Extraction of Displacements Between Mesh and Basemesh
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Texture Mapping Textures Provide Details Makes Graphics Pretty
Texture Mapping Textures Provide Details Makes Graphics Pretty • Details creates immersion • Immersion creates fun Basic Idea Paint pictures on all of your polygons • adds color data • adds (fake) geometric and texture detail one of the basic graphics techniques • tons of hardware support Texture Mapping • Map between region of plane and arbitrary surface • Ensure “right things” happen as textured polygon is rendered and transformed Parametric Texture Mapping • Texture size and orientation tied to polygon • Texture can modulate diffuse color, specular color, specular exponent, etc • Separation of “texture space” from “screen space” • UV coordinates of range [0…1] Retrieving Texel Color • Compute pixel (u,v) using barycentric interpolation • Look up texture pixel (texel) • Copy color to pixel • Apply shading How to Parameterize? Classic problem: How to parameterize the earth (sphere)? Very practical, important problem in Middle Ages… Latitude & Longitude Distorts areas and angles Planar Projection Covers only half of the earth Distorts areas and angles Stereographic Projection Distorts areas Albers Projection Preserves areas, distorts aspect ratio Fuller Parameterization No Free Lunch Every parameterization of the earth either: • distorts areas • distorts distances • distorts angles Good Parameterizations • Low area distortion • Low angle distortion • No obvious seams • One piece • How do we achieve this? Planar Parameterization Project surface onto plane • quite useful in practice • only partial coverage • bad distortion when normals perpendicular Planar Parameterization In practice: combine multiple views Cube Map/Skybox Cube Map Textures • 6 2D images arranged like faces of a cube • +X, -X, +Y, -Y, +Z, -Z • Index by unnormalized vector Cube Map vs Skybox skybox background Cube maps map reflections to emulate reflective surface (e.g. -
Autodesk Entertainment Creation Suite
Autodesk Entertainment Creation Suite Top Reasons to Buy and Upgrade Access the power of the industry’s top 3D modeling and animation technology in one unbeatable software suite. Autodesk® Entertainment Creation Suite Options: Autodesk® Maya® Autodesk® 3ds Max® Entertainment Creation Suite 2010 includes: Entertainment Creation Suite 2010 includes: • Autodesk® Maya® 2010 software • Autodesk® 3ds Max® 2010 • Autodesk® MotionBuilder® 2010 software • Autodesk® MotionBuilder® 2010 software • Autodesk® Mudbox™ 2010 software • Autodesk® Mudbox™ 2010 software Comprehensive Creative Toolsets The Autodesk Entertainment Creation Suite offers an expansive range of artist-driven tools designed to handle tough production challenges. With a choice of either Autodesk Maya 2010 software or Autodesk 3ds Max 2010 software, you have access to award-winning, 3D software for modeling, animation, rendering, and effects. The Suite also includes Autodesk Mudbox 2010 software, allowing you to quickly and intuitively sculpt highly detailed models; and Autodesk MotionBuilder 2010 software, to quickly and efficiently create, manipulate and process massive amounts of animation data. The complementary toolsets of the Suite help you to achieve higher quality results more efficiently and more cost-effectively. Real-Time Performance with MotionBuilder The addition of MotionBuilder to a Maya or 3ds Max pipeline helps increase production efficiency, and produce higher quality results when developing projects requiring high-volume character animation. With its real-time 3D engine and dedicated toolsets for character rigging, nonlinear animation editing, motion-capture data manipulation, and interactive dynamics, MotionBuilder is an ideal, complementary toolset to Maya or 3ds Max, forming a unified Image courtesy of Wang Xiaoyu. end-to-end animation solution. Digital Sculpting and Texture Painting with Mudbox Designed by professional artists in the film, games and design industries, Mudbox software gives 3D modelers and texture artists the freedom to create without worrying about technical details. -
Texture / Image-Based Rendering Texture Maps
