Measuring the Neon-20 Radiative Proton Capture Rate at Dragon

Total Page:16

File Type:pdf, Size:1020Kb

Measuring the Neon-20 Radiative Proton Capture Rate at Dragon MEASURING THE NEON-20 RADIATIVE PROTON CAPTURE RATE AT DRAGON by Jonathan Karpesky c Copyright by Jonathan Karpesky, 2020 All Rights Reserved A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Physics). Golden, Colorado Date Signed: Jonathan Karpesky Signed: Dr. Uwe Greife Thesis Advisor Golden, Colorado Date Signed: Dr. Uwe Greife Professor and Head Department of Physics ii ABSTRACT Understanding the abundance levels of isotopes produced in oxygen-neon (ONe) novae within our galaxy requires accurate measurements of nuclear reaction rates within their associated reaction networks. During these cataclysmic events, the produced radioisotope 22Na is ejected into the interstellar medium and β-decays predominately to the first excited state in 22Ne leading to a characteristic 1.275 MeV γ-ray. To date, there has been no astronomical observation of this characteristic γ-ray that can be a potential probe into the physics occuring within novae. The production of 22Na in classical novae is limited by the 20Ne(p,γ)21Na nuclear reaction that is the focus of this experiment. Using the DRAGON recoil separator, new measurements of the 20Ne(p,γ)21Na reaction are performed at center-of- mass energies ranging from 265.5 - 519.6 keV that reach towards the astrophysically relevant energy ranges. The goal is to reduce experimental uncertainties in the 20Ne(p,γ)21Na reaction rate in order to be able to constrain the astrophysical S-factor. In addition, in the frame of this thesis a differential cross-section measurement was performed of 3He + p scattering to test the performance of the new Colorado School of Mines designed and built SONIK scattering chamber. iii TABLE OF CONTENTS ABSTRACT ......................................... iii LISTOFFIGURES .....................................vii LISTOFTABLES ..................................... xvii ACKNOWLEDGMENTS .................................xviii PART I SCIENTIFIC RESULT: DIRECT MEASUREMENT OF RADIATIVE PROTON CAPTURE ON NEON-20 WITHIN THE ASTROPHYSICALLY RELEVANT ENERGY RANGE FOR STELLAR NUCLEOSYNTHESIS IN NOVAE . 1 CHAPTER1 INTRODUCTION ...............................2 1.1 Stellarevolution................................ ....2 1.1.1 Starformation ................................3 1.1.2 Mainsequencestars ............................. 4 1.2 Stellarnucleosynthesis . ..... 10 1.3 NeNacycle .....................................12 1.4 Existingandfuturemeasurements. ...... 14 CHAPTER 2 RADIATIVE CAPTURE THEORY . 19 2.1 Cross-section ................................... 19 2.2 TheGamowwindow ................................ 21 2.3 StellarReactionRates . 23 2.4 Non-resonantreactionrates . .... 25 2.5 Resonantreactionrates. .... 28 iv 2.6 Subthresholdresonances . .... 29 2.7 Reactionyields .................................. 30 2.8 Kinematics .....................................35 2.9 SelectionRules .................................. 38 2.10 Reactionproductstates . .... 40 CHAPTER3 EXPERIMENTALMETHODS . 42 3.1 TRIUMFandBeamDelivery ........................... 42 3.2 DRAGON......................................45 3.2.1 DRAGONHead............................... 48 3.2.2 DRAGONEMS............................... 52 3.2.3 DRAGONTail ............................... 56 CHAPTER 4 ANALYSIS METHODS . 59 4.1 BeamNormalization ................................ 59 4.2 StoppingPower ................................... 61 4.3 BGOCalibration .................................. 62 4.3.1 FirstCalibration .............................. 66 4.3.2 SecondCalibration ............................. 67 4.3.3 FinalCalibration .............................. 68 4.4 BGOResolution................................... 69 4.5 Photopeakefficiency ............................... 75 4.6 TrueCoincidenceSumming . 78 4.7 RecoilDetectionEfficiency. .... 83 4.7.1 BGOArrayEfficiency ........................... 88 v 4.8 ParticleIdentification. ..... 90 CHAPTER5 RESULTS .................................. 94 5.1 YieldMeasurements ................................ 94 5.2 TotalS-factor ................................... 96 5.3 GroundStateTransitionS-factor . ...... 