Synthetic and Mechanistic Studies of Poly(Vinyl Chloride) and Some Other Chlorinated Polymers

Total Page:16

File Type:pdf, Size:1020Kb

Synthetic and Mechanistic Studies of Poly(Vinyl Chloride) and Some Other Chlorinated Polymers W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2003 Synthetic and mechanistic studies of poly(vinyl chloride) and some other chlorinated polymers Xianlong Ge College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Organic Chemistry Commons, and the Polymer Chemistry Commons Recommended Citation Ge, Xianlong, "Synthetic and mechanistic studies of poly(vinyl chloride) and some other chlorinated polymers" (2003). Dissertations, Theses, and Masters Projects. Paper 1539623417. https://dx.doi.org/doi:10.21220/s2-drc1-7f95 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. SYNTHETIC AND MECHANISTIC STUDIES OF POLY(VINYL CHLORIDE) AND SOME OTHER CHLORINATED POLYMERS A Dissertation Presented to The Faculty of the Department of Applied Science The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Doctor of Philosophy by Xianlong Ge 2003 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. APPROVAL SHEET This dissertation is submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Xianlong Ge Approved, May 2003 llliam H. Starnes, Jr. Robert A. Orwoll Robert L. Void Robert D. Pike Department of Chemistry Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE OF CONTENTS ACKNOWLEDGMENTS..............................................................................................................viii LIST OF TABLES................................................................................................................... ix LIST OF FIGURES.................................................................................................................. x LIST OF SCHEMES..............................................................................................................xvi ABSTRACT............................................................................................................................xix CHAPTER 1. INTRODUCTION........................................................................................... 2 1.1 General .............................................................................................................................2 1.2 Poly(vinyl chloride) (PVC) ............................................................................................ 3 1.3 Synthesis of Polymers .....................................................................................................7 1.4 Degradation and Microstructure of Polymers ...............................................................8 CHAPTER 2. BACKGROUND........................................................................................... 10 2.1 General ........................................................................................................................... 10 2.2 Free-Radical Polymerization of 1,2-Dichloroethylene .............................................. 10 2.3 Selective Chlorination ...................................................................................................12 2.3.1 Poly(vinyl chloride) ...............................................................................................12 2.3.2 Chlorination of PV C ..............................................................................................12 2.3.3 Free-Radical Chlorination ..................................................................................... 14 2.3.4 Selective Chlorination with Chlorine in Complexing Solvents .........................15 2.3.5 PDCE from the Selective Chlorination of PVC? ................................................ 18 2.4 Chlorinated Polyacetylenes .......................................................................................... 19 2.4.1 Polyacetylene (PA ) ..............................................................................................19 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 2.4.2 Chlorinated Polyacetylene ....................................................................................23 2.4.3 Possible Chlorination Mechanisms ......................................................................25 2.4.4 Study on Chlorinated P A ......................................................................................26 2.5 Ring-Opening Metathesis Polymerization (ROMP) .................................................. 27 2.5.1 General Information .............................................................................................. 27 2.5.2 Mechanism of Olefin Metathesis and ROMP ..................................................... 27 2.5.3 Catalysts for ROMP .............................................................................................. 30 2.5.4 ROMP and Its Applications ..................................................................................34 2.6 Thermal Degradation of PVC Involving a Free-Radical Process .............................39 2.6.1 General ................................................................................................................... 39 2.6.2 Thermal Degradation of PVC: Initiation ............................................................ 40 2.6.3 PVC Degradation Mechanisms ............................................................................ 49 2.6.4 Thermal Stabilization of PVC ...............................................................................51 CHAPTER 3. EXPERIMENTAL......................................................................................... 52 3.1 Free-Radical Polymerization of 1,2-Dichloroethylene ..............................................52 3.1.1 Materials................................................................................................................ 52 3.1.2 NMR and GC/MS Measurements ........................................................................ 53 3.1.3 Attempts to Polymerize 1,2-Dichloroethylene .................................................... 53 3.1.4 Separation and Identification of cis and trans Dimers........................................54 3.2 Selective Chlorination .................................................................................................. 62 3.2.1 Materials................................................................................................................ 