Instructions for Preparing LREC 2016 Proceedings
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Talk Bank: a Multimodal Database of Communicative Interaction
Talk Bank: A Multimodal Database of Communicative Interaction 1. Overview The ongoing growth in computer power and connectivity has led to dramatic changes in the methodology of science and engineering. By stimulating fundamental theoretical discoveries in the analysis of semistructured data, we can to extend these methodological advances to the social and behavioral sciences. Specifically, we propose the construction of a major new tool for the social sciences, called TalkBank. The goal of TalkBank is the creation of a distributed, web- based data archiving system for transcribed video and audio data on communicative interactions. We will develop an XML-based annotation framework called Codon to serve as the formal specification for data in TalkBank. Tools will be created for the entry of new and existing data into the Codon format; transcriptions will be linked to speech and video; and there will be extensive support for collaborative commentary from competing perspectives. The TalkBank project will establish a framework that will facilitate the development of a distributed system of allied databases based on a common set of computational tools. Instead of attempting to impose a single uniform standard for coding and annotation, we will promote annotational pluralism within the framework of the abstraction layer provided by Codon. This representation will use labeled acyclic digraphs to support translation between the various annotation systems required for specific sub-disciplines. There will be no attempt to promote any single annotation scheme over others. Instead, by promoting comparison and translation between schemes, we will allow individual users to select the custom annotation scheme most appropriate for their purposes. -
MASC: the Manually Annotated Sub-Corpus of American English
MASC: The Manually Annotated Sub-Corpus of American English Nancy Ide*, Collin Baker**, Christiane Fellbaum†, Charles Fillmore**, Rebecca Passonneau†† *Vassar College Poughkeepsie, New York USA **International Computer Science Institute Berkeley, California USA †Princeton University Princeton, New Jersey USA ††Columbia University New York, New York USA E-mail: [email protected], [email protected], [email protected], [email protected], [email protected] Abstract To answer the critical need for sharable, reusable annotated resources with rich linguistic annotations, we are developing a Manually Annotated Sub-Corpus (MASC) including texts from diverse genres and manual annotations or manually-validated annotations for multiple levels, including WordNet senses and FrameNet frames and frame elements, both of which have become significant resources in the international computational linguistics community. To derive maximal benefit from the semantic information provided by these resources, the MASC will also include manually-validated shallow parses and named entities, which will enable linking WordNet senses and FrameNet frames within the same sentences into more complex semantic structures and, because named entities will often be the role fillers of FrameNet frames, enrich the semantic and pragmatic information derivable from the sub-corpus. All MASC annotations will be published with detailed inter-annotator agreement measures. The MASC and its annotations will be freely downloadable from the ANC website, thus providing -
Multilingvální Systémy Rozpoznávání Řeči a Jejich Efektivní Učení
Multilingvální systémy rozpoznávání řeči a jejich efektivní učení Disertační práce Studijní program: P2612 – Elektrotechnika a informatika Studijní obor: 2612V045 – Technická kybernetika Autor práce: Ing. Radek Šafařík Vedoucí práce: prof. Ing. Jan Nouza, CSc. Liberec 2020 Multilingual speech recognition systems and their effective learning Dissertation Study programme: P2612 – Electrotechnics and informatics Study branch: 2612V045 – Technical cybernetics Author: Ing. Radek Šafařík Supervisor: prof. Ing. Jan Nouza, CSc. Liberec 2020 Prohlášení Byl jsem seznámen s tím, že na mou disertační práci se plně vztahu- je zákon č. 121/2000 Sb., o právu autorském, zejména § 60 – školní dílo. Beru na vědomí, že Technická univerzita v Liberci (TUL) nezasahu- je do mých autorských práv užitím mé disertační práce pro vnitřní potřebu TUL. Užiji-li disertační práci nebo poskytnu-li licenci k jejímu využi- tí, jsem si vědom povinnosti informovat o této skutečnosti TUL; v tomto případě má TUL právo ode mne požadovat úhradu nákla- dů, které vynaložila na vytvoření díla, až do jejich skutečné výše. Disertační práci jsem vypracoval samostatně s použitím uvedené literatury a na základě konzultací s vedoucím mé disertační práce a konzultantem. Současně čestně prohlašuji, že texty tištěné verze práce a elektro- nické verze práce vložené do IS STAG se shodují. 1. 12. 2020 Ing. Radek Šafařík Abstract The diseratation thesis deals with creation of automatic speech recognition systems (ASR) and with effective adaptation of already existing system to a new language. Today’s ASR systems have modular stucture where individual moduls can be consi- dered as language dependent or independent. The main goal of this thesis is research and development of methods that automate and make the development of language dependent modules effective as much as possible using free available data fromthe internet, machine learning methods and similarities between langages. -
Here ACL Makes a Return to Asia!
