Regulatory Dynamics of 11P13 Suggest a Role for EHF in Modifying CF Lung Disease Severity Lindsay R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Somatic Retrotransposition Is Infrequent in Glioblastomas Pragathi Achanta1†, Jared P
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref Achanta et al. Mobile DNA (2016) 7:22 DOI 10.1186/s13100-016-0077-5 RESEARCH Open Access Somatic retrotransposition is infrequent in glioblastomas Pragathi Achanta1†, Jared P. Steranka2,3†, Zuojian Tang4,5, Nemanja Rodić2,7, Reema Sharma2, Wan Rou Yang2, Sisi Ma4, Mark Grivainis4,5, Cheng Ran Lisa Huang2,8, Anna M. Schneider2,9, Gary L. Gallia6, Gregory J. Riggins6, Alfredo Quinones-Hinojosa6,10, David Fenyö4,5, Jef D. Boeke5* and Kathleen H. Burns2,3* Abstract Background: Gliomas are the most common primary brain tumors in adults. We sought to understand the roles of endogenous transposable elements in these malignancies by identifying evidence of somatic retrotransposition in glioblastomas (GBM). We performed transposon insertion profiling of the active subfamily of Long INterspersed Element-1 (LINE-1) elements by deep sequencing (TIPseq) on genomic DNA of low passage oncosphere cell lines derived from 7 primary GBM biopsies, 3 secondary GBM tissue samples, and matched normal intravenous blood samples from the same individuals. Results: We found and PCR validated one somatically acquired tumor-specific insertion in a case of secondary GBM. No LINE-1 insertions present in primary GBM oncosphere cultures were missing from corresponding blood samples. However, several copies of the element (11) were found in genomic DNA from blood and not in the oncosphere cultures. SNP 6.0 microarray analysis revealed deletions or loss of heterozygosity in the tumor genomes over the intervals corresponding to these LINE-1 insertions. Conclusions: These findings indicate that LINE-1 retrotransposon can act as an infrequent insertional mutagen in secondary GBM, but that retrotransposition is uncommon in these central nervous system tumors as compared to other neoplasias. -
Downloaded 10 April 2020)
Breeze et al. Genome Medicine (2021) 13:74 https://doi.org/10.1186/s13073-021-00877-z RESEARCH Open Access Epigenome-wide association study of kidney function identifies trans-ethnic and ethnic-specific loci Charles E. Breeze1,2,3* , Anna Batorsky4, Mi Kyeong Lee5, Mindy D. Szeto6, Xiaoguang Xu7, Daniel L. McCartney8, Rong Jiang9, Amit Patki10, Holly J. Kramer11,12, James M. Eales7, Laura Raffield13, Leslie Lange6, Ethan Lange6, Peter Durda14, Yongmei Liu15, Russ P. Tracy14,16, David Van Den Berg17, NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, TOPMed MESA Multi-Omics Working Group, Kathryn L. Evans8, William E. Kraus15,18, Svati Shah15,18, Hermant K. Tiwari10, Lifang Hou19,20, Eric A. Whitsel21,22, Xiao Jiang7, Fadi J. Charchar23,24,25, Andrea A. Baccarelli26, Stephen S. Rich27, Andrew P. Morris28, Marguerite R. Irvin29, Donna K. Arnett30, Elizabeth R. Hauser15,31, Jerome I. Rotter32, Adolfo Correa33, Caroline Hayward34, Steve Horvath35,36, Riccardo E. Marioni8, Maciej Tomaszewski7,37, Stephan Beck2, Sonja I. Berndt1, Stephanie J. London5, Josyf C. Mychaleckyj27 and Nora Franceschini21* Abstract Background: DNA methylation (DNAm) is associated with gene regulation and estimated glomerular filtration rate (eGFR), a measure of kidney function. Decreased eGFR is more common among US Hispanics and African Americans. The causes for this are poorly understood. We aimed to identify trans-ethnic and ethnic-specific differentially methylated positions (DMPs) associated with eGFR using an agnostic, genome-wide approach. Methods: The study included up to 5428 participants from multi-ethnic studies for discovery and 8109 participants for replication. We tested the associations between whole blood DNAm and eGFR using beta values from Illumina 450K or EPIC arrays. -
The Human GCOM1 Complex Gene Interacts with the NMDA Receptor and Internexin-Alpha☆
HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Gene. Author Manuscript Author manuscript; Manuscript Author available in PMC 2018 June 20. Published in final edited form as: Gene. 2018 March 30; 648: 42–53. doi:10.1016/j.gene.2018.01.029. The human GCOM1 complex gene interacts with the NMDA receptor and internexin-alpha☆ Raymond S. Roginskia,b,*, Chi W. Laua,1, Phillip P. Santoiemmab,2, Sara J. Weaverc,3, Peicheng Dud, Patricia Soteropoulose, and Jay Yangc aDepartment of Anesthesiology, CMC VA Medical Center, Philadelphia, PA 19104, United States bDepartment of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States cDepartment of Anesthesia, University of Wisconsin at Madison, Madison, WI 53706, United States dBioinformatics, Rutgers-New Jersey Medical School, Newark, NJ 07103, United States eDepartment of Genetics, Rutgers-New Jersey Medical School, Newark, NJ 07103, United States Abstract The known functions of the human GCOM1 complex hub gene include transcription elongation and the intercalated disk of cardiac myocytes. However, in all likelihood, the gene's most interesting, and thus far least understood, roles will be found in the central nervous system. To investigate the functions of the GCOM1 gene in the CNS, we have cloned human and rat brain cDNAs encoding novel, 105 kDa GCOM1 combined (Gcom) proteins, designated Gcom15, and identified a new group of GCOM1 interacting genes, termed Gints, from yeast two-hybrid (Y2H) screens. We showed that Gcom15 interacts with the NR1 subunit of the NMDA receptor by co- expression in heterologous cells, in which we observed bi-directional co-immunoprecipitation of human Gcom15 and murine NR1. -
Long-Range Gene Regulation Network of the MGMT Enhancer in Modulating Glioma Cell
bioRxiv preprint doi: https://doi.org/10.1101/2020.11.03.367268; this version posted November 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Long-range gene regulation network of the MGMT enhancer in modulating glioma cell 2 sensitivity to temozolomide 3 4 5 Anshun He1, †, Bohan Chen1, †, Jinfang Bi1, Wenbin Wang1, Jun Chen1, Yuyang Qian1, 6 Tengfei Shi1, Zhongfang Zhao1, Jiandang Shi1, Hongzhen Yang1, Lei Zhang1,*, Wange Lu1,* 7 8 9 1State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai 10 University, 94 Weijin Road, 300071, Tianjin, China. 11 12 13 † These authors contributed equally to this work. 14 * Corresponding authors: Wange Lu and Lei Zhang 15 E-mail: [email protected]; [email protected] 16 Running title: Network of MGMT enhancer associated with TMZ sensitivity 17 18 19 Key words: MGMT enhancer; glioma; temozolomide, 3D chromatin structure, long-range 20 interactions 21 22 23 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.03.367268; this version posted November 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 24 Abstract 25 Acquired resistance to temozolomide (TMZ) is a major obstacle in glioblastoma treatment. 26 MGMT, a DNA repair protein, and the methylation at its gene promoter, plays an important 27 role in TMZ resistance. However, some evidences have suggested a MGMT-independent 28 mechanisms underlying TMZ resistance.