62 3.2.2 Synthesis of 2,4-Dichloropentane ........................................................................ 63 3.2.3 Synthesis of 4-Chloroheptane .............................................................................. 69 iv Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 3.2.4 Synthesis of 4,4-Dichloroheptane ........................................................................ 74 3.2.5 Synthesis of 3,3-Dichloropentane............................................................................... 7g 3.2.6 Synthesis of 3,4-Dichloroheptane ........................................................................ 82 3.2.7 Synthesis of 2,3-Dichloropentane ........................................................................ 86 3.2.8 Chlorination of 2,4-Dichloropentane ...................................................................90 3.2.9 Chlorinations of 3-Chloropentane and 4-Chloroheptane ................................... 96 3.3 Chlorinated Polyacetylene ........................................................................................... 97 3.3.1 Materials................................................................................................................ 97 3.3.2 Synthesis and Chlorination of Shirakawa PA ..................................................... 99 3.3.3 Synthesis and Chlorination of Luttinger PA ......................................................101 3.3.4 Thermal Analysis of Chlorinated Polyacetylene .............................................. 104 3.3.5 Reductive Dechlorination of Chlorinated Luttinger PA ...................................107 3.4 Ring-Opening Metathesis Polymerization ................................................................109 3.4.1 Materials.............................................................................................................. 109 3.4.2 Synthesis of Monomers and Model Compounds .............................................. 112 3.4.3 Thermal Degradation of Mono-, Di-, Tri-, and Tetrachlorides ........................143 3.4.4 Chlorination of cA-l,4-Dichloro-2-butene ........................................................144 3.4.5 Synthesis of New Chlorinated Polymers ...........................................................147 3.4.6 Thermal Analysis of New Chlorinated Polymers ............................................. 163 3.5 Thermal Degradation of PVC ....................................................................................164 3.5.1 Materials...............................................................................................................164 3.5.2 Dehydrochlorination Kinetics .............................................................................165
Recommended publications
  • 1 Synthesis and Functionality of Substituted Polyacetylenes Jianzhao Liu, Jacky W
    1 1 Synthesis and Functionality of Substituted Polyacetylenes Jianzhao Liu, Jacky W. Y. Lam, and Ben Zhong Tang 1.1 Introduction Polyacetylene (PA) is the archetypal conjugated polymer. The seminal discovery of the metallic conductivity of its doped form has triggered a huge surge of interest in conductive polymers and has spawned an exciting area of research on synthetic metals.1) As a result of rapid advances in the area, we are now on the threshold of a ‘‘plastic-electronics era’’ that previously could only be imagined in science fiction. Structurally, PA is a linear polyene chain [−(HC=CH)n−]. The existence of two hydrogen atoms in its repeat unit offers ample opportunity to decorate the backbone with pendants: replacement of hydrogen in each repeat unit by one or two substituents yields mono- (1) and disubstituted PAs (2), respectively (Scheme 1.1). The pendant and backbone can interact with each other: for example, the former perturbs the electronic conjugation of the latter, while the latter in- fluences the molecular alignment of the former. Proper structural design may tune the backbone–pendant interplay into harmony and synergy, generating new substituted PAs with novel functionalities. While PA is electrically conductive, introduction of such pendant as mesogen, chromophore, photosensitive double bond, or naturally occurring building block may endow it with such new func- tional properties as electro-optic activity, photonic responsiveness, and biologic compatibility. Considerable efforts have been devoted to the synthesis of the substituted PAs and study of their properties [1–9]. Attachment of polar groups to the polyene backbone enables the integration of functional pendants into the PA chain through various functional-group transformations, which was, however, a difficult task at the early stage of PA chemistry.
    [Show full text]
  • Electronic Polymers
    Electronic Polymers Insulators Semiconductors Metals Superconductors σ <10-7 10−7< σ <102 σ >102 σ >>1020 σ ranges 10-20 to 1020 Requires doping (oxidation or reduction) for conductivity Electrical Properties Electric conductivity of inorganic (I) and organic (O) compounds, I O measured in S/cm. Triniobium germanide (Nb3Ge) and poly(thiazyl) (SN)n are superconducting materials at very low temperatures near 20 zero kelvin. The conductivities for conducting (C), semi-conducting S Nb3Ge, (SN)n 10 (SC) and insulating (I) compounds are given for 20oC (= 293.16 K = 68oF). Cu = Copper, Hg = mercury, Ge = germanium, Si = silicon, 1015 AgBr = silver bromide, G = glass, S = sulfur, (SiO2)n= quartz, TTF = tetrathiafulvalene, TCNQ = 7,7,8,8 tetracyanoquinodimethane, NBR C 1010 = nitrile rubber (a copolymer from acrylonitrile and butadiene), DNA = deoxyribonucleic acid, PVC = polyvinyl chloride, PE = polyethylene, PTFE = polytetrafluoroethylene. Cu 105 TTF/TCNQ Hg 1 Siemens = 1 Ohm-1 (SN)n 1 Ge 1040 change in material property ! SC dP Si 10-5 AgBr Material Conductivity (S/cm) NBR -10 G 10 -7 DNA Insulators σ < 10 PVC 10-15 Semiconductors 10−7 < σ < 102 I S (SiO ) PE 2 n Metals σ > 102 10-20 PTFE Superconductors σ >> 1020 n = # carriers/cm3 Figure by MIT OCW. σ = nμq μ= mobility (cm2/V•sec) q = charge Types of Charge • Usual carriers: electrons, holes, ions(cations & anions) • New for conducting polymers – solitons, polarons, bipolarons Ji = σijEj where Ji is the current, σij is the conductivity and Ej is the applied field Battery Application – Li-polymer vs Pb. – Weight: 1/10th – volume: 1/3rd – power density: 10x – processable into any shape; dry, no toxic fumes etc.
