An Improved Greedy Heuristic for the Minimum Positive Influence
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Iterated Greedy Metaheuristic for the Blocking Job Shop Scheduling Problem
Dipartimento di Ingegneria Via della Vasca Navale, 79 00146 Roma, Italy An Iterated Greedy Metaheuristic for the Blocking Job Shop Scheduling Problem Marco Pranzo1, Dario Pacciarelli2 RT-DIA-208-2013 Novembre 2013 (1) Universit`adegli Studi Roma Tre, Via della Vasca Navale, 79 00146 Roma, Italy (2) Universit`adegli Studi di Siena Via Roma 56 53100 Siena, Italy. ABSTRACT In this paper we consider a job shop scheduling problem with blocking (zero buffer) con- straints. Blocking constraints model the absence of buffers, whereas in the traditional job shop scheduling model buffers have infinite capacity. There are two known variants of this problem, namely the blocking job shop scheduling (BJSS) with swap allowed and the BJSS with no-swap. A swap is needed when there is a cycle of two or more jobs each waiting for the machine occupied by the next job in the cycle. Such a cycle represents a deadlock in no-swap BJSS, while with a swap all the jobs in the cycle move simulta- neously to their subsequent machine. This scheduling problem is receiving an increasing interest in the recent literature, and we propose an Iterated Greedy (IG) algorithm to solve both variants of the problem. The IG is a metaheuristic based on the repetition of a destruction phase, which removes part of the solution, and a construction phase, in which a new solution is obtained by applying an underlying greedy algorithm starting from the partial solution. Comparison with recent published results shows that the iterated greedy outperforms other state-of-the-art algorithms on benchmark instances. -
GREEDY ALGORITHMS Greedy Algorithms Solve Problems by Making the Choice That Seems Best at the Particular Moment
GREEDY ALGORITHMS Greedy algorithms solve problems by making the choice that seems best at the particular moment. Many optimization problems can be solved using a greedy algorithm. Some problems have no efficient solution, but a greedy algorithm may provide a solution that is close to optimal. A greedy algorithm works if a problem exhibits the following two properties: 1. Greedy choice property: A globally optimal solution can be arrived at by making a locally optimal solution. In other words, an optimal solution can be obtained by making "greedy" choices. 2. optimal substructure. Optimal solutions contain optimal sub solutions. In other Words, solutions to sub problems of an optimal solution are optimal. Difference Between Greedy and Dynamic Programming The most difference between greedy algorithms and dynamic programming is that we don’t solve every optimal sub-problem with greedy algorithms. In some cases, greedy algorithms can be used to produce sub-optimal solutions. That is, solutions which aren't necessarily optimal, but are perhaps very dose. In dynamic programming, we make a choice at each step, but the choice may depend on the solutions to subproblems. In a greedy algorithm, we make whatever choice seems best at 'the moment and then solve the sub-problems arising after the choice is made. The choice made by a greedy algorithm may depend on choices so far, but it cannot depend on any future choices or on the solutions to sub- problems. Thus, unlike dynamic programming, which solves the sub-problems bottom up, a greedy strategy usually progresses in a top-down fashion, making one greedy choice after another, interactively reducing each given problem instance to a smaller one. -
Greedy Estimation of Distributed Algorithm to Solve Bounded Knapsack Problem