Texture / Image-Based Rendering Texture maps Surface color and transparency Environment and irradiance maps Reflectance maps Shadow maps Displacement and bump maps Level of detail hierarchy CS348B Lecture 12 Pat Hanrahan, Spring 2005 Texture Maps How is texture mapped to the surface? Dimensionality: 1D, 2D, 3D Texture coordinates (s,t) Surface parameters (u,v) Direction vectors: reflection R, normal N, halfway H Projection: cylinder Developable surface: polyhedral net Reparameterize a surface: old-fashion model decal What does texture control? Surface color and opacity Illumination functions: environment maps, shadow maps Reflection functions: reflectance maps Geometry: bump and displacement maps CS348B Lecture 12 Pat Hanrahan, Spring 2005 Page 1 Classic History Catmull/Williams 1974 - basic idea Blinn and Newell 1976 - basic idea, reflection maps Blinn 1978 - bump mapping Williams 1978, Reeves et al. 1987 - shadow maps Smith 1980, Heckbert 1983 - texture mapped polygons Williams 1983 - mipmaps Miller and Hoffman 1984 - illumination and reflectance Perlin 1985, Peachey 1985 - solid textures Greene 1986 - environment maps/world projections Akeley 1993 - Reality Engine Light Field BTF CS348B Lecture 12 Pat Hanrahan, Spring 2005 Texture Mapping ++ == 3D Mesh 2D Texture 2D Image CS348B Lecture 12 Pat Hanrahan, Spring 2005 Page 2 Surface Color and Transparency Tom Porter’s Bowling Pin Source: RenderMan Companion, Pls. 12 & 13 CS348B Lecture 12 Pat Hanrahan, Spring 2005 Reflection Maps Blinn and Newell, 1976 CS348B Lecture 12 Pat Hanrahan, Spring 2005 Page 3 Gazing Ball Miller and Hoffman, 1984 Photograph of mirror ball Maps all directions to a to circle Resolution function of orientation Reflection indexed by normal CS348B Lecture 12 Pat Hanrahan, Spring 2005 Environment Maps Interface, Chou and Williams (ca. -
AWE Surface 1.2 Documentation
AWE Surface 1.2 Documentation AWE Surface is a new, robust, highly optimized, physically plausible shader for DAZ Studio and 3Delight employing physically based rendering (PBR) metalness / roughness workflow. Using a primarily uber shader approach, it can be used to render materials such as dielectrics, glass and metal. Features Highlight Physically based BRDF (Oren Nayar for diffuse, Cook Torrance, Ashikhmin Shirley and GGX for specular). Micro facet energy loss compensation for the diffuse and transmission lobe. Transmission with Beer-Lambert based absorption. BRDF based importance sampling. Multiple importance sampling (MIS) with 3delight's path traced area light shaders such as the aweAreaPT shader. Explicit Russian Roulette for next event estimation and path termination. Raytraced subsurface scattering with forward/backward scattering via Henyey Greenstein phase function. Physically based Fresnel for both dielectric and metal materials. Unified index of refraction value for both reflection and transmission with dielectrics. An artist friendly metallic Fresnel based on Ole Gulbrandsen model using reflection color and edge tint to derive complex IOR. Physically based thin film interference (iridescence). Shader based, global illumination. Luminance based, Reinhard tone mapping with exposure, temperature and saturation controls. Toggle switches for each lobe. Diffuse Oren Nayar based translucency with support for bleed through shadows. Can use separate front/back side diffuse color and texture. Two specular/reflection lobes for the base, one specular/reflection lobe for coat. Anisotropic specular and reflection (only with Ashikhmin Shirley and GGX BRDF), with map- controllable direction. Glossy Fresnel with explicit roughness values, one for the base and one for the coat layer. Optimized opacity handling with user controllable thresholds. -
Multimedia Systems DCAP303
Multimedia Systems DCAP303 MULTIMEDIA SYSTEMS Copyright © 2013 Rajneesh Agrawal All rights reserved Produced & Printed by EXCEL BOOKS PRIVATE LIMITED A-45, Naraina, Phase-I, New Delhi-110028 for Lovely Professional University Phagwara CONTENTS Unit 1: Multimedia 1 Unit 2: Text 15 Unit 3: Sound 38 Unit 4: Image 60 Unit 5: Video 102 Unit 6: Hardware 130 Unit 7: Multimedia Software Tools 165 Unit 8: Fundamental of Animations 178 Unit 9: Working with Animation 197 Unit 10: 3D Modelling and Animation Tools 213 Unit 11: Compression 233 Unit 12: Image Format 247 Unit 13: Multimedia Tools for WWW 266 Unit 14: Designing for World Wide Web 279 SYLLABUS Multimedia Systems Objectives: To impart the skills needed to develop multimedia applications. Students will learn: z how to combine different media on a web application, z various audio and video formats, z multimedia software tools that helps in developing multimedia application. Sr. No. Topics 1. Multimedia: Meaning and its usage, Stages of a Multimedia Project & Multimedia Skills required in a team 2. Text: Fonts & Faces, Using Text in Multimedia, Font Editing & Design Tools, Hypermedia & Hypertext. 