Handbook Production: Jung-jae Kim, Nanyang Technological University, Singapore Message from the General Chair Welcome to Jeju Island — where ACL makes a return to Asia! As General Chair, I am indeed honored to pen the first words of ACL 2012 proceedings. In the past year, research in computational linguistics has con- tinued to thrive across Asia and all over the world. On this occasion, I share with you the excitement of our community as we gather again at our annual meeting. On behalf of the organizingteam, it is my great pleasure to welcome you to Jeju Island and ACL 2012. In 2012, ACL turns 50. I feel privileged to chair the conference that marks such an important milestone for our community. We have prepared special programs to commemorate the 50th anniversary, including ‘Rediscovering 50 Years of Discovery’, a main conference workshop chaired by Rafael Banchs with a program on ‘the People, the Contents, and the Anthology’, which rec- ollects some of the great moments in ACL history, and ‘ACL 50th Anniver- sary Lectures’ by Mark Johnson, Aravind K. Joshi and a Lifetime Achieve- ment Award Recipient. A large number of people have worked hard to bring this annual meeting to fruition. It has been an unforgettable experience for everyone involved. My deepest thanks go to the authors, reviewers, volunteers, participants, and all members and chairs of the organizing committees. It is your participation that makes a difference. Program Chairs, Chin-Yew Lin and Miles Osborne, deserve our gratitude for putting an immense amount of work to ensure that each of the 940 sub- missions was taken care of. -
Multimedia Corpora (Media Encoding and Annotation) (Thomas Schmidt, Kjell Elenius, Paul Trilsbeek)
Multimedia Corpora (Media encoding and annotation) (Thomas Schmidt, Kjell Elenius, Paul Trilsbeek) Draft submitted to CLARIN WG 5.7. as input to CLARIN deliverable D5.C3 “Interoperability and Standards” [http://www.clarin.eu/system/files/clarindeliverableD5C3_v1_5finaldraft.pdf] Table of Contents 1 General distinctions / terminology................................................................................................................................... 1 1.1 Different types of multimedia corpora: spoken language vs. speech vs. phonetic vs. multimodal corpora vs. sign language corpora......................................................................................................................................................... 1 1.2 Media encoding vs. Media annotation................................................................................................................... 3 1.3 Data models/file formats vs. Transcription systems/conventions.......................................................................... 3 1.4 Transcription vs. Annotation / Coding vs. Metadata ............................................................................................. 3 2 Media encoding ............................................................................................................................................................... 5 2.1 Audio encoding ..................................................................................................................................................... 5 2.2 -
Background and Context for CLASP