99 5.3.1 TransitionRatios ............................. 100 5.3.2 DC 0keVS-factor ........................... 102 → 5.3.3 BGOResolutionComparison . 103 5.4 Subthreshold and DC 332keVTransitionS-factors. 104 → PART II SCIENTIFIC RESULT: ELASTIC SCATTERING IN INVERSE KINEMATICS OF PROTONS FROM HELIUM-3 USING THE SONIK DETECTOR .................................. 110 CHAPTER6 SONIK ................................... 111 6.1 ElasticScatteringYield. 113 6.2 G-FactorSimulation .............................. 116 6.2.1 SimulationMethods ........................... 118 6.3 Results....................................... 124 CHAPTER 7 SUMMARY AND CONCLUSION . 137 REFERENCESCITED .................................. 140 vi LIST OF FIGURES Figure 1.1 The abundance level of elements within the solar system as a function of atomic mass number with abundances normalized to 1 million parts ofsilicon.Figurefrom..............................3 Figure 1.2 The reaction network pathways for the CNO-I, CNO-II, and CNO-III cycles.Figuretakenfrom . .8 Figure 1.3 The reaction network pathways for the hot CNO cycle. Figure taken from ......................................10 Figure 1.4 The binding energy per nucleon as a function of atomic mass number. The vertical black dashed line represents the fusion / fission boundary where isotopes on the left of the line will release energy during fusion while isotopes on the right will release energy during fission. The binding energy per nucleon peaks near 56Fe shown by the red star marker......................................13 Figure 1.5 The pathways for nucleosynthesis in the NeNa cycle, a hydrogen burning cycle that occurs beyond the hot CNO cycle. Figure taken from.......................................14 Figure 1.6 The astrophysical S-factor for the 20Ne(p,γ)21Na as determined by Mukhamedzhanov et al.. The black dotted line is the subthreshold S-factor, the black dashed line is the ground state transition, and the solid black line is the total S-factor calculated from the indirect 20Ne(3He,d)21Na transfer reaction in . The data points shown by open and closed squares are from representing the direct capture to the ground state and to the subthreshold state, respectively. Of note is the representation of the results from Rolfs et al. appears to be representing the energy scale incorrectly with the measured energies being lower when compared to the original publication. Figure taken from ...... 15 Figure 1.7 The astrophysical S-factor for the three transitions of interest with corresponding R-matrix analysis in the 20Ne(p,γ)21Na reaction as measured by Lyons et al. The data points in solid black triangles are from . The solid red lines represent the R-matrix fit on the measured S-factor data. Figure taken from and the results are mislabeled in that they are actually the differential S-factor that needs to be multiplied by 4π to obtain the actual S-factor result. In addition, several data points takenfrom aremisrepresented. 17 vii Figure 2.1 The two predominant probability factors that determine the relevant stellar energies for the 20Ne(p,γ)21Na reaction for a ONe surface temperature of 0.4 GK. The Gamow factor (e−2πη) represents the penetrability probability shown by the orange line. The Maxwell-Boltzmann factor (e−E/kT ) is shown by the blue line. The Gamow window is the product of the two factors and is characterized by the green line. The relative probability is the unscaled value from thegivenfactordistributions. 22 Figure 2.2 The Gamow window of the 20Ne(p,γ)21Na reaction for a ONe surface temperature of 0.4 GK determined by the product of the two main probability factors. The Gamow window can be approximated by a Gaussian distribution as shown by the red dashed line. A more precise approximation for this reaction can be made using an exponentially modified Gaussian distribution as shown by the green dashed line. The relative probability is the scaled Gamow window by the sum of the distributionoverthegivenenergyrange. 23 Figure 2.3 The astrophysical S-factor of the radiative proton capture reaction on 20Ne calculated by converting the cross-section values from Equation (2.32) into a S-factor. The solid circle data points are direct capture to the ground state measurements from . Figure taken from . 