Shweta Gupta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4313-4316 Greedy Estimation of Distributed Algorithm to Solve Bounded knapsack Problem Shweta Gupta#1, Devesh Batra#2, Pragya Verma#3 #1Indian Institute of Technology (IIT) Roorkee, India #2Stanford University CA-94305, USA #3IEEE, USA Abstract— This paper develops a new approach to find called probabilistic model-building genetic algorithms, solution to the Bounded Knapsack problem (BKP).The are stochastic optimization methods that guide the search Knapsack problem is a combinatorial optimization problem for the optimum by building probabilistic models of where the aim is to maximize the profits of objects in a favourable candidate solutions. The main difference knapsack without exceeding its capacity. BKP is a between EDAs and evolutionary algorithms is that generalization of 0/1 knapsack problem in which multiple instances of distinct items but a single knapsack is taken. Real evolutionary algorithms produces new candidate solutions life applications of this problem include cryptography, using an implicit distribution defined by variation finance, etc. This paper proposes an estimation of distribution operators like crossover, mutation, whereas EDAs use algorithm (EDA) using greedy operator approach to find an explicit probability distribution model such as Bayesian solution to the BKP. EDA is stochastic optimization technique network, a multivariate normal distribution etc. EDAs can that explores the space of potential solutions by modelling be used to solve optimization problems like other probabilistic models of promising candidate solutions. conventional evolutionary algorithms. The rest of the paper is organized as follows: next section Index Terms— Bounded Knapsack, Greedy Algorithm, deals with the related work followed by the section III Estimation of Distribution Algorithm, Combinatorial Problem, which contains theoretical procedure of EDA. -
Greedy Algorithms Greedy Strategy: Make a Locally Optimal Choice, Or Simply, What Appears Best at the Moment R
Overview Kruskal Dijkstra Human Compression Overview Kruskal Dijkstra Human Compression Overview One of the strategies used to solve optimization problems CSE 548: (Design and) Analysis of Algorithms Multiple solutions exist; pick one of low (or least) cost Greedy Algorithms Greedy strategy: make a locally optimal choice, or simply, what appears best at the moment R. Sekar Often, locally optimality 6) global optimality So, use with a great deal of care Always need to prove optimality If it is unpredictable, why use it? It simplifies the task! 1 / 35 2 / 35 Overview Kruskal Dijkstra Human Compression Overview Kruskal Dijkstra Human Compression Making change When does a Greedy algorithm work? Given coins of denominations 25cj, 10cj, 5cj and 1cj, make change for x cents (0 < x < 100) using minimum number of coins. Greedy choice property Greedy solution The greedy (i.e., locally optimal) choice is always consistent with makeChange(x) some (globally) optimal solution if (x = 0) return What does this mean for the coin change problem? Let y be the largest denomination that satisfies y ≤ x Optimal substructure Issue bx=yc coins of denomination y The optimal solution contains optimal solutions to subproblems. makeChange(x mod y) Implies that a greedy algorithm can invoke itself recursively after Show that it is optimal making a greedy choice. Is it optimal for arbitrary denominations? 3 / 35 4 / 35 Chapter 5 Overview Kruskal Dijkstra Human Compression Overview Kruskal Dijkstra Human Compression Knapsack Problem Greedy algorithmsFractional Knapsack A sack that can hold a maximum of x lbs Greedy choice property Proof by contradiction: Start with the assumption that there is an You have a choice of items you can pack in the sack optimal solution that does not include the greedy choice, and show a A game like chess can be won only by thinking ahead: a player who is focused entirely on Maximize the combined “value” of items in the sack contradiction. -
Fast Dynamic Programming on Graph Decompositions
Fast Dynamic Programming on Graph Decompositions∗ Johan M. M. van Rooij† Hans L. Bodlaender† Erik Jan van Leeuwen‡ Peter Rossmanith§ Martin Vatshelle‡ June 6, 2018 Abstract In this paper, we consider three types of graph decompositions, namely tree decompo- sitions, branch decompositions, and clique decompositions. We improve the running time of dynamic programming algorithms on these graph decompositions for a large number of problems as a function of the treewidth, branchwidth, or cliquewidth, respectively. Such algorithms have many practical and theoretical applications. On tree decompositions of width k, we improve the running time for Dominating Set to O∗(3k). Hereafter, we give a generalisation of this result to [ρ,σ]-domination problems with finite or cofinite ρ and σ. For these problems, we give O∗(sk)-time algorithms. Here, s is the number