Background and Context for CLASP Nancy Ide, Vassar College The Situation Standards efforts have been on-going for over 20 years Interest and activity mainly in Europe in 90’s and early 2000’s Text Encoding Initiative (TEI) – 1987 Still ongoing, used mainly by humanities EAGLES/ISLE Developed standards for morpho-syntax, syntax, sub-categorization, etc. (links on CLASP wiki) Corpus Encoding Standard (now XCES - http://www.xces.org) Main Aspects" ! Harmonization of formats for linguistic data and annotations" ! Harmonization of descriptors in linguistic annotation" ! These two are often mixed, but need to deal with them separately (see CLASP wiki)" Formats: The Past 20 Years" 1987 TEI Myriad of formats 1994 MULTEXT, CES ~1996 XML 2000 ISO TC37 SC4 2001 LAF model introduced now LAF/GrAF, ISO standards Myriad of formats Actually…" ! Things are better now" ! XML use" ! Moves toward common models, especially in Europe" ! US community seeing the need for interoperability " ! Emergence of common processing platforms (GATE, UIMA) with underlying common models " Resources 1990 ! WordNet gains ground as a “standard” LR ! Penn Treebank, Wall Street Journal Corpus World Wide Web ! British National Corpus ! EuroWordNet XML ! Comlex ! FrameNet ! American National Corpus Semantic Web ! Global WordNet ! More FrameNets ! SUMO ! VerbNet ! PropBank, NomBank ! MASC present NLP software 1994 ! MULTEXT > LT tools, LT XML 1995 ! GATE (Sheffield) 1996 1998 ! Alembic Workbench ! ATLAS (NIST) 2003 ! What happened to this? 200? ! Callisto ! UIMA Now: GATE -
Informatics 1: Data & Analysis
Informatics 1: Data & Analysis Lecture 12: Corpora Ian Stark School of Informatics The University of Edinburgh Friday 27 February 2015 Semester 2 Week 6 http://www.inf.ed.ac.uk/teaching/courses/inf1/da Student Survey Final Day ! ESES: The Edinburgh Student Experience Survey http://www.ed.ac.uk/students/surveys Please log on to MyEd before 1 March to complete the survey. Help guide what we do at the University of Edinburgh, improving your future experience here and that of the students to follow. Ian Stark Inf1-DA / Lecture 12 2015-02-27 Lecture Plan XML We start with technologies for modelling and querying semistructured data. Semistructured Data: Trees and XML Schemas for structuring XML Navigating and querying XML with XPath Corpora One particular kind of semistructured data is large bodies of written or spoken text: each one a corpus, plural corpora. Corpora: What they are and how to build them Applications: corpus analysis and data extraction Ian Stark Inf1-DA / Lecture 12 2015-02-27 Homework ! Tutorial Exercises Tutorial 5 exercises went online earlier this week. In these you use the xmllint command-line tool to check XML validity and run your own XPath queries. Reading T. McEnery and A. Wilson. Corpus Linguistics. Second edition, Edinburgh University Press, 2001. Chapter 2: What is a corpus and what is in it? (§2.2.2 optional) Photocopied handout, also available from the ITO. Ian Stark Inf1-DA / Lecture 12 2015-02-27 Remote Access to DICE ! Much coursework can be done on your own machines, but sometimes it’s important to be able to connect to and use DICE systems. -
The Workshop Programme
The Workshop Programme Monday, May 26 14:30 -15:00 Opening Nancy Ide and Adam Meyers 15:00 -15:30 SIGANN Shared Corpus Working Group Report Adam Meyers 15:30 -16:00 Discussion: SIGANN Shared Corpus Task 16:00 -16:30 Coffee break 16:30 -17:00 Towards Best Practices for Linguistic Annotation Nancy Ide, Sameer Pradhan, Keith Suderman 17:00 -18:00 Discussion: Annotation Best Practices 18:00 -19:00 Open Discussion and SIGANN Planning Tuesday, May 27 09:00 -09:10 Opening Nancy Ide and Adam Meyers 09:10 -09:50 From structure to interpretation: A double-layered annotation for event factuality Roser Saurí and James Pustejovsky 09:50 -10:30 An Extensible Compositional Semantics for Temporal Annotation Harry Bunt, Chwhynny Overbeeke 10:30 -11:00 Coffee break 11:00 -11:40 Using Treebank, Dictionaries and GLARF to Improve NomBank Annotation Adam Meyers 11:40 -12:20 A Dictionary-based Model for Morpho-Syntactic Annotation Cvetana Krstev, Svetla Koeva, Du!ko Vitas 12:20 -12:40 Multiple Purpose Annotation using SLAT - Segment and Link-based Annotation Tool (DEMO) Masaki Noguchi, Kenta Miyoshi, Takenobu Tokunaga, Ryu Iida, Mamoru Komachi, Kentaro Inui 12:40 -14:30 Lunch 14:30 -15:10 Using inheritance and coreness sets to improve a verb lexicon harvested from FrameNet Mark McConville and Myroslava O. Dzikovska 15:10 -15:50 An Entailment-based Approach to Semantic Role Annotation Voula Gotsoulia 16:00 -16:30 Coffee break 16:30 -16:50 A French Corpus Annotated for Multiword Expressions with Adverbial Function Eric Laporte, Takuya Nakamura, Stavroula Voyatzi -
