in Phoxinus is inadequat,e an accura te prediction of the direction along which t he and open to ot.her interpretations. There may be a lesion will proceed. This book should undoubtedly be double innervation, but the evidence in favour of it is available in all medical libraries and institutions associ- not n early so good as the present review suggests. ated with cancer research. H. JACKSON Recent work on the p art. played by pituitary hormones in vertebrate colour changes is well discussed. In this connexion, H. R. H ewer should be given the cred it for PHYSIOLOGY OF COLOUR CHANGE first observing the paling of minnows after they have been injected with minnow pituit ary extract. The t'ecent The Control of Chromatophores work of A. K. Kent unfortunately a.ppeared too late to (International Series of Monographs on Pure and Applied be included. Biology: Zoology, No. 14.) By M. Fingerman. Pp. A small blemish in the writing is the use of "feeling". ix+ 184. (Oxford, London, New York and P aris : To say that after experiments an author "felt" that the Pergamon Press, 1963.) 50s. interpretation must be so-and-so is an unhappy ex HE physiology of colour change is a big subject and pression. Hunches (good and bad) are common enough T includes a study of receptor, integrative and effector when we embark on experiments, but " feelings" regarding mechanisms. -
Yasha Gall, Julian Sorell Huxley, 1887-1975
Julian Sorell Huxley, 1887-1975 Yasha Gall Published by Nauka, St. Petersburg, Russia, 2004 Reproduced as an e-book with kind permission of Nauka Science editor: Academician AL Takhtajan Preface by the Science Editor The 20th century was the epoch of discovery in evolutionary biology, marked by many fundamental investigations. Of special significance were the works of AN Severtsov, SS Chetverikov, S Wright, JBS Haldane, G De Beer JS Huxley and R Goldschmidt. Among the general works on evolutionary theory, the one of greatest breadth was Julian Huxley’s book Evolution: The Modern Synthesis (1942). Huxley was one of the first to analyze the mechanisms of macro-evolutionary processes and discuss the evolutionary role of neoteny in terms of developmental genetics (the speed of gene action). Neoteny—the most important mechanism of heritable variation of ontogenesis—has great macro-evolutionary consequences. A Russian translation of Huxley’s book on evolution was prepared for publication by Professor VV Alpatov. The manuscript of the translation had already been sent to production when the August session of the VASKNIL in 1948 burst forth—a destructive moment in the history of biology in our country. The publication was halted, and the manuscript disappeared. I remember well a meeting with Huxley in 1945 in Moscow and Leningrad during the celebratory jubilee at the Academy of Sciences. He was deeply disturbed by the “blossoming” of Lysenkoist obscurantism in biology. It is also important to note that in the 1950s Huxley developed original concepts for controlling the birth rate of the Earth’s population. He openly declared the necessity of forming an international institute at the United Nations, since the global ecosystem already could not sustain the pressure of human “activity” and, together with humanity, might itself die. -
Hodin2013 Ch19.Pdf
736 Part 4 The History of Life How are developmental biology and evolution related? Developmental biol- ogy is the study of the processes by which an organism grows from zygote to reproductive adult. Evolutionary biology is the study of changes in populations across generations. As with non-shattering cereals, evolutionary changes in form and function are rooted in corresponding changes in development. While evo- lutionary biologists are concerned with why such changes occur, developmental biology tells us how these changes happen. Darwin recognized that for a com- plete understanding of evolution, one needs to take account of both the “why” and the “how,” and hence, of the “important subject” of developmental biology. In Darwin’s day, studies of development went hand in hand with evolution, as when Alexander Kowalevsky (1866) first described the larval stage of the sea squirt as having clear chordate affinities, something that is far less clear when examining their adults. Darwin himself (1851a,b; 1854a,b) undertook extensive studies of barnacles, inspired in part by Burmeister’s description (1834) of their larval and metamorphic stages as allying them with the arthropods rather than the mollusks. If the intimate connection between development and evolution was so clear to Darwin and others 150 years ago, why is evolutionary developmental biology (or evo-devo) even considered a separate subject, and not completely inte- grated into the study of evolution? The answer seems to be historical. Although Darwin recognized the importance of development in understanding evolution, development was largely ignored by the architects of the 20th-century codifica- tion of evolutionary biology known as the modern evolutionary synthesis. -
Molecular Homology and Multiple-Sequence Alignment: an Analysis of Concepts and Practice