    [Show full text]
  • Synthetic and Mechanistic Studies of Poly(Vinyl Chloride) and Some Other Chlorinated Polymers XIANLONG GE College of William &A
    Synthetic and Mechanistic Studies of Poly(vinyl chloride) and Some Other Chlorinated Polymers XIANLONG GE College of William & Mary, Department of Applied Science, 2003 Field: Polymer Science, Degree: Ph.D. Advisor: William H. Starnes, Jr., Professor of Chemistry Abstract Poly(1,2-dichloroethylene) (PDCE) is an unknown polymer that should be a superb engineering thermoplastic for use in a variety of high-performance applications. This thesis discusses approaches to its synthesis and describes the preparation and some of the properties of a number of new polymers that contain chlorine. Other major topics addressed here are (a) the involvement of an excited cation diradical intermediate in the thermal degradation of poly(vinyl chloride) (PVC) and (b) the mechanism of the thermal stabilization of PVC by “plasticizer thiols”. Unlike vinyl chloride, 1,2-dchloroethylene (DCE) undergoes dimerization under free-radical conditions. Chain transfer to DCE by β-Cl elimination was shown to be the major reason for its nonpolymerization. The dimeric radical rearranges by a 1,2-Cl shift, but apparently to only a very minor extent. During the chlorination of alkyl chlorides with molecular chlorine, a bridged intermediate is involved, and for this reason, vicinal chlorides were found to be the major products. The yields of geminal chlorides increased significantly in the presence of solvents that form complexes with chlorine atoms, but such solvents also decreased the reactivity of the chlorination. Thus the chlorination of PVC in the presence of complexing solvents was not a useful method for the synthesis of PDCE Polyacetylene (PA) was prepared by the methods of both Shirakawa and Luttinger.
    [Show full text]
  • Polyacetylene: Myth and Reality
    materials Review Polyacetylene: Myth and Reality Bruce S. Hudson Department of Chemistry, Syracuse University, Syracuse, NY 13244-4100, USA; [email protected]; Tel.: +1-315-443-5805 Received: 31 December 2017; Accepted: 31 January 2018; Published: 6 February 2018 Abstract: Polyacetylene, the simplest and oldest of potentially conducting polymers, has never been made in a form that permits rigorous determination of its structure. Trans polyacetylene in its fully extended form will have a potential energy surface with two equivalent minima. It has been assumed that this results in bond length alternation. It is, rather, very likely that the zero-point energy is above the Peierls barrier. The experimental studies that purport to show bond alternation are reviewed and shown to be compromised by serious experimental inconsistencies or by the presence, for which there is considerable evidence, of finite chain polyenes. In this view, addition of dopants results in conductivity by facilitation of charge transport between finite polyenes. The double minimum potential that necessarily occurs for polyacetylene, if viewed as the result of elongation of finite 1 1 chains, originates from admixture of the 1 Ag ground electronic state with the 2 Ag excited electronic singlet state. This excitation is diradical (two electron) in character. The polyacetylene limit is an 1 equal admixture of these two Ag states making theory intractable for long chains. A method is outlined for preparation of high molecular weight polyacetylene with fully extended chains that are prevented from reacting with neighboring chains. Keywords: polyacetylene; double-minimum potential; Peierls barrier; zero-point level; cross-linking 1. Introduction/Background History Polyacetylene is selected for review because of its relative simplicity; the small periodic repeat permits polyacetylene to be treated by sophisticated computational methods.