of ‘states’ a vertex can have in a standard dynamic programming algorithm for such a problems. Furthermore, we give an O∗(2k)-time algorithm for counting the number of perfect matchings in a graph, and generalise this result to O∗(2k)-time algorithms for many clique covering, packing, and partitioning problems. On branch decompositions of width k, we give ∗ ω k ∗ ω k an O (3 2 )-time algorithm for Dominating Set, an O (2 2 )-time algorithm for counting ∗ ω k the number of perfect matchings, and O (s 2 )-time algorithms for [ρ,σ]-domination problems involving s states with finite or cofinite ρ and σ. Finally, on clique decompositions of width k, we give O∗(4k)-time algorithms for Dominating Set, Independent Dominating Set, and Total Dominating Set. -
Types of Algorithms
Types of Algorithms Material adapted – courtesy of Prof. Dave Matuszek at UPENN Algorithm classification Algorithms that use a similar problem-solving approach can be grouped together This classification scheme is neither exhaustive nor disjoint The purpose is not to be able to classify an algorithm as one type or another, but to highlight the various ways in which a problem can be attacked 2 1 A short list of categories Algorithm types we will consider include: Simple recursive algorithms Divide and conquer algorithms Dynamic programming algorithms Greedy algorithms Brute force algorithms Randomized algorithms Note: we may even classify algorithms based on the type of problem they are trying to solve – example sorting algorithms, searching algorithms etc. 3 Simple recursive algorithms I A simple recursive algorithm: Solves the base cases directly Recurs with a simpler subproblem Does some extra work to convert the solution to the simpler subproblem into a solution to the given problem We call these “simple” because several of the other algorithm types are inherently recursive 4 2 Example recursive algorithms To count the number of elements in a list: If the list is empty, return zero; otherwise, Step past the first element, and count the remaining elements in the list Add one to the result To test if a value occurs in a list: If the list is empty, return false; otherwise, If the first thing in the list is the given value, return true; otherwise Step past the first element, and test whether the value occurs in the remainder of the list 5 Backtracking algorithms Backtracking algorithms are based on a depth-first* recursive search A backtracking algorithm: Tests to see if a solution has been found, and if so, returns it; otherwise For each choice that can be made at this point, Make that choice Recur If the recursion returns a solution, return it If no choices remain, return failure *We will cover depth-first search very soon (once we get to tree-traversal and trees/graphs). -
Total Domination on Some Graph Operators
mathematics Article Total Domination on Some Graph Operators José M. Sigarreta Faculty of Mathematics, Autonomous University of Guerrero, Carlos E. Adame 5, Col. La Garita, C. P. 39350 Acapulco, Mexico; [email protected]; Tel.: +52-744-159-2272 Abstract: Let G = (V, E) be a graph; a set D ⊆ V is a total dominating set if every vertex v 2 V has, at least, one neighbor in D. The total domination number gt(G) is the minimum cardinality among all total dominating sets. Given an arbitrary graph G, we consider some operators on this graph; S(G), R(G), and Q(G), and we give bounds or the exact value of the total domination number of these new graphs using some parameters in the original graph G. Keywords: domination theory; total domination; graph operators 1. Introduction The study of the mathematical and structural properties of operators in graphs was initiated in Reference [1]. This study is a current research topic, mainly because of its multiple theoretical and practical applications (see References [2–6]). Motivated by the previous investigations, we work here on the total domination number of some graph operators. Other important parameters have also been studied in this type of graphs (see References [7,8]). We denote by G = (V, E) a finite simple graph of order n = jVj and size m = jEj. For any two adjacent vertices u, v 2 V, uv denotes the corresponding edge, and we denote N(v) = fu 2 V : uv 2 Eg and N[v] = N(v) [ fvg. We denote by D, d the maximum and Citation: Sigarreta, J.M. -