31 Figure 2.4 Excited state diagram for 21Na. The subthreshold state is shown here at 2.425 MeV and is within 7 keV of the reaction binding energy. Figuretakenfrom. .............................. 41 Figure 3.1 ISAC-I experimental hall schematic. Figure taken from........... 43 Figure 3.2 Schematic of the inner components of DRAGON’s windowless gas target.Figuretakenfrom. 44 Figure 3.3 SONIK scattering chamber 3-D model using SolidWorks R . Figure from . ........................................45 Figure 3.4 Schematic of the recirculation system used by DRAGON’s windowless gastarget.Figuretakenfrom.. 46 Figure 3.5 Upstream and downstream schematic of the pumping tubes and apertures for DRAGON’s windowless gas target. Figure taken from.. 47 Figure 3.6 Schematic of DRAGON’s BGO γ array consisting of 30 individual BGO detectors that surround the windowless gas target. Figure takenfrom. 47 viii Figure 3.7 Schematic of DRAGON’s optical layout with elements labeled within the electromagnetic separator portion. Figure taken from . ....... 48 Figure 3.8 Schematic of DRAGON’s
Recommended publications
  • Fundamental Stellar Parameters Radiative Transfer Stellar
    Fundamental Stellar Parameters Radiative Transfer Stellar Atmospheres Equations of Stellar Structure Nuclear Reactions in Stellar Interiors Binding Energy Coulomb Barrier Penetration Hydrogen Burning Reactions Burning of Helium and Heavier Elements Element Abundances Creation of Elements Heavier than Iron Introduction Stellar evolution is determined by the reactions which take place within stars: Binding energy per nucleon determines the most stable isotopes • and therefore the most probable end products of fusion and fis- sion reactions. For fusion to occur, quantum mechanical tunneling through the • repulsive Coulomb barrier must occur so that the strong nuclear force (which is a short-range force) can take over and hold the two nuclei together. Hydrogen is converted to helium by the PP-Chain and CNO- • Cycle. In due course, helium is converted to carbon and oxygen through • the 3α-reaction. Other processes, such as neutron capture reactions, produce heav- • ier elements. Binding Energy Per Nucleon { I The general description of a nuclear reaction is I(A , Z ) + J(A , Z ) K(A , Z ) + L(A , Z ) i i j j ↔ k k ` ` where A is the baryon number, nucleon number or nuclear mass of nucleus N and • n Z is the nuclear charge of nucleus N. • n The nucleus of any element (or isotope) N is uniquely defined by the two integers An and Zn. Note also that anti-particles have the opposite charge to their corresponding particle. In any nuclear reaction, the following must be conserved: the baryon number (protons, neutrons and their anti-particles), • the lepton number (electrons, positrons, neutrinos and anti-neutrinos) and • charge.
    [Show full text]
  • Redalyc.Projected Shell Model Description for Nuclear Isomers
    Revista Mexicana de Física ISSN: 0035-001X [email protected] Sociedad Mexicana de Física A.C. México Sun, Yang Projected shell model description for nuclear isomers Revista Mexicana de Física, vol. 54, núm. 3, diciembre, 2008, pp. 122-128 Sociedad Mexicana de Física A.C. Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=57016055020 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative REVISTA MEXICANA DE FISICA´ S 54 (3) 122–128 DICIEMBRE 2008 Projected shell model description for nuclear isomers Yang Sun Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, P.R. China, Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, Indiana 46545, USA. Recibido el 10 de marzo de 2008; aceptado el 7 de mayo de 2008 The study of nuclear isomer properties is a current research focus. To describe isomers, we present a method based on the Projected Shell Model. Two kinds of isomers, K-isomers and shape isomers, are discussed. For the K-isomer treatment, K-mixing is properly implemented in the model. It is found however that in order to describe the strong K-violation more efficiently, it may be necessary to further introduce triaxiality into the shell model basis. To treat shape isomers, a scheme is outlined which allows mixing those configurations belonging to different shapes. Keywords: Shell model; nuclear energy levels. Se estudian las propiedades de isomeros´ nucleares a traves´ del modelo de capas proyectadas.