CSIRO PUBLISHING Australian Systematic Botany, 2015, 28,46–62 LAS Johnson Review http://dx.doi.org/10.1071/SB15001 Molecular homology and multiple-sequence alignment: an analysis of concepts and practice David A. Morrison A,D, Matthew J. Morgan B and Scot A. Kelchner C ASystematic Biology, Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden. BCSIRO Ecosystem Sciences, GPO Box 1700, Canberra, ACT 2601, Australia. CDepartment of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, USA. DCorresponding author. Email: [email protected] Abstract. Sequence alignment is just as much a part of phylogenetics as is tree building, although it is often viewed solely as a necessary tool to construct trees. However, alignment for the purpose of phylogenetic inference is primarily about homology, as it is the procedure that expresses homology relationships among the characters, rather than the historical relationships of the taxa. Molecular homology is rather vaguely defined and understood, despite its importance in the molecular age. Indeed, homology has rarely been evaluated with respect to nucleotide sequence alignments, in spite of the fact that nucleotides are the only data that directly represent genotype. All other molecular data represent phenotype, just as do morphology and anatomy. Thus, efforts to improve sequence alignment for phylogenetic purposes should involve a more refined use of the homology concept at a molecular level. To this end, we present examples of molecular-data levels at which homology might be considered, and arrange them in a hierarchy. The concept that we propose has many levels, which link directly to the developmental and morphological components of homology. -
Molecular Homology and Multiple-Sequence Alignment: an Analysis of Concepts and Practice
CSIRO PUBLISHING Australian Systematic Botany, 2015, 28, 46–62 LAS Johnson Review http://dx.doi.org/10.1071/SB15001 Molecular homology and multiple-sequence alignment: an analysis of concepts and practice David A. Morrison A,D, Matthew J. Morgan B and Scot A. Kelchner C ASystematic Biology, Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden. BCSIRO Ecosystem Sciences, GPO Box 1700, Canberra, ACT 2601, Australia. CDepartment of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, USA. DCorresponding author. Email: [email protected] Abstract. Sequence alignment is just as much a part of phylogenetics as is tree building, although it is often viewed solely as a necessary tool to construct trees. However, alignment for the purpose of phylogenetic inference is primarily about homology, as it is the procedure that expresses homology relationships among the characters, rather than the historical relationships of the taxa. Molecular homology is rather vaguely defined and understood, despite its importance in the molecular age. Indeed, homology has rarely been evaluated with respect to nucleotide sequence alignments, in spite of the fact that nucleotides are the only data that directly represent genotype. All other molecular data represent phenotype, just as do morphology and anatomy. Thus, efforts to improve sequence alignment for phylogenetic purposes should involve a more refined use of the homology concept at a molecular level. To this end, we present examples of molecular-data levels at which homology might be considered, and arrange them in a hierarchy. The concept that we propose has many levels, which link directly to the developmental and morphological components of homology. -
Homology of Process: Developmental Dynamics in Comparative Biology
Forthcoming in Interface Focus Homology of process: developmental dynamics in comparative biology James DiFrisco1,* and Johannes Jaeger2,3 (1) Institute of Philosophy, KU Leuven, Leuven, Belgium (2) Complexity Science Hub (CSH) Vienna, Josefstädter Straße 39, 1080 Vienna, Austria (3) Department of Molecular Evolution & Development, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria Abstract: Comparative biology builds up systematic knowledge of the diversity of life, across evolutionary lineages and levels of organization, starting with evidence from a sparse sample of model organisms. In developmental biology, a key obstacle to the growth of comparative approaches is that the concept of homology is not very well defined for levels of organization that are intermediate between individual genes and morphological characters. In this paper, we investigate what it means for ontogenetic processes to be homologous, focusing specifically on the examples of insect segmentation and vertebrate somitogenesis. These processes can be homologous without homology of the underlying genes or gene networks, since the latter can diverge over evolutionary time, while the dynamics of the process remain the same. Ontogenetic processes like these therefore constitute a dissociable level and distinctive unit of comparison requiring their own specific criteria of homology. In addition, such processes are typically complex and nonlinear, such that their rigorous description and comparison not only requires observation and experimentation, but also dynamical modeling. We propose six criteria of process homology, combining recognized indicators (sameness of parts, morphological outcome, and topological position) with novel ones derived from dynamical systems modeling (sameness of dynamical properties, dynamical complexity, and evidence for transitional forms). We show how these criteria apply to animal segmentation and other ontogenetic processes. -
Molecular Homology & the Ancient Genetic Toolkit: How Evolutionary