Locating Domination in Bipartite Graphs and Their Complements
Locating domination in bipartite graphs and their complements C. Hernando∗ M. Moray I. M. Pelayoz Abstract A set S of vertices of a graph G is distinguishing if the sets of neighbors in S for every pair of vertices not in S are distinct. A locating-dominating set of G is a dominating distinguishing set. The location-domination number of G, λ(G), is the minimum cardinality of a locating-dominating set. In this work we study relationships between λ(G) and λ(G) for bipartite graphs. The main result is the characterization of all connected bipartite graphs G satisfying λ(G) = λ(G) + 1. To this aim, we define an edge-labeled graph GS associated with a distinguishing set S that turns out to be very helpful. Keywords: domination; location; distinguishing set; locating domination; complement graph; bipartite graph. AMS subject classification: 05C12, 05C35, 05C69. ∗Departament de Matem`atiques. Universitat Polit`ecnica de Catalunya, Barcelona, Spain, car- [email protected]. Partially supported by projects Gen. Cat. DGR 2017SGR1336 and MTM2015- arXiv:1711.01951v2 [math.CO] 18 Jul 2018 63791-R (MINECO/FEDER). yDepartament de Matem`atiques. Universitat Polit`ecnica de Catalunya, Barcelona, Spain, [email protected]. Partially supported by projects Gen. Cat. DGR 2017SGR1336, MTM2015-63791-R (MINECO/FEDER) and H2020-MSCA-RISE project 734922 - CONNECT. zDepartament de Matem`atiques. Universitat Polit`ecnica de Catalunya, Barcelona, Spain, ig- [email protected]. Partially supported by projects MINECO MTM2014-60127-P, igna- [email protected]. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement No 734922. -
Hybrid Metaheuristics Using Reinforcement Learning Applied to Salesman Traveling Problem
13 Hybrid Metaheuristics Using Reinforcement Learning Applied to Salesman Traveling Problem Francisco C. de Lima Junior1, Adrião D. Doria Neto2 and Jorge Dantas de Melo3 University of State of Rio Grande do Norte, Federal University of Rio Grande do Norte Natal – RN, Brazil 1. Introduction Techniques of optimization known as metaheuristics have achieved success in the resolution of many problems classified as NP-Hard. These methods use non deterministic approaches that reach very good solutions which, however, don’t guarantee the determination of the global optimum. Beyond the inherent difficulties related to the complexity that characterizes the optimization problems, the metaheuristics still face the dilemma of exploration/exploitation, which consists of choosing between a greedy search and a wider exploration of the solution space. A way to guide such algorithms during the searching of better solutions is supplying them with more knowledge of the problem through the use of a intelligent agent, able to recognize promising regions and also identify when they should diversify the direction of the search. This way, this work proposes the use of Reinforcement Learning technique – Q-learning Algorithm (Sutton & Barto, 1998) - as exploration/exploitation strategy for the metaheuristics GRASP (Greedy Randomized Adaptive Search Procedure) (Feo & Resende, 1995) and Genetic Algorithm (R. Haupt & S. E. Haupt, 2004). The GRASP metaheuristic uses Q-learning instead of the traditional greedy- random algorithm in the construction phase. This replacement has the purpose of improving the quality of the initial solutions that are used in the local search phase of the GRASP, and also provides for the metaheuristic an adaptive memory mechanism that allows the reuse of good previous decisions and also avoids the repetition of bad decisions. -
L09-Algorithm Design. Brute Force Algorithms. Greedy Algorithms