3. Sound: Multimedia System Sounds, Digital Audio, MIDI Audio, Audio File Formats, MIDI vs Digital Audio, Audio CD Playback. Audio Recording. Voice Recognition & Response. 4. Images: Still Images – Bitmaps, Vector Drawing, 3D Drawing & rendering, Natural Light & Colors, Computerized Colors, Color Palletes, Image File Formats, Macintosh & Windows Formats, Cross – Platform format. 5. Animation: Principle of Animations. Animation Techniques, Animation File Formats. 6. Video: How Video Works, Broadcast Video Standards: NTSC, PAL, SECAM, ATSC DTV, Analog Video, Digital Video, Digital Video Standards – ATSC, DVB, ISDB, Video recording & Shooting Videos, Video Editing, Optimizing Video files for CD-ROM, Digital display standards. -
Real-Time Rendering Techniques with Hardware Tessellation
Volume 34 (2015), Number x pp. 0–24 COMPUTER GRAPHICS forum Real-time Rendering Techniques with Hardware Tessellation M. Nießner1 and B. Keinert2 and M. Fisher1 and M. Stamminger2 and C. Loop3 and H. Schäfer2 1Stanford University 2University of Erlangen-Nuremberg 3Microsoft Research Abstract Graphics hardware has been progressively optimized to render more triangles with increasingly flexible shading. For highly detailed geometry, interactive applications restricted themselves to performing transforms on fixed geometry, since they could not incur the cost required to generate and transfer smooth or displaced geometry to the GPU at render time. As a result of recent advances in graphics hardware, in particular the GPU tessellation unit, complex geometry can now be generated on-the-fly within the GPU’s rendering pipeline. This has enabled the generation and displacement of smooth parametric surfaces in real-time applications. However, many well- established approaches in offline rendering are not directly transferable due to the limited tessellation patterns or the parallel execution model of the tessellation stage. In this survey, we provide an overview of recent work and challenges in this topic by summarizing, discussing, and comparing methods for the rendering of smooth and highly-detailed surfaces in real-time. 1. Introduction Hardware tessellation has attained widespread use in computer games for displaying highly-detailed, possibly an- Graphics hardware originated with the goal of efficiently imated, objects. In the animation industry, where displaced rendering geometric surfaces. GPUs achieve high perfor- subdivision surfaces are the typical modeling and rendering mance by using a pipeline where large components are per- primitive, hardware tessellation has also been identified as a formed independently and in parallel. -
Deconstructing Hardware Usage for General Purpose Computation on Gpus
Deconstructing Hardware Usage for General Purpose Computation on GPUs Budyanto Himawan Manish Vachharajani Dept. of Computer Science Dept. of Electrical and Computer Engineering University of Colorado University of Colorado Boulder, CO 80309 Boulder, CO 80309 E-mail: {Budyanto.Himawan,manishv}@colorado.edu Abstract performance, in 2001, NVidia revolutionized the GPU by making it highly programmable [3]. Since then, the programmability of The high-programmability and numerous compute resources GPUs has steadily increased, although they are still not fully gen- on Graphics Processing Units (GPUs) have allowed researchers eral purpose. Since this time, there has been much research and ef- to dramatically accelerate many non-graphics applications. This fort in porting both graphics and non-graphics applications to use initial success has generated great interest in mapping applica- the parallelism inherent in GPUs. Much of this work has focused tions to GPUs. Accordingly, several works have focused on help- on presenting application developers with information on how to ing application developers rewrite their application kernels for the perform the non-trivial mapping of general purpose concepts to explicitly parallel but restricted GPU programming model. How- GPU hardware so that there is a good fit between the algorithm ever, there has been far less work that examines how these appli- and the GPU pipeline. cations actually utilize the underlying hardware. Less attention has been given to deconstructing how these gen- This paper focuses on deconstructing how General Purpose ap- eral purpose application use the graphics hardware itself. Nor has plications on GPUs (GPGPU applications) utilize the underlying much attention been given to examining how GPUs (or GPU-like GPU pipeline. -
