Open Data from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
October 2020 Deirdre Shoemaker, Ph.D. Center for Gravitational Physics Department of Physics University of Texas at Austin Google Scholar
October 2020 Deirdre Shoemaker, Ph.D. Center for Gravitational Physics Department of Physics University of Texas at Austin Google scholar: http://bit.ly/1FIoCFf I. Earned Degrees B.S. Astronomy & Astrophysics 1990-1994 Pennsylvania State University with Honors and Physics Ph.D. Physics 1995-1999 University of Texas at Austin (advisor: R. Matzner) II. Employment History 1999-2002 Postdoctoral Fellow, Center for Gravitational Wave Physics, Penn State (advisor: S. Finn and J. Pullin) 2002-2004 Research Associate, Center for Radiophysics and Space Research, Cornell (advisor: S. Teukolsky) 2004-2008 Assistant Professor, Physics, Penn State 2008-2011 Assistant Professor, Physics, Georgia Institute of Technology 2009-2011 Adjunct Assistant Professor, School of Computational Science and Engineering, Georgia Institute of Technology 2011-2016 Associate Professor, Physics, Georgia Institute of Technology 2011-2016 Adjunct Associate Professor, School of Computational Science and Engineering, Georgia Institute of Technology 2013-2020 Director, Center for Relativistic Astrophysics 2016-2020 Professor, Physics, Georgia Institute of Technology 2016-2020 Adjunct Professor, School of Computational Science and Engineering, Georgia Institute of Technology 2017-2020 Associate Director of Research and Strategic Initiatives, Institute of Data, Engineering and Science, Georgia Institute of Technology 2020-Present Professor, Physics, University of Texas at Austin 2020-Present Director, Center for Gravitational Physics, University of Texas at Austin III. Honors -
People and Things
People and things On 15 April, Haim Harari of the Weizmann Institute, Israel, was guest speaker at a symposium to mark 20 years of accelerator operation at the Paul Scherrer Institute, Maurice Jacob's roving camera caught Murray Villigen, Switzerland. Gell Mann in a London pub with the manu (Photo Armin Muller) script of his book 'The Quark and the Jaguar'. 20 years of PSI In April the Swiss Paul Scherrer Institute celebrated 20 years of accelerator operations. Originally built for particle research, these facilities now extend over a wide spectrum of applications, from molecular structure to cancer therapy. Each year over 400 visiting researchers make use of PSI particle beams. Meetings An international symposium on strangeness and quark matter will be held from 1-5 September in Crete, covering 1. strangeness and quark- gluon plasma, 2. strangeness con LAPP, Annecy, well known authority French Academy of Sciences densation, 3. strange astrophysics, 4. on non-Abelian gauge theories, and strangelets, 5. dedicated instrumen Michel Davier, long-time specialist in tation for strangeness and quark Among the new corresponding electron-positron collision physics matter. Information from the Secre members of the French Academy of and former Director of the Orsay tariat, University of Athens, Physics Sciences (Academie des Sciences Linear Accelerator Laboratory. Other Dept., Nuclear & Particle Physics de Paris) are Raymond Stora of new members are Alain Aspect, Division, Panepistimioupolis, Greece- 15771 Athens, tel. (30-1)7247502, 7243362, 7243143, fax (30- 1)7235089, email gvassils ©atlas, uoa.ariadne-t.gr At a special colloquium held at CERN on 20 April to mark Carlo Rubbia's 60th birthday and the tenth anniversary of his Nobel Prize award with Simon van der Meer, left to right - Canadian TRIUMF Laboratory Director and former UA1 co-spokesman Alan Astbury, LHC Project Director Lyn Evans, Carlo Rubbia, Director General Chris Llewellyn Smith, and former UA 1 co-spokesman John Dowel I. -
Hadronic R Decays and QCD
