Synthetic Biology, 2018, 3(1): ysy012 doi: 10.1093/synbio/ysy012 Advance Access Publication Date: 7 July 2018 Review article High-throughput screening of biomolecules using cell-free gene expression systems Luis E. Contreras-Llano and Cheemeng Tan* Department of Biomedical Engineering, University of California Davis, Davis, CA, USA *Corresponding author: E-mail:
[email protected] Abstract The incorporation of cell-free transcription and translation systems into high-throughput screening applications enables the in situ and on-demand expression of peptides and proteins. Coupled with modern microfluidic technology, the cell-free methods allow the screening, directed evolution and selection of desired biomolecules in minimal volumes within a short timescale. Cell-free high-throughput screening applications are classified broadly into in vitro display and on-chip technolo- gies. In this review, we outline the development of cell-free high-throughput screening methods. We further discuss operat- ing principles and representative applications of each screening method. The cell-free high-throughput screening methods may be advanced by the future development of new cell-free systems, miniaturization approaches, and automation technologies. Key words: synthetic biology; high-throughput screening; cell-free systems; directed evolution Introduction the use of highly purified or chemically synthesized target pro- teins. In vivo approaches exploit the change of cellular pheno- High-throughput screening methods analyze the interactions type to screen for the presence of specific molecules (Table 1). between a large number of chemical compounds or biomole- The in vivo approaches are useful when the presence or the ac- cules and specific targets in a robust, time efficient and highly tivity of the biomolecule of interest can be determined using reproducible format.