Texture Mapping Modeling an Orange
Texture Mapping Modeling an Orange q Problem: Model an orange (the fruit) q Start with an orange-colored sphere – Too smooth q Replace sphere with a more complex shape – Takes too many polygons to model all the dimples q Soluon: retain the simple model, but add detail as a part of the rendering process. 1 Modeling an orange q Surface texture: we want to model the surface features of the object not just the overall shape q Soluon: take an image of a real orange’s surface, scan it, and “paste” onto a simple geometric model q The texture image is used to alter the color of each point on the surface q This creates the ILLUSION of a more complex shape q This is efficient since it does not involve increasing the geometric complexity of our model Recall: Graphics Rendering Pipeline Application Geometry Rasterizer 3D 2D input CPU GPU output scene image 2 Rendering Pipeline – Rasterizer Application Geometry Rasterizer Image CPU GPU output q The rasterizer stage does per-pixel operaons: – Turn geometry into visible pixels on screen – Add textures – Resolve visibility (Z-buffer) From Geometry to Display 3 Types of Texture Mapping q Texture Mapping – Uses images to fill inside of polygons q Bump Mapping – Alter surface normals q Environment Mapping – Use the environment as texture Texture Mapping - Fundamentals q A texture is simply an image with coordinates (s,t) q Each part of the surface maps to some part of the texture q The texture value may be used to set or modify the pixel value t (1,1) (199.68, 171.52) Interpolated (0.78,0.67) s (0,0) 256x256 4 2D Texture Mapping q How to map surface coordinates to texture coordinates? 1. -
Quadtree Displacement Mapping with Height Blending
Quadtree Displacement Mapping with Height Blending Practical Detailed Multi-Layer Surface Rendering Michal Drobot Technical Art Director Reality Pump Outline • Introduction • Motivation • Existing Solutions • Quad tree Displacement Mapping • Shadowing • Surface Blending • Conclusion Introduction • Next generation rendering – Higher quality per-pixel • More effects • Accurate computation – Less triangles, more sophistication • Ray tracing • Volumetric effects • Post processing – Real world details • Shadows • Lighting • Geometric properties Surface rendering • Surface rendering stuck at – Blinn/Phong • Simple lighting model – Normal mapping • Accounts for light interaction modeling • Doesn’t exhibit geometric surface depth – Industry proven standard • Fast, cheap, but we want more… Terrain surface rendering • Rendering terrain surface is costly – Requires blending • With current techniques prohibitive – Blend surface exhibit high geometric complexity Surface properties • Surface geometric properties – Volume – Depth – Various frequency details • Together they model visual clues – Depth parallax – Self shadowing – Light Reactivity Surface Rendering • Light interactions – Depends on surface microstructure – Many analytic solutions exists • Cook Torrance BDRF • Modeling geometric complexity – Triangle approach • Costly – Vertex transform – Memory • More useful with Tessellation (DX 10.1/11) – Ray tracing Motivation • Render different surfaces – Terrains – Objects – Dynamic Objects • Fluid/Gas simulation • Do it fast – Current Hardware – Consoles -
A Snake Approach for High Quality Image-Based 3D Object Modeling
A Snake Approach for High Quality Image-based 3D Object Modeling Carlos Hernandez´ Esteban and Francis Schmitt Ecole Nationale Superieure´ des Tel´ ecommunications,´ France e-mail: carlos.hernandez, francis.schmitt @enst.fr f g Abstract faces. They mainly work for 2.5D surfaces and are very de- pendent on the light conditions. A third class of methods In this paper we present a new approach to high quality 3D use the color information of the scene. The color informa- object reconstruction by using well known computer vision tion can be used in different ways, depending on the type of techniques. Starting from a calibrated sequence of color im- scene we try to reconstruct. A first way is to measure color ages, we are able to recover both the 3D geometry and the consistency to carve a voxel volume [28, 