FR0005562 LAL 99-78 December 1999 Hadronic r decays and QCD M. Davier Laboratoire de l'Accelerateur Lineaire IN2P3-CNRS et Universite de Paris-Sud, BP 34, F-91898 Orsay Cedex Invited talk given at the &h International Symposium on Heavy Flavour Physics University of Southampton, England, 25-29 July 1999 U.E.R Institut National de de Physique Nucleaire PUniversite Paris-Sud et de Physique des Particules 32/ 05 B.P. 34 ~ Bailment 200 - 91898 ORSAY CEDEX Gestion IH\S Doc. Enreg. I© .iU4/. N* TRN &&.O.O.OSS LAL 99-78 December 1999 Hadronic r decays and QCD Michel Davier Laboratoire de VAccel6rateur Lineaire IN2P3/CNRS et University de Paris-Sud 91898 Orsay, France E-mail: davierQlal.in2p3.fr ABSTRACT: Hadronic decays of the r lepton provide a clean source to study hadron dynamics in an energy regime dominated by resonances, with the interesting information captured in the spectral functions. Recent results on exclusive channels are reviewed. Inclusive spectral functions are the basis for QCD analyses, delivering an accurate determination of the strong coupling constant and quantitative information on nonperturbative contributions. Strange decays yield a determination of the strange quark mass. 1. Introduction Radiative corrections violate CVC, as contained in the SEW factor which is dominated by short- Hadrons produced in T decays are borne out of distance effects and thus expected to be essen- the charged weak current, i.e. out of the QCD tially final-state independent. vacuum. This property garantees that hadronic Hadronic r decays are then a clean probe of physics factorizes in these processes which are hadron dynamics in an interesting energy region then completely characterized for each decay chan- dominated by resonances. -
Prix Andr Lagarrigue 2010
2010 André Lagarrigue Prize Under the sponsorship of the French Physical Society (SFP) and on the occasion of the 50th birthday of the Orsay Linear Accelerator Laboratory (LAL) in 2006, a prestigious Prize, awarded every second year, was created in honor of Professor André Lagarrigue. Director of LAL from 1969 until his untimely death in 1975. André Lagarrigue discovered, together with an European team, the weak interaction neutral currents in 1973, a crucial step in establishing the present theory of particle physics. The André Lagarrigue Prize rewards a senior physicist who has lead a large experimental project including conceptual design and realisation of a complex apparatus and has extracted the best of it with a strong team spirit and has carried out his work in a French laboratory or in close collaboration with French teams. This prize is co-financed by CEA, CERN, Ecole Polytechnique, IN2P3, LAL and the University Paris Sud 11. The international jury of the Andre Lagarrigue Prize1 met under the chairmanship of IN2P3 director Jacques Martino, and reviewed the nominees proposed by the French community of particles physics following a call for proposal sent to all French lab directors. The winner of the 2010 Andre Lagarrigue Prize is Michel Davier, Professor of Physics at the University Paris Sud 11 and a member of the French Academy of Science. Michel Davier's worldwide authority in the field of particle physics is undisputed and his prominent role is in every way worthy of that of André Lagarrigue. They share the same qualities of deep understanding of physics and of experimental devices of great complexity, of tenacity and pedagogy with the same passion for training young people. -
PDF Version for Printing
Friday, Jan. 30, 2009 Calendar Feature From ISGTW Friday, Jan. 30 ANL, Fermilab and UChicago Beauty to unlock the mystery of 3:30 p.m. come together for fifth meeting asymmetry DIRECTOR'S COFFEE BREAK - 2nd Flr X-Over In an ongoing effort to keep Illinois a science 4:00 p.m. powerhouse, Fermilab, Argonne and Joint Experimental-Theoretical University of Chicago scientists continue to Physics Seminar - One West look for future collaborative opportunities. Speaker: Michel Davier, LAL, More than 70 scientists from the three Orsay institutions will meet Monday at Argonne for + - → Title: BaBar Results on e e the fifth joint meeting organized to to share π+ π- and the Muon g-2 ideas about future projects and institutions' Prediction strategic plans. Monday, Feb. 2 The meetings, started in 2006 by Fermilab and 2:30 p.m. Argonne, initially focused on accelerator R&D. Particle Astrophysics Seminar While this is still a large focus of the - Curia II collaboration, particularly in regards to Project Speaker: Leanne Duffy, Los X, a series of research grants provided by the Alamos National Laboratory University of Chicago has led to joint projects Title: Phase-Space Structure in other research areas as well. of the Milky Way's Dark Halo The LHCb electomagnetic calorimeter, a device to 3:30 p.m. Proposals for joint projects include the detect electrons, their antiparticles (called DIRECTOR'S COFFEE production of better superconducting cavities, positrons) and photons, particles of light. This BREAK - 2nd Flr X-Over detector R&D, work on the LHC experiments immense array will collect immense amounts of 4 p.m. -