The Expanding Horizons of Corpus Analysis
The expanding horizons of corpus analysis Brian MacWhinney Carnegie Mellon University Abstract By including a focus on multimedia interactions linked to transcripts, corpus linguistics can vastly expand its horizons. This expansion will rely on two continuing developments. First, we need to develop easily used methods for each of the ten analytic methods we have examined, including lexical analyses, QDA (qualitative data analysis), automatic tagging, language profiles, group comparisons, change scores, error analysis, feedback studies, conversation analysis, and modeling. Second, we need to work together to construct a unified database for language studies and related sciences. This database must be grounded on the principles of open access, data-sharing, interoperability, and integrated structure. It must provide powerful tools for searching, multilinguality, and multimedia analysis. If we can build this infrastructure, we will be able to explore more deeply the key questions underlying the structure and functioning of language, as it emerges from the intermeshing of processes operative on eight major timeframes. 1. Introduction Corpus linguistics has benefitted greatly from continuing advances in computer and Internet hardware and software. These advances have made it possible to develop facilities such as BNCweb (bncweb.lancs.ac.uk), LDC (Linguistic Data Consortium) online, the American National Corpus (americannationalcorpus. org), TalkBank (talkbank.org), and CHILDES (childes.psy.cmu.edu). In earlier periods, these corpora were limited to written and transcribed materials. However, most newer corpora now include transcripts linked to either audio or video recordings. The development of this newer corpus methodology is facilitated by technology which makes it easy to produce high-quality video recordings of face-to-face interactions. -
The 2Nd Workshop on Arabic Corpora and Processing Tools 2016 Theme: Social Media Workshop Programme
The 2nd Workshop on Arabic Corpora and Processing Tools 2016 Theme: Social Media Workshop Programme Date 24 May 2016 09:00 – 09:20 – Welcome and Introduction by Workshop Chairs 09:20 – 10:30 – Session 1 (Keynote speech) Nizar Habash, Computational Processing of Arabic Dialects: Challenges, Advances and Future Directions 10:30 – 11:00 Coffee break 10:30 – 13:00 – Session 2 Soumia Bougrine, Hadda Cherroun, Djelloul Ziadi, Abdallah Lakhdari and Aicha Chorana, Toward a rich Arabic Speech Parallel Corpus for Algerian sub-Dialects Maha Alamri and William John Teahan, Towards a New Arabic Corpus of Dyslexic Texts Ossama Obeid, Houda Bouamor, Wajdi Zaghouani, Mahmoud Ghoneim, Abdelati Hawwari, Mona Diab and Kemal Oflazer, MANDIAC: A Web-based Annotation System For Manual Arabic Diacritization Wajdi Zaghouani and Dana Awad, Toward an Arabic Punctuated Corpus: Annotation Guidelines and Evaluation Muhammad Abdul-Mageed, Hassan Alhuzali, Dua'a Abu-Elhij'a and Mona Diab, DINA: A Multi-Dialect Dataset for Arabic Emotion Analysis Nora Al-Twairesh, Mawaheb Al-Tuwaijri, Afnan Al-Moammar and Sarah Al-Humoud, Arabic Spam Detection in Twitter Editors Hend Al-Khalifa King Saud University, KSA King Abdul Aziz City for Science and Abdulmohsen Al-Thubaity Technology, KSA Walid Magdy Qatar Computing Research Institute, Qatar Kareem Darwish Qatar Computing Research Institute, Qatar Organizing Committee Hend Al-Khalifa King Saud University, KSA King Abdul Aziz City for Science and Abdulmohsen Al-Thubaity Technology, KSA Walid Magdy Qatar Computing Research Institute, -