Algorithm Design Techniques (II) Brute Force Algorithms. Greedy Algorithms. Backtracking DSA - lecture 9 - T.U.Cluj-Napoca - M. Joldos 1 Brute Force Algorithms Distinguished not by their structure or form, but by the way in which the problem to be solved is approached They solve a problem in the most simple, direct or obvious way • Can end up doing far more work to solve a given problem than a more clever or sophisticated algorithm might do • Often easier to implement than a more sophisticated one and, because of this simplicity, sometimes it can be more efficient. DSA - lecture 9 - T.U.Cluj-Napoca - M. Joldos 2 Example: Counting Change Problem: a cashier has at his/her disposal a collection of notes and coins of various denominations and is required to count out a specified sum using the smallest possible number of pieces Mathematical formulation: • Let there be n pieces of money (notes or coins), P={p1, p2, …, pn} • let di be the denomination of pi • To count out a given sum of money A we find the smallest ⊆ = subset of P, say S P, such that ∑di A ∈ pi S DSA - lecture 9 - T.U.Cluj-Napoca - M. Joldos 3 Example: Counting Change (2) Can represent S with n variables X={x1, x2, …, xn} such that = ∈ xi 1 pi S = ∉ xi 0 pi S Given {d1, d2, …, dn} our objective is: n ∑ xi i=1 Provided that: = ∑ di A ∈ pi S DSA - lecture 9 - T.U.Cluj-Napoca - M. Joldos 4 Counting Change: Brute-Force Algorithm ∀ ∈ n xi X is either a 0 or a 1 ⇒ 2 possible values for X. -
The Classification of Greedy Algorithms
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Science of Computer Programming 49 (2003) 125–157 www.elsevier.com/locate/scico The classiÿcation of greedy algorithms S.A. Curtis Department of Computing, Oxford Brookes University, Oxford OX33 1HX, UK Received 22 April 2003; received in revised form 5 September 2003; accepted 22 September 2003 Abstract This paper presents principles for the classiÿcation of greedy algorithms for optimization problems. These principles are made precise by their expression in the relational calculus, and illustrated by various examples. A discussion compares this work to other greedy algorithms theory. c 2003 Elsevier B.V. All rights reserved. MSC: 68R05 Keywords: Greedy algorithms 1. Introduction What makes an algorithm greedy? Deÿnitions in the literature vary slightly, but most describe a greedy algorithm as one that makes a sequence of choices, each choice being in some way the best available at that time (the term greedy refers to choosing the best). When making the sequence of choices, a greedy algorithm never goes back on earlier decisions. Because of their simplicity, greedy algorithms are frequently straightforward and e9cient. They are also very versatile, being useful for di:erent problems in many varied areas of combinatorics and beyond. Some examples of applications include data compression and DNA sequencing [16,23,25], ÿnding minimum-cost spanning trees of weighted undirected graphs [24,30,34], computational geometry [17], and routing through networks [20], to name but a few. Some problems are impractical to solve exactly, but may have a greedy algorithm that can be used as a heuristic, to ÿnd solutions which are close to optimal. -
Dominating Cliques in Graphs
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Mathematics 86 (1990) 101-116 101 North-Holland DOMINATING CLIQUES IN GRAPHS Margaret B. COZZENS Mathematics Department, Northeastern University, Boston, MA 02115, USA Laura L. KELLEHER Massachusetts Maritime Academy, USA Received 2 December 1988 A set of vertices is a dominating set in a graph if every vertex not in the dominating set is adjacent to one or more vertices in the dominating set. A dominating clique is a dominating set that induces a complete subgraph. Forbidden subgraph conditions sufficient to imply the existence of a dominating clique are given. For certain classes of graphs, a polynomial algorithm is given for finding a dominating clique. A forbidden subgraph characterization is given for a class of graphs that have a connected dominating set of size three. Introduction A set of vertices in a simple, undirected graph is a dominating set if every vertex in the graph which is not in the dominating set is adjacent to one or more vertices in the dominating set. The domination number of a graph G is the minimum number of vertices in a dominating set. Several types of dominating sets have been investigated, including independent dominating sets, total dominating sets, and connected dominating sets, each of which has a corresponding domination number. Dominating sets have applications in a variety of fields, including communication theory and political science. For more background on dominating sets see [3, 5, 151 and other articles in this issue. For arbitrary graphs, the problem of finding the size of a minimum dominating set in the graph is an NP-complete problem [9].