    [Show full text]
  • Varying Constants, Gravitation and Cosmology
    Varying constants, Gravitation and Cosmology Jean-Philippe Uzan Institut d’Astrophysique de Paris, UMR-7095 du CNRS, Universit´ePierre et Marie Curie, 98 bis bd Arago, 75014 Paris (France) and Department of Mathematics and Applied Mathematics, Cape Town University, Rondebosch 7701 (South Africa) and National Institute for Theoretical Physics (NITheP), Stellenbosch 7600 (South Africa). email: [email protected] http//www2.iap.fr/users/uzan/ September 29, 2010 Abstract Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to mat- ter. This will induce a violation of the universality of free fall. It is thus of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We thus detail the relations between the constants, the tests of the local posi- tion invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, Solar system observations, meteorites dating, quasar absorption spectra, stellar physics, pul- sar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we arXiv:1009.5514v1 [astro-ph.CO] 28 Sep 2010 describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of differ- ent constants.
    [Show full text]
  • The FRIB Decay Station
    The FRIB Decay Station WHITEPAPER The FRIB Decay Station This document was prepared with input from the FRIB Decay Station Working Group, Low-Energy Community Meetings, and associated community workshops. The first workshop was held at JINPA, Oak Ridge National Laboratory (January 2016) and the second at the National Superconducting Cyclotron Laboratory (January 2018). Additional focused workshops were held on γ-ray detection for fast beams at Argonne National Laboratory (November 2017) and stopped beams at Lawrence Livermore National Laboratory (June 2018). Contributors and Workshop Participants (24 institutions, 66 individuals) Mitch Allmond Miguel Madurga Kwame Appiah Scott Marley Greg Bollen Zach Meisel Nathan Brewer Santiago MunoZ VeleZ Mike Carpenter Oscar Naviliat-Cuncic Katherine Childers Neerajan Nepal Partha Chowdhury Shumpei Noji Heather Crawford Thomas Papenbrock Ben Crider Stan Paulauskas AleX Dombos David Radford Darryl Dowling Mustafa Rajabali Alfredo Estrade Charlie Rasco Aleksandra Fijalkowska Andrea Richard Alejandro Garcia Andrew Rogers Adam Garnsworthy KrZysZtof RykacZewski Jacklyn Gates Guy Savard Shintaro Go Hendrik SchatZ Ken Gregorich Nicholas Scielzo Carl Gross DariusZ Seweryniak Robert GrzywacZ Karl Smith Daryl Harley Mallory Smith Morten Hjorth-Jensen Artemis Spyrou Robert Janssens Dan Stracener Marek Karny Rebecca Surman Thomas King Sam Tabor Kay Kolos Vandana Tripathi Filip Kondev Robert Varner Kyle Leach Kailong Wang Rebecca Lewis Jeff Winger Sean Liddick John Wood Yuan Liu Chris Wrede Zhong Liu Rin Yokoyama Stephanie Lyons Ed Zganjar “Close collaborations between universities and national laboratories allow nuclear science to reap the benefits of large investments while training the next generation of nuclear scientists to meet societal needs.” – [NSAC15] 2 Table of Contents EXECUTIVE SUMMARY ........................................................................................................................................................................................