Exploring Phone Recognition in Pre-Verbal and Dysarthric Speech
Exploring Phone Recognition in Pre-verbal and Dysarthric Speech Syed Sameer Arshad A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science University of Washington 2019 Committee: Gina-Anne Levow Gašper Beguš Program Authorized to Offer Degree: Department of Linguistics 1 ©Copyright 2019 Syed Sameer Arshad 2 University of Washington Abstract Exploring Phone Recognition in Pre-verbal and Dysarthric Speech Chair of the Supervisory Committee: Dr. Gina-Anne Levow Department of Linguistics In this study, we perform phone recognition on speech utterances made by two groups of people: adults who have speech articulation disorders and young children learning to speak language. We explore how these utterances compare against those of adult English-speakers who don’t have speech disorders, training and testing several HMM-based phone-recognizers across various datasets. Experiments were carried out via the HTK Toolkit with the use of data from three publicly available datasets: the TIMIT corpus, the TalkBank CHILDES database and the Torgo corpus. Several discoveries were made towards identifying best-practices for phone recognition on the two subject groups, involving the use of optimized Vocal Tract Length Normalization (VTLN) configurations, phone-set reconfiguration criteria, specific configurations of extracted MFCC speech data and specific arrangements of HMM states and Gaussian mixture models. 3 Preface The work in this thesis is inspired by my life experiences in raising my nephew, Syed Taabish Ahmad. He was born in May 2000 and was diagnosed with non-verbal autism as well as apraxia-of-speech. His speech articulation has been severely impacted as a result, leading to his speech production to be sequences of babbles. -
Jira: a Kurdish Speech Recognition System Designing and Building Speech Corpus and Pronunciation Lexicon
Jira: a Kurdish Speech Recognition System Designing and Building Speech Corpus and Pronunciation Lexicon Hadi Veisi* Hawre Hosseini Mohammad MohammadAmini University of Tehran, Ryerson University, Avignon University, Faculty of New Sciences and Electrical and Computer Engineering Laboratoire Informatique d’Avignon (LIA) Technologies [email protected] mohammad.mohammadamini@univ- [email protected] avignon.fr Wirya Fathy Aso Mahmudi University of Tehran, University of Tehran, Faculty of New Sciences and Faculty of New Sciences and Technologies Technologies [email protected] [email protected] Abstract: In this paper, we introduce the first large vocabulary speech recognition system (LVSR) for the Central Kurdish language, named Jira. The Kurdish language is an Indo-European language spoken by more than 30 million people in several countries, but due to the lack of speech and text resources, there is no speech recognition system for this language. To fill this gap, we introduce the first speech corpus and pronunciation lexicon for the Kurdish language. Regarding speech corpus, we designed a sentence collection in which the ratio of di-phones in the collection resembles the real data of the Central Kurdish language. The designed sentences are uttered by 576 speakers in a controlled environment with noise-free microphones (called AsoSoft Speech-Office) and in Telegram social network environment using mobile phones (denoted as AsoSoft Speech-Crowdsourcing), resulted in 43.68 hours of speech. Besides, a test set including 11 different document topics is designed and recorded in two corresponding speech conditions (i.e., Office and Crowdsourcing). Furthermore, a 60K pronunciation lexicon is prepared in this research in which we faced several challenges and proposed solutions for them.