    [Show full text]
  • Introduction to Polymer Solar Cells (Pscs)
    2132-15 Winter College on Optics and Energy 8 - 19 February 2010 Introduction to Polymer Solar Cells (PSCs) K.S. Narayan Jawaharlal Nehru Centre for Advanced Scientific Research India K.S. Narayan Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore,India [email protected] •Salubrious Weather < 22 °C > • Science and Technology Hub (S. Asia’s Si‐Valley) •Central Location to Historic and Natural Sites •Well connected • Culturally Vibrant•Verdant Environment, Academically Stimulating JAWAHARLAL NEHRU CENTRE FOR ADVANCED SCIENTIFIC RESEARCH An autonomous institution of Department of Science and Technology, established in 1989 Lecture 1 • Conducting Polymers, Semiconducting Polymers • Excitons in Semiconducting polymers • Diodes • Charge Separation… Bulk Hetrojunctions Kinetics‐rates‐branching factors Gaussian Model for Transport Lecture 2 • Jsc‐ Voc – Fill Factor Problems and Losses Bulk limiting factors Interfaces Mobility – Transport Symmetry – Aging‐degradation Lecture 3 • General Directions and Present Strategies • Recent Results from my laboratory Polymers: Structural variety … n Polyethylene H n Polypropylene CH3 n Polyvinyl chloride PVC Cl Polystyrene – Styrofoam, thermocole n Polyvinyl acetate - Fevicol n OAc • Insulators • Semiconductors • Conductors Pattern – Colours ‐ …… Conjugated Polymers n Polyacetylene n Polyphenylene vinylene S n Polythiophene Polypyrrole N n H N N N N n Polyaniline The 4 orbitals of a carbon atom in the form which allows it to couple to other atoms. When two atoms are brought together the wavefunctions which are in the plane overlap and couple. The attraction (stabilisation) introduced by the overlap. Polyacetylene • Despite the expectation of metallic behaviour, pristine polyacetylene was an insulator. Bond alternation due to Peierls distortion leads to the formation of a band gap between the valence and conduction band.
    [Show full text]
  • The Discovery of Polyacetylene Film—The Dawning of an Era Of
    REVIEWS OF MODERN PHYSICS, VOLUME 73, JULY 2001 Nobel Lecture: The discovery of polyacetylene film—the dawning of an era of conducting polymers* Hideki Shirakawa University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan (Published 20 September 2001) The Nobel Prize in Chemistry 2000 was awarded for our discovery and development of conducting polymers, but that discovery only happened after much work on polyacetylene. In this lecture, I would like to talk about the early investigations that preceded and eventually led to the discovery of chemical doping. I do hope my talk will be of use for you, the audience, to deepen your understanding of what had happened before and how we arrived at the idea of chemical doping. I. PROLOGUE difference between lengths of double and single bonds decreases with increasing conjugation and that all bonds It has been recognized for many years that a very long tend to be equal in length in an infinitely long polyene. linear conjugated polyene might have various interesting In other words, one would expect infinitely long one- properties, especially optical, electrical, and magnetic dimensional ␲ electrons to form a half filled band, or the properties. A polyene is an even number of methyne highest-occupied (HO) and the lowest-unoccupied (LU) ␲ (vCH-) groups, covalently bonded to form a linear car- -electron bands to merge with each other, leading to bon chain bearing one ␲ electron on each carbon atom. metallic behavior (Kuhn, 1948; Bayliss, 1952). In the Therefore the chemical structure of the polyene is best 1950s, however, it became theoretically clear that a poly- represented by the formula H(CHvCH)nH, where n ene with bond alternation is energetically more stable denotes the number of repeating units.
    [Show full text]
  • Effects of Metal Ions in Free Radical Reactions Richard Duane Kriens Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1963 Effects of metal ions in free radical reactions Richard Duane Kriens Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Kriens, Richard Duane, "Effects of metal ions in free radical reactions " (1963). Retrospective Theses and Dissertations. 2544. https://lib.dr.iastate.edu/rtd/2544 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been 64—3880 microfilmed exactly as received KRIENS, Richard Duane, 1932- EFFECTS OF METAL IONS IN FREE RADICAL REACTIONS. Iowa State University of Science and Technology Ph.D„ 1963 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan EFFECTS OF METAL IONS IN FREE RADICAL REACTIONS by Richard Duane Kriens A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Organic Chemistry Approved: Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. ead of Major Departmei^ Signature was redacted for privacy. Iowa State University Of Science and Technology Ames, Iowa 1963 11 TABLE OF CONTENTS Page PART I. REACTIONS OF RADICALS WITH METAL SALTS. ... 1 INTRODUCTION 2 REVIEW OF LITERATURE 3 RESULTS AND DISCUSSION 17 EXPERIMENTAL 54 Chemicals 54 Apparatus and Procedure 66 Reactions of compounds with the 2-cyano-2-propyl radical 66 Reactions of compounds with the phenyl radical 67 Procedure for Sandmeyer type reaction.
