Data Structures and Algorithms Algorithm Design Greedy Methods
Programs = Algorithms + Data Structures Niklaus Wirth Algorithms are often designed using common Data Structures and Algorithms techniques, including: Algorithm Design • Greedy Methods Greedy Methods and Divide & • Divide & Conquer Conquer • Dynamic Programming See references in Goodrich & Tamassia to • Backtracking Greedy Methods & Divide & Conquer • Brute Force • Optimisation Problems • Branch & Bound • Greedy Methods • Linear Programming • Proving Greedy Methods Optimal • Integer Programming • Divide & Conquer • Neural Networks • Genetic Algorithms • Simulated Annealing • ... 1 2 Change Making Intuition: attempt to construct a sum using the minimum number of coins. Optimisation Problems A set of coin denominations, e.g. Comprise {1, 2, 5, 10, 20, 50} • A set of constraints A target, e.g. 67p • An optimisation function A solution is a sequence of coins ci ∈ denominations, e.g. [20, 20, 20, 2, 2, 2, 1] or A solution that satisfies the constraints is [20, 20, 20, 5, 1, 1] feasible. A feasible solution with the best n possible value for the optimisation function is The constraint is Σi ci = target optimal. The optimisation function is the length of the sequence, e.g. 7 or 6 The optimal solution has the minimum sequence length, i.e. 6 3 4 Greedy Algorithm Design Technique Many real world problems can be formulated as Key idea: Attempt to construct the optimal optimisation problems. Operations Research solution by repeatedly taking the ’best’ feasible studies such problems, amongst others, for solution. large organisations like Airlines or Strategic Greedy Alg. 1: Change Making commands etc. Chose the largest possible denomination coin at Example problems: each stage: • Find the shortest journey, visiting Target Coin Selected Edinburgh, Newcastle, Carlisle, Inverness, 67 Glasgow.
[Show full text]