18]. But they only texture of the real object. The core of the method is based on provide an output model composed of a set of voxels which a classical deformable model, which defines the framework makes difficult to obtain a good 3D mesh representation. Be- where texture and silhouette information are used as exter- sides, color consistency algorithms compare absolute color nal energies to recover the 3D geometry. A new formulation values, which makes them sensitive to light condition varia- of the silhouette constraint is derived, and a multi-resolution tions. A different way of exploiting color is to compare local gradient vector flow diffusion approach is proposed for the variations of the texture such as in cross-correlation methods stereo-based energy term. -
UNWRELLA Step by Step Unwrapping and Texture Baking Tutorial
Introduction Content Defining Seams in 3DSMax Applying Unwrella Texture Baking Final result UNWRELLA Unwrella FAQ, users manual Step by step unwrapping and texture baking tutorial Unwrella UV mapping tutorial. Copyright 3d-io GmbH, 2009. All rights reserved. Please visit http://www.unwrella.com for more details. Unwrella Step by Step automatic unwrapping and texture baking tutorial Introduction 3. Introduction Content 4. Content Defining Seams in 3DSMax 10. Defining Seams in Max Applying Unwrella Texture Baking 16. Applying Unwrella Final result 20. Texture Baking Unwrella FAQ, users manual 29. Final Result 30. Unwrella FAQ, user manual Unwrella UV mapping tutorial. Copyright 3d-io GmbH, 2009. All rights reserved. Please visit http://www.unwrella.com for more details. Introduction In this comprehensive tutorial we will guide you through the process of creating optimal UV texture maps. Introduction Despite the fact that Unwrella is single click solution, we have created this tutorial with a lot of material explaining basic Autodesk 3DSMax work and the philosophy behind the „Render to Texture“ workflow. Content Defining Seams in This method, known in game development as texture baking, together with deployment of the Unwrella plug-in achieves the 3DSMax following quality benchmarks efficiently: Applying Unwrella - Textures with reduced texture mapping seams Texture Baking - Minimizes the surface stretching Final result - Creates automatically the largest possible UV chunks with maximal use of available space Unwrella FAQ, users manual - Preserves user created UV Seams - Reduces the production time from 30 minutes to 3 Minutes! Please follow these steps and learn how to utilize this great tool in order to achieve the best results in minimum time during your everyday productions. -
Avatare in Katastrophensimulationen
Andreas Siemon Avatare in Katastrophensimulationen Entwicklung eines Katastrophen-Trainings-Systems ISBN 978-3-86219-610-4 Siemon Andreas zur Darstellung von Beteiligten in Großschadenslagen Avatare in Katastrophensimulationen in Katastrophensimulationen Avatare Andreas Siemon Avatare in Katastrophensimulationen Entwicklung eines Katastrophen-Trainings-Systems zur Darstellung von Beteiligten in Großschadenslagen kassel university press Die vorliegende Arbeit wurde vom Fachbereich Elektrotechnik / Informatik der Universität Kassel als Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) angenommen. Erster Gutachter: Prof. Dr.-Ing. D. Wloka Zweiter Gutachter: Prof. Dr. A. Zündorf Tag der mündlichen Prüfung 27. März 2013 Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.dnb.de abrufbar Zugl.: Kassel, Univ., Diss. 2013 ISBN 978-3-86219-610-4 (print) ISBN 978-3-86219-611-1 (e-book) URN: http://nbn-resolving.de/urn:nbn:de:0002-36118 © 2013, kassel university press GmbH, Kassel www.uni-kassel.de/upress Druck und Verarbeitung: Print Management Logistics Solutions, Kassel Printed in Germany Danksagung Die vorliegende Dissertation entstand im Zeitraum von Oktober 2008 bis November 2012 am Fachgebiet Technische Informatik der Universit¨at Kassel. Sie w¨are nicht ohne die Unterstutzung,¨ den Rat und die Geduld zahlreicher Personen m¨oglich gewesen, bei denen ich mich im nachfolgenden herzlich bedanken m¨ochte. Mein besonderer Dank gilt meinem Betreuer, Herrn Prof. Dr.-Ing. Dieter Wloka, fur¨ die interessante Aufgabenstellung verbunden mit der M¨oglichkeit, die vorliegende Arbeit an seinem Fachgebiet anfertigen zu durfen.¨ Weiterhin bedanke ich mich fur¨ die ausgezeichnete Betreuung, die st¨andige Diskussionsbereitschaft sowie die wertvollen Anregungen und Hinweise.