    [Show full text]
  • The Bromine Doping of Polyacetylene C.K
    Available online at www.sciencedirect.com Physica A 321 (2003) 139–151 www.elsevier.com/locate/physa The bromine doping of polyacetylene C.K. Chiang Polymers Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8541, USA Abstract The original experiment of the bromine dopingof polyacetylene performedby Chiang andShi- rakawa is described. This simple, seminal experiment impacted physics and chemistry through the discovery of metallic conducting synthetic organic polymers and the veriÿcation and demonstra- tion of the doping concept in organic polymers. Although the molecular formula of polyacetylene is simple, this molecule exhibits complex behavior andfueling signiÿcant work not only in poly- mer science, but also in quantum physics. The soliton theories usedto describepolyacetylene’s simple but unique 1-D structure inspiredmany new quantum concepts for more complicated conducting polymers. The continuing study of model complex conducting polymers could lead to a better understanding of quantum electronic devices at the molecular level. c 2002 Elsevier Science B.V. All rights reserved. PACS: 72.82.Le; 82.35.Cd; 31.25 Keywords: Polyacetylene; Doping; Bromine; Chemistry Nobel Prize; Conducting polymer; 1-D conductor 1. Introduction The Nobel Prize in Chemistry 2000 was awarded to Alan J. Heeger, Alan G. Mac- DiarmidandHidekiShirakawa for their “Discovery andDevelopment of Conducting Polymers” [1–4]. In their Nobel lectures, the Laureates summarized over three decades of research. The ÿrst lecture given by Shirakawa, described his work on the devel- opment of polyacetylene chemistry. He ended his lecture with a story of the bromine doping of polyacetylene experiment [5]. Next, MacDiarmiddiscussedthechemistry of conducting polymers and recent development in plastic electronics [6].
    [Show full text]
  • Magnetic Properties of Polyacetylene Composites H
    MAGNETIC PROPERTIES OF POLYACETYLENE COMPOSITES H. Thomann, L. Dalton, M. Galvin, G. Wnek, Y. Tomkiewicz To cite this version: H. Thomann, L. Dalton, M. Galvin, G. Wnek, Y. Tomkiewicz. MAGNETIC PROPERTIES OF POLYACETYLENE COMPOSITES. Journal de Physique Colloques, 1983, 44 (C3), pp.C3-313-C3- 316. 10.1051/jphyscol:1983361. jpa-00222713 HAL Id: jpa-00222713 https://hal.archives-ouvertes.fr/jpa-00222713 Submitted on 1 Jan 1983 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE Colloque C3, supplément au n°6, Tome 44, juin 1983 page C3-313 MAGNETIC PROPERTIES OF POLYACETYLENE COMPOSITES H. Thomaim*, L.R. Dalton*, M.E. Galvin**, G.E. Wnek**and Y. Tomkiewiez*** *Dept. of Chemistry, Univ. of Southern California, Los Angeles, CA 90089-0482, U.S.A. **Dept. of Materials Science and Engineering, M.I.T., Cambridge, MA 02139, U.S.A. ***IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, U.S.A. Résumé - Des composites du polyéthylène basse densité, LDPE, et du trans-polyacétylène, t-(CH)x, préparés par polymérisation de l'acé­ tylène dans des films de LDPE imprégnés de catalyseur Ziegler-Natta, ont été étudiés par double résonance (ENDOR) et échos de spins élec­ troniques (ESE) et les résultats ont été comparés avec ceux obtenus dans les mêmes conditions sur des films de trans-polyacétylène.