    [Show full text]
  • The Α-Decay in Ions and Highly Compressed Matter
    Alpha decay in electron environments of increasing density: from the bare nucleus to compressed matter Fabio Belloni* European Commission, Joint Research Centre, Institute for Transuranium Elements Postfach 2340, D-76125 Karlsruhe, Germany E-mail: [email protected] Abstract The influence of the electron environment on the α decay is elucidated. Within the frame of a simple model based on the generalized Thomas-Fermi theory of the atom, it is shown that the increase of the electron density around the parent nucleus drives a mechanism which shortens the lifetime. Numerical results are provided for 144Nd, 154Yb and 210Po. Depending on the nuclide, fractional lifetime reduction relative to the bare nucleus is of the order of 0.1÷1% in free ions, neutral atoms and ordinary matter, but may reach up to 10% at matter densities as high as 104 g/cm3, in a high-Z matrix. The effect induced by means of state-of-the-art compression techniques, although much smaller than previously found, would however be measurable. The extent of the effect in ultra-high-density stellar environments might become significant and would deserve further investigation. * Presently at: European Commission, Directorate-General for Research & Innovation, Directorate Energy, Rue du Champ de Mars 21, 1049 Brussels, Belgium. 1 1. Introduction Whether and to which extent the α-decay width might be modified in electron environments has been the subject of numerous theoretical and experimental investigations, boomed over the last years. It has indeed been put forward that this effect could have implications in the stellar nucleosynthesis of heavy elements [1,2], with an impact on nuclear cosmochronology [3] (e.g.
    [Show full text]
  • STUDY of the NEUTRON and PROTON CAPTURE REACTIONS 10,11B(N, ), 11B(P, ), 14C(P, ), and 15N(P, ) at THERMAL and ASTROPHYSICAL ENERGIES
    STUDY OF THE NEUTRON AND PROTON CAPTURE REACTIONS 10,11B(n, ), 11B(p, ), 14C(p, ), AND 15N(p, ) AT THERMAL AND ASTROPHYSICAL ENERGIES SERGEY DUBOVICHENKO*,†, ALBERT DZHAZAIROV-KAKHRAMANOV*,† *V. G. Fessenkov Astrophysical Institute “NCSRT” NSA RK, 050020, Observatory 23, Kamenskoe plato, Almaty, Kazakhstan †Institute of Nuclear Physics CAE MINT RK, 050032, str. Ibragimova 1, Almaty, Kazakhstan *[email protected][email protected] We have studied the neutron-capture reactions 10,11B(n, ) and the role of the 11B(n, ) reaction in seeding r-process nucleosynthesis. The possibility of the description of the available experimental data for cross sections of the neutron capture reaction on 10B at thermal and astrophysical energies, taking into account the resonance at 475 keV, was considered within the framework of the modified potential cluster model (MPCM) with forbidden states and accounting for the resonance behavior of the scattering phase shifts. In the framework of the same model the possibility of describing the available experimental data for the total cross sections of the neutron radiative capture on 11B at thermal and astrophysical energies were considered with taking into account the 21 and 430 keV resonances. Description of the available experimental data on the total cross sections and astrophysical S-factor of the radiative proton capture on 11B to the ground state of 12C was treated at astrophysical energies. The possibility of description of the experimental data for the astrophysical S-factor of the radiative proton capture on 14C to the ground state of 15N at astrophysical energies, and the radiative proton capture on 15N at the energies from 50 to 1500 keV was considered in the framework of the MPCM with the classification of the orbital states according to Young tableaux.