New Building Offers Most Advanced Technology Of
The magazine of Montclair State University MONTCLAIR Fall/Winter 2017 NEW BUILDING OFFERS MOST ADVANCED TECHNOLOGY OF ANY SCHOOL IN THE COUNTRY Alumnus Michael Price ’81, a writer and producer of The Simpsons, returned to campus at Homecoming to discuss his career with School of Communication and Media Director Keith Strudler and to dedicate the Michael Price Audio Production Center. See story in Alumni News, page 46. CONTENTS | FALL/WINTER 2017 FEATURES Poetic Justice 12 Ruth Bader Ginsburg spends day on campus, tackles The Merchant of Venice at round-table discussion Connecting Threads 17 Student mentors support personal growth of middle school boys in Newark Looking for Home Students travel to Greece to film the human stories 20 of the refugee crisis Hollywood East School of Communication and Media’s new home 24 is nation’s most technologically advanced university media production facility, rivaling professional studios Solving Cosmic Mysteries 30 Faculty on LIGO team help with historic detection of neutron stars’ collision 3 Feedback 4 Headlines 35 Athletics 41 Alumni Connections 47 Class Notes 54 In Memoriam 56 Lasting Lessons DEPARTMENTS Photo by Gennadi Novash MONTCLAIR The magazine of Montclair State University FROM President Susan A. Cole THE Vice President for University Advancement John T. Shannon Associate Vice President for PRESIDENT External Relations Carol Blazejowski ’78 n October, I had the honor of delivering the “President-to-Presidents Lecture” at Assistant Vice President for the annual meeting of the American Association of State Colleges and Universities Communications and Marketing Ellen Griffin I(AASCU), where 200 presidents and chancellors gathered to explore issues facing higher education to ensure that we, as leaders, are doing our best to provide future Assistant Vice President for generations with the tools they need to lead our country forward. -
National Science Foundation LIGO FACTSHEET NSF and the Laser Interferometer Gravitational-Wave Observatory
e National Science Foundation LIGO FACTSHEET NSF and the Laser Interferometer Gravitational-Wave Observatory In 1916, Albert What is LIGO? Einstein published the LIGO consists of two widely separated laser paper that predicted interferometers located within the United States – one gravitational waves – in Hanford, Washington, and the other in Livingston, ripples in the fabric of Louisiana – each housed inside an L-shaped, ultra-high space-time resulting vacuum tunnel. The twin LIGO detectors operate in from the most violent unison to detect gravitational waves. Caltech and MIT phenomena in our led the design, construction and operation of the NSF- universe, from funded facilities. supernovae explosions to the collision of black What are gravitational waves? holes. For 100 years, Gravitational waves are distortions of the space and that prediction has time which emit when any object that possesses mass stimulated scientists accelerates. This can be compared in some ways to how around the world who accelerating charges create electromagnetic fields (e.g. have been seeking light and radio waves) that antennae detect. To generate to directly detect gravitational waves that can be detected by LIGO, the gravitational waves. objects must be highly compact and very massive, such as neutron stars and black holes. Gravitational-wave In the 1970s, the National Science Foundation (NSF) detectors act as a “receiver.” Gravitational waves travel joined this quest and began funding the science to Earth much like ripples travel outward across a pond. and technological innovations behind the Laser However, these ripples in the fabric of space-time carry Interferometer Gravitational-Wave Observatory (LIGO), information about their violent origins and about the the instruments that would ultimately yield a direct nature of gravity – information that cannot be obtained detection of gravitational waves. -
LIGO- India Project by Indian Astrophysicist Mr. Karan Jani (Date