    [Show full text]
  • Hydrogen Abstractions from Arylmethanes
    AN ABSTRACT OF THE THESIS OF JERRY DEAN UNRUH for the DOCTOR OF PHILOSOPHY (Name) (Degree) in ORGANIC CHEMISTRY presented on ttr:e-( /9 2 O (Major) Title: HYDROGEN ABSTP ArTTnNs FROM ARV! ,TviWTHANES Redacted for Privacy Abstract approved: Dr. 'Gerald Jay Gleicher The relative rates of hydrogen abstraction from a series of 13 arylmethanes by the trichloromethyl radical were determined at 700. The attacking radical was generated from bromotrichloromethane us ing benzoyl peroxide as the initiator.The solvent was benzene- bromotrichloromethane. An excellent correlation, with a coefficient of 0.977, was obtained when the logs of the relative rates of hydrogen abstraction were plotted against the change in pi-binding energy be- tween the incipient radicals and the arylmethanes, if the pi-binding energy were calculated by the SCF approach. When the logs of the kinetic data were correlated with the change in pi-binding energy as calculated by the HMO approach, the correlation was poor, with a co- efficient of 0.855. A possible explanation for this difference might be the HZIckel method's complete neglect of electron interactions. The kinetic data were also plotted against the values of a param- eter,Z1E-3,which are indicative of the ground state electronic environment of the methyl group. A correlation was essentially non- existent.This, coupled with the excellent correlation with the changes in pi-binding energies, indicates that the transition state for hydrogen abstraction by the trichloromethyl radical must certainly lie near the intermediate radical with carbon-hydrogen bond breaking well advanced. The relative rates of hydrogen abstraction from a series of nine arylmethanes by the t-butoxy radical were also determined at 70o.
    [Show full text]
  • Alan J. Heeger
    380 SEMICONDUCTING AND METALLIC POLYMERS: THE FOURTH GENERATION OF POLYMERIC MATERIALS Nobel Lecture, December 8, 2000 by ALAN J. HEEGER Department of Physics, Materials Department, Institute for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93106, USA. I. INTRODUCTION In 1976, Alan MacDiarmid, Hideki Shirakawa and I, together with a talented group of graduate students and post-doctoral researchers discovered con­ ducting polymers and the ability to dope these polymers over the full range from insulator to metal [1,2). This was particularly exciting because it created a new field of research on the boundary between chemistry and condensed matter physics, and because it created a number of opportunities: Conducting polymers opened the way to progress in understanding the fun­ damental chemistry and physics of n:-bonded macromolecules; Conducting polymers provided an opportunity to address questions which had been of fundamental interest to quantum chemistry for decades: Is there bond alternation in long chain polyenes? What is the relative importance of the electron-elecron and the electron­ lattice interactions in n:-bonded macromolecules? Conducting polymers provided an opportunity to address fundamental issues of importance to condensed matter physics as well, including, for example, the metal-insulator transition as envisioned by Neville Mott and Philip Anderson and the instability of one-dimensional metals discovered by Ru­ dolph Peierls ( the "Peierls Instability"). Finally - and perhaps most important - conducting polymers offered the promise of achieving a new generation of polymers: Materials which exhibit the electrical and optical properties of metals or semiconductors and which retain the attractive mechanical properties and processing advantages of polymers.
    [Show full text]
  • Sensors and Sensor Arrays Based on Conjugated Polymers and Carbon Nanotubes*
    Pure Appl. Chem., Vol. 74, No. 9, pp. 1753–1772, 2002. © 2002 IUPAC Sensors and sensor arrays based on conjugated polymers and carbon nanotubes* Liming Dai‡, Prabhu Soundarrajan, and Taehyung Kim Department of Polymer Engineering, College of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44304-2909, USA Abstract: The need for cheaper, faster, and more accurate measurements has been a driving force for the development of new sensing devices. As is well known, the electrical conduc- tivity of conjugated polymers can be reliably regulated over a wide range through interac- tions with electron acceptors and donors. This, together with the fast optical dynamics (either in the ground or excited states) of most conjugated polymers, has made conjugated polymers very attractive as transducer-active materials. On the other hand, the unusual electronic, mechanical, and thermal properties of carbon nanotubes have also led to their potential use in a wide range of devices, including sensors. In particular, the ability of carbon nanotubes and their derivatives to operate as gas and glucose sensors has been recently demonstrated. This article provides a status review on the research and development of sensors and sensor arrays based on conjugated polymers and carbon nanotubes. The unique features character- istic of most reported sensing transduction modes related to conjugated polymers and carbon nanotubes are discussed, along with their pros and cons. INTRODUCTION Measurement represents one of the oldest methods used by human beings to better understand and con- trol the world. Chemical and biological sensors (or biosensors) are the evolved products of physical measurement technologies.
    [Show full text]