    [Show full text]
  • Photofission Cross Sections of 232Th and 236U from Threshold to 8
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1972 Photofission cross sections of 232Th nda 236U from threshold to 8 MeV Michael Vincent Yester Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Nuclear Commons Recommended Citation Yester, Michael Vincent, "Photofission cross sections of 232Th nda 236U from threshold to 8 MeV " (1972). Retrospective Theses and Dissertations. 6137. https://lib.dr.iastate.edu/rtd/6137 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This dissertation was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Nucleosynthesis •Light Element Processes •Neutron Capture Processes •LEPP and P Nuclei •Explosive C-Burning •Explosive H-Burning •Degenerate Environments
    Lecture 21: Nucleosynthesis •Light element processes •Neutron capture processes •LEPP and P nuclei •Explosive C-burning •Explosive H-burning •Degenerate environments Lecture 21: Ohio University PHYS7501, Fall 2017, Z. Meisel ([email protected]) Nuclear Astrophysics: Nuclear physics from dripline to dripline •The diverse sets of conditions in astrophysical environments leads to a variety of nuclear reaction sequences •The goal of nuclear astrophysics is to identify, reduce, and/or remove the nuclear physics uncertainties to which models of astrophysical environments are most sensitive A.Arcones et al. Prog.Theor.Part.Phys. (2017) 2 In the beginning: Big Bang Nucleosynthesis • From the expansion of the early universe and the cosmic microwave background (CMB), we know the initial universe was cool enough to form nuclei but hot enough to have nuclear reactions from the first several seconds to the first several minutes • Starting with neutrons and protons, the resulting reaction S. Weinberg, The First Three Minutes (1977) sequence is the Big Bang Nucleosynthesis (BBN) reaction network • Reactions primarily involve neutrons, isotopes of H, He, Li, and Be, but some reaction flow extends up to C • For the most part (we’ll elaborate in a moment), the predicted abundances agree with observations of low-metallicity stars and primordial gas clouds • The agreement between BBN, the CMB, and the universe expansion rate is known as the Concordance Cosmology Coc & Vangioni, IJMPE (2017) 3 BBN open questions & Predictions • Notable discrepancies exist between BBN predictions (using constraints on the astrophysical conditions provided by the CMB) and observations of primordial abundances • The famous “lithium problem” is the several-sigma discrepancy in the 7Li abundance.
    [Show full text]
  • Nuclear Fusion Reactions of Interest to Controlled Energy Production Had Been Established
    Nuclear fusion 1 reactions 1.1 Exothermic nuclear Most of this book is devoted to the physical principles of energy produc- reactions: fission and tion by fusion reactions in an inertially confined medium. To begin with, fusion 2 in this chapter we briefly discuss fusion reactions. 1.2 Fusion reaction physics 3 We first define fusion cross section and reactivity, and then present and 1.3 Some important fusion justify qualitatively the standard parametrization of these two important reactions 10 quantities. Next, we consider a few important fusion reactions, and pro- 1.4 Maxwell-averaged vide expressions, data, and graphs for the evaluation of their cross sections fusion reactivities 14 and reactivities. These results will be used in the following chapters to 1.5 Fusion reactivity in very derive the basic requirements for fusion energy production, as well as to high density matter 21 study fusion ignition and burn in suitable inertially confined fuels. 1.6 Spin polarization of In the last part of this chapter, we also briefly discuss how high material reacting nuclei 24 density and spin polarization affect fusion reactivities. Finally, we outline 1.7 µ-catalysed fusion 25 the principles of muon-catalysed fusion. 1.8 Historical note 27 Atzeni: “chap01” — 2004/4/29 — page1—#1 2 1.1 Exothermic nuclear reactions: fission and fusion 1.1 Exothermic nuclear reactions: fission and fusion According to Einstein’s mass–energy relationship, a nuclear reaction in which the total mass of the final products is smaller than that of the reacting nuclei is exothermic, that is, releases an energy Reaction Q 2 Q = mi − mf c 1.1 i f proportional to such a mass difference.
    [Show full text]
  • Stellar Nucleosynthesis
    Stellar nucleosynthesis Stellar nucleosynthesis is the creation (nucleosynthesis) of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a predictive theory, it yields accurate estimates of the observed abundances of the elements. It explains why the observed abundances of elements change over time and why some elements and their isotopes are much more abundant than others. The theory was initially proposed by Fred Hoyle in 1946,[1] who later refined it in 1954.[2] Further advances were made, especially to nucleosynthesis by neutron capture of the elements heavier than iron, by Margaret Burbidge, Geoffrey Burbidge, William Alfred Fowler and Hoyle in their famous 1957 B2FH paper,[3] which became one of the most heavily cited papers in astrophysics history. Stars evolve because of changes in their composition (the abundance of their constituent elements) over their lifespans, first by burning hydrogen (main sequence star), then helium (red giant star), and progressively burning higher elements. However, this does not by itself significantly alter the abundances of elements in the universe as the elements are contained within the star. Later in its life, a low-mass star will slowly eject its atmosphere via stellar wind, forming a planetary nebula, while a higher–mass star will eject mass via a sudden catastrophic event called a supernova. The term supernova nucleosynthesis is used to describe the creation of elements during the explosion of a massive star or white dwarf. The advanced sequence of burning fuels is driven by gravitational collapse and its associated heating, resulting in the subsequent burning of carbon, oxygen and silicon.