A Report on GTU ITAP & CiC3 organized Discourse on LIGO- India Project By Indian Astrophysicist Mr. Karan Jani rd (Date: 23 August 2016) About GTU ITAP ITAP & NI Gujarat Technological University (GTU) is a premier academic and research institution which has driven new ways of thinking since its 2007 founding, established by the Government of Gujarat vide Gujarat Act No. 20 of 2007. GTU is a State University with 486 affiliated colleges in its fold operating across the state of Gujarat through its FIVE zones at Ahmedabad, Gandhinagar, Vallabh Vidyanagar, Rajkot and Surat. The University caters to the fields of Engineering, Architecture, Management, Pharmacy and Computer Science. The University has about 4 lakh students enrolled in a large number of Diploma, Under Graduate, Post Graduate programs along with the robust Doctoral program. GTU is associated with Institute and Student development activity right through its inception. In the same direction GTU has established “Integrated Training & Placement (ITAP) Cell”, wings to support Institutes to enhance employability skill in students which help their students to get job and also it would help them to fit in turbulence environment. This Cell also works for development of entrepreneur skills, which helps students to established new business generate employability for society. Enhance awareness regarding corporate professionalism Enhance soft skills and Employability skills Development of Entrepreneurship skill of students Specific focus on how stakeholders (Students) will able to fit with today’s turbulence Environment of corporate. GTU Integrated Training & Placement (ITAP) and Community Innovation & Co-Creation Centre (CiC3) has collaboratively organized a Discourse on LIGO (Laser Interferometer Gravitational-Wave Observatory) for India Project by renowned Indian Astrophysicist Mr Karan Jani. -
Research Interests Education KARAN JANI
KARAN JANI Curriculum Vitae Email [email protected] web: www.karanjani.com Address Vanderbilt University, Department of Physics & Astronomy 6301 Stevenson Science Center, Nashville, TN 37212, USA Phone work: +1-615.322.4908 cell: +1-814.321.7501 skype: karan_jani Social Media /in/karanjani @astroKPJ /astroKPJ @astroKPJ Research Interests Gravitational-Wave Astrophysics (100+ publications, 50+ invited talks) Intermediate-mass black holes; Numerical relativity simulations on supercomputers; Data-analysis in LIGO; Next-gen. gravitational-wave experiments moon and space International Affairs, Science & Education Policies (3 publications, 6 invited talks) Security implications of big data; Global cooperations in space-science; K-12 and higher-education in India Education 2012 - 2017 Doctor of Philosophy (Ph.D.) in Physics Georgia Institute of Technology, USA Thesis title: “Journey of Binary Black Holes: From Supercomputers to LIGO to Universe” Thesis Advisor: Prof. Deirdre Shoemaker - Sam Nunn Fellow (awarded to 8 PhDs across all disciplines) - Vice-President Student Government (6 colleges, 9000+ students) - LIGO Scientific Collaboration Fellow (on-site at LIGO Livingston) - American Physical Society-FIP Distinguished Student Award - Gravitational-Wave-Intl’-Committee-Braccini Thesis Prize, Hon’ mention 2007 - 2011 Bachelor of Science (B.S.) in Astronomy & Astrophysics, B.S. in Physics, Minor in Mathematics Pennsylvania State University, USA Project: “Orbital Configuration of LISA-like Gravitational Wave Detectors” Advisor: Prof. Lee Samuel Finn - Summer research at Perimeter Institute for Theoretical Physics (Canada) and Max Planck Institute for Gravitational Physics (Germany) - Vanderbilt Uni. Prize for Undergrad. Research in Phys. & Astro. (finalist) - First Prize for Undergraduate Research (Eberly College of Sciences) - Eberly College of Sciences Dean’s List 2006 - 2007 B.Sc. -
Detection Landscape in the Deci-Hertz Gravitational-Wave Spectrum
Detection Landscape in the Deci-Hertz Gravitational-Wave Spectrum Kiwamu Izumi ∗, Karan Jani Abstract Direct observations of gravitational waves at frequencies around deci-Hertz will play a crucial role in fully exploiting the potential of multi-messenger astronomy. In this chapter, we discuss the detection landscape for the next several decades of the deci-Hertz gravitational-wave spectrum. We provide an overview of the experimental frontiers being considered to probe this challenging regime and the astrophysics and fundamental goals accessible towards them. This includes interferometric observatories in space with heliocentric and geocentric satellites, cubesats, lunar-based experiments and atom intereferometry. A major focus of this chapter is towards the technology behind DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) and its scientific pathfinder mission concept B-DECIGO. Keywords Instruments, laser interferometry, space mission, lunar