Regis University ePublications at Regis University All Regis University Theses Spring 2019 Molecular Homology & the Ancient Genetic Toolkit: How Evolutionary Development Could Shape Your Next Doctor's Appointment Elizabeth G. Plender Follow this and additional works at: https://epublications.regis.edu/theses Part of the Cell Biology Commons, Developmental Biology Commons, Evolution Commons, Molecular Biology Commons, and the Molecular Genetics Commons Recommended Citation Plender, Elizabeth G., "Molecular Homology & the Ancient Genetic Toolkit: How Evolutionary Development Could Shape Your Next Doctor's Appointment" (2019). All Regis University Theses. 905. https://epublications.regis.edu/theses/905 This Thesis - Open Access is brought to you for free and open access by ePublications at Regis University. It has been accepted for inclusion in All Regis University Theses by an authorized administrator of ePublications at Regis University. For more information, please contact [email protected]. MOLECULAR HOMOLOGY AND THE ANCIENT GENETIC TOOLKIT: HOW EVOLUTIONARY DEVELOPMENT COULD SHAPE YOUR NEXT DOCTOR’S APPOINTMENT A thesis submitted to Regis College The Honors Program In partial fulfillment of the requirements For Graduation with Honors By Elizabeth G. Plender May 2019 Thesis written by Elizabeth Plender Approved by Thesis Advisor Thesis Reader Accepted by Director, University Honors Program ii iii TABLE OF CONTENTS List of Figures ............................................................................................................................................... -
From Logos to Bios: Hellenic Philosophy and Evolutionary Biology
From Logos to Bios: Hellenic Philosophy and Evolutionary Biology by Wynand Albertus de Beer submitted in accordance with the requirements for the degree of D Litt et Phil in the subject Religious Studies at the University of South Africa Supervisor: Prof Danie Goosen February 2015 Dedicated with grateful acknowledgements to my supervisor, Professor Danie Goosen, for his wise and patient guidance and encouragement throughout my doctoral research, and to the examiners of my thesis for their helpful comments and suggestions. From Logos to Bios: Hellenic Philosophy and Evolutionary Biology by W.A. de Beer Degree: D Litt et Phil Subject: Religious Studies Supervisor: Prof Danie Goosen Summary: This thesis deals with the relation of Hellenic philosophy to evolutionary biology. The first part entails an explication of Hellenic cosmology and metaphysics in its traditional understanding, as the Western component of classical Indo-European philosophy. It includes an overview of the relevant contributions by the Presocratics, Plato, Aristotle, and the Neoplatonists, focussing on the structure and origin of both the intelligible and sensible worlds. Salient aspects thereof are the movement from the transcendent Principle into the realm of Manifestation by means of the interaction between Essence and Substance; the role of the Logos, being the equivalent of Plato’s Demiurge and Aristotle’s Prime Mover, in the cosmogonic process; the interaction between Intellect and Necessity in the formation of the cosmos; the various kinds of causality contributing to the establishment of physical reality; and the priority of being over becoming, which in the case of living organisms entails the primacy of soul over body. -
Resolving Homology in the Face of Shifting Germ Layer Origins
REVIEW ARTICLE Resolving homology in the face of shifting germ layer origins: Lessons from a major skull vault boundary Camilla S Teng1,2†, Lionel Cavin3, Robert E Maxson Jnr2, Marcelo R Sa´ nchez-Villagra4, J Gage Crump1* 1Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, United States; 2Department of Biochemistry, Keck School of Medicine, University of Southern California, Los Angeles, United States; 3Department of Earth Sciences, Natural History Museum of Geneva, Geneva, Switzerland; 4Paleontological Institute and Museum, University of Zurich, Zurich, Switzerland Abstract The vertebrate skull varies widely in shape, accommodating diverse strategies of feeding and predation. The braincase is composed of several flat bones that meet at flexible joints called sutures. Nearly all vertebrates have a prominent ‘coronal’ suture that separates the front and back of the skull. This suture can develop entirely within mesoderm-derived tissue, neural crest- derived tissue, or at the boundary of the two. Recent paleontological findings and genetic insights in non-mammalian model organisms serve to revise fundamental knowledge on the development and evolution of this suture. Growing evidence supports a decoupling of the germ layer origins of *For correspondence: the mesenchyme that forms the calvarial bones from inductive signaling that establishes discrete [email protected] bone centers. Changes in these relationships facilitate skull evolution and may create susceptibility to disease. These concepts provide a general framework for approaching issues of homology in Present address: †Department of Cell and Tissue Biology, cases where germ layer origins have shifted during evolution. University of California, San Francisco, San Francisco, United States Introduction Competing interests: The At the beginning of skull vault development, mesenchymal cells of either neural crest or mesoderm authors declare that no origin condense into nascent bone fields. -
The Evolutionary Embryologist Gavin Rylands De Beer (1899–1972)