    [Show full text]
  • PHY401: Nuclear and Particle Physics
    PHY401: Nuclear and Particle Physics Lecture 19, Monday, October 5, 2020 Dr. Anosh Joseph IISER Mohali Nuclear Fusion PHY401: Nuclear and Particle Physics Dr. Anosh Joseph, IISER Mohali Nuclear Fusion Let us look at the plot of average binding energy per nucleon against mass number. It has a maximum at A ≈ 56. And after that it slowly decreases for heavier nuclei. The decrease is much quicker for lighter nuclei. PHY401: Nuclear and Particle Physics Dr. Anosh Joseph, IISER Mohali Nuclear Fusion PHY401: Nuclear and Particle Physics Dr. Anosh Joseph, IISER Mohali Nuclear Fusion Lighter nuclei are less tightly bound than medium-size nuclei (exception: magic nuclei). Thus, in principle, energy could be produced by two light nuclei fusing to produce a heavier, and more tightly bound nucleus. This is process of inverse to fission. PHY401: Nuclear and Particle Physics Dr. Anosh Joseph, IISER Mohali Nuclear Fusion Just as for fission, the energy released comes from difference in the binding energies of initial and final states. This process is called nuclear fusion. Very attractive as a potential source of power... ... because of the far greater abundance of stable light nuclei in nature than very heavy nuclei. PHY401: Nuclear and Particle Physics Dr. Anosh Joseph, IISER Mohali Nuclear Fusion Thus fusion would offer enormous potential for power generation, if ... ...the huge practical problems could be overcome. Fusion processes also explain how stars are formed. PHY401: Nuclear and Particle Physics Dr. Anosh Joseph, IISER Mohali Coulomb Barrier Practical problem to obtaining fusion has its origin in Coulomb repulsion. It inhibits two nuclei getting close enough together to fuse.
    [Show full text]
  • 570 Possibilities to Investigate Astrophysical
    POSSIBILITIES TO INVESTIGATE ASTROPHYSICAL PHOTONUCLEAR REACTIONS IN UKRAINE Ye. Skakun1, I. Semisalov1, V. Kasilov1, V. Popov1, S. Kochetov1, N. Avramenko1, V. Maslyuk2, V. Mazur2, O. Parlag2, D. Simochko2, I. Gajnish2 1NSC KIPT, Institute of High Energy and Nuclear Physics, Kharkiv, Ukraine 2 Institute of Electron Physics, National Academy of Sciences of Ukraine, Uzhgorod, Ukraine Reactions of proton capture (rp-process) and sequences of photodisintegrations of the (γ,n), (γ,α) and (γ,p) types (γ-process) play the key role in stellar nucleosynthesis of the so-called p-nuclei − a group of stable proton rich nuclides which could be created by none of slow (s) and rapid (r) radiative neutron capture reactions. There is need of knowledge of thousands of reaction rates to simulate natural abundances of the p-nuclei. Using bremsstrahlung beams from thin tantalum converters of the electron linear accelerator of NSC KIPT (Kharkiv) and the microtron of IEP (Uzhgorod) and conventional activation technique applying high resolution gamma-spectrometry we measured the integral cross sections of the (γ,n)-reactions on the nuclei of the 96Ru, 98Ru, 104Ru, 102Pd, and 110Pd isotopes the first two of which and palladium-102 are p-nuclei, and determined the reaction rates by a procedure of superposition of several bremsstrahlung spectra with different endpoints in the range from the thresholds to 14 MeV. The experimental reaction cross sections were compared to available data in overlapping energy range and the derived reaction rates to the predictions of the Hauser - Feshbach statistical model of nuclear reactions. In most cases theory underestimates the observed reaction rates in not great extent.
    [Show full text]