science, cubesats, atomic clock, gravitational-wave astronomy. Kiwamu Izumi Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 arXiv:2105.06069v1 [gr-qc] 13 May 2021 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 Japan, e-mail: [email protected]. jaxa.jp, Karan Jani Department Physics and Astronomy, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN, 37235, USA , e-mail: [email protected] ∗ corresponding author 1 2 Kiwamu Izumi, Karan Jani 1. Introduction The current generation of ground-based gravitational-wave detectors such as Laser Interferometer Gravitational-Wave Observatory (LIGO) [1], Virgo [2] and KAGRA [3] are sensitive at frequencies above 10 Hz. These L-shaped detectors with a few km arm-length are suited to probe gravitational waves from the coalescing binaries 2 of neutron stars and stellar black holes (.10 M ) [4]. -
Impact of International Cooperation for Sustaining Space-Science Programs
Impact of International Cooperation for Sustaining Space-Science Programs Karan Jani1 Sam Nunn Security Program Sam Nunn School of International Affairs Georgia Institute of Technology October 26, 2016 ABSTRACT Space-science programs provide a wide range of application to a nation's key sectors of development: science-technology infrastructure, education, economy and national security. However, the cost of sustaining a space-science program has discouraged developing nations from participating in space activities, while developed nations have steadily cut down their space-science budget in past decade. In this study I investigate the role of international cooperation in building ambitious space-science programs, particularly in the context of developing nations. I devise a framework to quantify the impact of international collaborations in achieving the space-science goals as well as in enhancing the key sectors of development of a nation. I apply this framework on two case studies, (i) Indian Space Research Organization - a case of space-science program from a developing nation that has historically engaged in international collaborations, and (ii) International Space Station - a case for a long term collaboration between matured space-science programs. My study concludes that international cooperation in space can significantly enhance scope of science goals, but has relatively little return of investment towards science education and national security. I also highlight limitations of such space diplomacy in the case of China and SAARC nations, and list criteria for future investigation and case studies. 1 [email protected] Karan Jani TABLE OF CONTENTS 1. Introduction 2 … 1.1. Historical Developments in Space Research 1.2. -
Tau Leptons New Measurements of the Tau Mass
Tau lineup. At this year's workshop on tau lepton physics, the second in the series, and hosted by Ohio State University, tau pioneer Martin Perl is seen with workshop chairman K.K. Gan (left) and Michel Davier, one of the chairmen of the first workshop, held in Orsay, France, in 1990. At the workshop it also emerged that a large amount of information on the scintillation properties of several materials and ions already has been compiled. In particular, cerium compounds can offer advantages when fast scintillation (some 20 ns) is needed. For ultrafast (nanosecond) scintillation, only crystals exhibiting special 'crossover' transitions can be considered, with the drawback of emitting in the vacuum UV. Similar expertise was gathered from exten sive work in solid state chemistry and crystalline defects. The Chamonix meeting was organ ized jointly by CERN, the French CNRS and the Italian INFN. The workshop opened with a talk on ment in the precision of the measure Tau leptons new measurements of the tau mass. ments, there is still a nagging dis At the Beijing electron-positron crepancy. Once an oddity, tau leptons are now collider, seven events were observed Tau decays with one or three being mass produced at electron- in a scan of the tau production charged hadrons in the final states positron colliders, and tau physics is threshold yielding a new measure were the subject of two full sessions. becoming daily life. This was re ment of the tau mass (July, page 13) New measurements from ARGUS flected at the Second Workshop on an order of magnitude more precise (DESY, Hamburg), CLEO (CESR, Tau Lepton Physics, held at Ohio than the previous measurement by Cornell), and the LEP experiments at State University, September 8-11.