Homology and Heterochrony: The Evolutionary Embryologist Gavin Rylands de Beer (1899–1972) Ingo Brigandt Department of History and Philosophy of Science University of Pittsburgh 1017 Cathedral of Learning Pittsburgh, PA 15260 USA E-mail: [email protected] Preprint of an article published in 2006 in the Journal of Experimental Zoology (Part B: Molecular and Developmental Evolution) 306B: 317–328 www.interscience.Wiley.com GAVIN RYLANDS DE BEER (1899–1972) 2 Abstract The evolutionary embryologist Gavin Rylands de Beer can be viewed as one of the forerunners of modern evolutionary developmental biology in that he posed crucial questions and proposed relevant answers about the causal relationship between ontogeny and phylogeny. In his developmental approach to the phylogenetic phenomenon of homology, he emphasized that homology of morphological structures is to be identified neither with the sameness of the underlying developmental processes nor with the homology of the genes that are in involved in the development of the structures. De Beer’s work on developmental evolution focused on the notion of heterochrony, arguing that paedomorphosis increases morphological evolvability and is thereby an important mode of evolution that accounts for the origin of many taxa, including higher taxa. GAVIN RYLANDS DE BEER (1899–1972) 3 Gavin Rylands de Beer (Fig. 1) was born in England in 1899, but spent the first 13 years of his life in France, where his father worked as a correspondent of a telegraph company. After returning to England, he went to Harrow School, where he became interested in zoology. In 1917 he entered Magdalen College at Oxford, graduating in 1922 after a leave for serving in the British Army during World War I. -
Gavin Rylands De Beer (1899-1972) [1]
Published on The Embryo Project Encyclopedia (https://embryo.asu.edu) Gavin Rylands de Beer (1899-1972) [1] By: Kearl, Megan Keywords: Biography [2] Evolution [3] Zoology [4] Gavin de Beer was an English zoologist known for his contributions toe volution [5] and embryology [6], in particular for showing the inadequacy of the germ layer theory as it was then proposed. He was born in London, England, on 1 November 1899, but was raised for his first thirteen years in France where his father worked for a telegraph company. He entered Magdalen College, Oxford, in 1917 but his studies were soon interrupted by World War I [7]. After serving in the military, he returned to Oxford where he studied under Edwin Goodrich [8]. He graduated in 1922 but stayed on as a fellow of Merton College and to teach in the Zoology Department. He was the Jenkinson Memorial Lecturer between 1926 and 1938. During his time at Oxford, de Beer authored his first major work,A n Introduction to Experimental Embryology [9], which was published in 1926. The book contained de Beer’s observations that certain cartilage and bone cells are derived from an area of the ectoderm [10], now known as the neural crest [11], instead of the mesoderm [12], as germ layer theory then asserted. After the publication of this book, he began favoring comparative and descriptive methods over experimentation in his research. In 1930 he released another book, Embryology and Evolution, later retitled Embryos and Ancestors. This book contained de Beer’s ideas about his developmental theory of evolution [5], which combined Mendelian genetics with Charles Darwin’s theory of natural selection [13]. -
The Developmental Evolution of the Digging Tibia of Dung Beetles Research David M
The origins of novelty from within the royalsocietypublishing.org/journal/rspb confines of homology: the developmental evolution of the digging tibia of dung beetles Research David M. Linz†, Yonggang Hu† and Armin P. Moczek Cite this article: Linz DM, Hu Y, Moczek AP. 2019 The origins of novelty from within the Department of Biology, Indiana University, Bloomington, IN 47405, USA confines of homology: the developmental DML, 0000-0003-2096-3958; YH, 0000-0002-3438-7296 evolution of the digging tibia of dung beetles. Proc. R. Soc. B 286: 20182427. Understanding the origin of novel complex traits is among the most fundamen- tal goals in evolutionary biology. The most widely used definition of novelty in http://dx.doi.org/10.1098/rspb.2018.2427 evolution assumes the absence of homology, yet where homology ends and novelty begins is increasingly difficult to parse as evo devo continuously revises our understanding of what constitutes homology. Here, we executed a case study to explore the earliest stages of innovation by examining the tibial Received: 29 October 2018 teeth of tunnelling dung beetles. Tibial teeth are a morphologically modest Accepted: 23 January 2019 innovation, composed of relatively simple body wall projections and contained fully within the fore tibia, a leg segment whose own homology status is unam- biguous. We first demonstrate that tibial teeth aid in multiple digging behaviours. We then show that the developmental evolution of tibial teeth Subject Category: was dominated by the redeployment of locally pre-existing gene networks. At the same time, we find that even at this very early stage of innovation, at Evolution least two genes that ancestrally function in embryonic patterning and thus entirely outside the spatial and temporal context of leg formation, have already Subject Areas: become recruited to help shape the formation of tibial teeth.