Chemical Compounds and Biologics Developing Issues Relevant To
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Medical Prescription Market Definitions
Horvath Health Policy Innovations in Healthcare Financing Policy PO Box 196, College Park, MD 20741 202/465-5836 [email protected] Medical Prescription (Rx) Market Definitions Drug Product Terminology Small Molecule Drugs: Drugs with an active chemical ingredient that is not live, but chemically synthesized and typically are taken orally or topically, such as capsules, tablets, powders, ointments, and sprays. Brands: Also referred to “small molecule drugs,” brand drugs require original research and development for FDA licensure (also called “FDA approval”). They are approved (or licensed) under a New Drug Application (NDA). They are patent protected for 20 years total (which usually includes years clinical research before the drug is approved, or licensed). They are still referred to as brands even after the patent has expired (which distinguishes these drugs from generics). A brand can be ‘first in class” if it is a new chemical entity or new mechanism of action. It is a “me too drug” if it is not first in class. The definition of “me too” varies – different chemical composition, different mechanism of action. The drug is quite similar but different enough to get a patent. Generic: Small molecule products that are demonstrated to be clinically equivalent to a branded product (e.g., same active ingredient and route of administration, same mechanism of action). Generics do not require original research for FDA approval. Generics come to market only after the patent has expired on the brand product. Licensed under an Abbreviated New Drug Application (ANDA) by the FDA. Large Molecule Drugs: Commonly referred to as “biologics” and “biosimilars.” They contain live active ingredients and are generally infused or injected, and otherwise not taken orally or topically. -
IND Exemptions Chart
IND EXEMPTIONS Involving Drugs or Biologics Exemption 1 Exemption 4 Drug/Biologic US product Placebo * Drug/biologic product lawfully marketed in US * The clinical investigation involves the use of a placebo and the investigation does not otherwise * The investigation is not intended to be reported to FDA require submission of an IND as a well controlled study in support of a new indication for use nor intended to be used to support any other significant change in the labeling for the drug/biologic. * The investigation proposed is not intended to support a significant change in the advertising for the drug/ Exemption 5 biologic In Vivo Bioavailability or Bioequivalence * The investigation does not involve a route of * Test product does not contain a new chemical administration, dose, patient population, or other factor entity”’ as defined in 21 CFR 314.108(a) [** a drug that significantly increases the risks (or decreases the that contains no active moiety that has been acceptability of the risks) associated with the use of the approved by FDA in any other application. drug/biologic * The study does not involve a radioactively labeled * The investigation will be conducted in compliance with drug product. FDA regulations for the Protection of Human Subjects and Institutional Review Boards 21 CFR 50 & 56 * The study does not involve a cytotoxic drug product. * The investigation will be conducted in compliance with The investigator will conduct a bioavailability or the FDA requirements for Promotion and Charging for bioequivalence study -
United States District Court for the District of Columbia
Case 1:15-cv-00802-RC Document 29 Filed 03/15/16 Page 1 of 33 UNITED STATES DISTRICT COURT FOR THE DISTRICT OF COLUMBIA FERRING PHARMACEUTICALS, INC., : : Plaintiff, : Civil Action No.: 15-0802 (RC) : v. : Re Document Nos.: 20, 22 : SYLVIA M. BURWELL, et al., : : Defendants. : MEMORANDUM OPINION GRANTING IN PART AND DENYING IN PART DEFENDANTS’ MOTION FOR SUMMARY JUDGMENT AND DENYING PLAINTIFF’S MOTION FOR SUMMARY JUDGMENT I. INTRODUCTION Plaintiff Ferring Pharmaceuticals, Inc. (“Ferring”) is the manufacturer of PREPOPIK, a fixed-dose combination drug product that contains three drug substances: sodium picosulfate, magnesium oxide, and anhydrous citric acid. When it submitted a New Drug Application (“NDA”) for PREPOPIK to the U.S. Food and Drug Administration (“the FDA”), Ferring sought a five-year period of marketing exclusivity because one of the drug substances, sodium picosulfate, had never previously been approved in a NDA. The Federal Food, Drug, and Cosmetics Act (“FDCA”) provides for a five-year period of marketing exclusivity when a drug application is approved “for a drug, no active ingredient (including any ester or salt of the active ingredient) of which has been approved in any other application.” 21 U.S.C. § 355(j)(5)(F)(ii). During that five-year period, “no application may be submitted . which refers to the drug for which the subsection (b) application was submitted.” Id. The dispute in this case is whether the statutory term “drug,” as used in this provision of the FDCA, can reasonably be read to refer to a “drug product” (the finished dosage form of a Case 1:15-cv-00802-RC Document 29 Filed 03/15/16 Page 2 of 33 drug), or must be read to refer to a “drug substance” (the active ingredient of the drug). -
New Chemical Entity Exclusivity Determinations for Certain Fixed- Combination Drug Products
New Chemical Entity Exclusivity Determinations for Certain Fixed- Combination Drug Products Guidance for Industry U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) October 2014 Procedural New Chemical Entity Exclusivity Determinations for Certain Fixed- Combination Drug Products Guidance for Industry Office of Communications, Division of Drug Information Center for Drug Evaluation and Research Food and Drug Administration 10001 New Hampshire Ave., Hillandale Bldg., 4th Floor Silver Spring, MD 20993 Phone: 855-543-3784 or 301-796-3400; Fax: 301-431-6353 [email protected] http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) October 2014 Procedural Contains Nonbinding Recommendations TABLE OF CONTENTS I. INTRODUCTION............................................................................................................. 1 II. BACKGROUND ............................................................................................................... 2 III. STATUTORY AND REGULATORY FRAMEWORK ............................................... 2 IV. FDA’S HISTORICAL INTERPRETATION OF THE 5-YEAR NCE EXCLUSIVITY PROVISIONS ....................................................................................... 5 V. REVISED AGENCY INTERPRETATION OF THE 5-YEAR NCE EXCLUSIVITY PROVISIONS ................................................................................................................... -
Database: a Brazilian Repository of Chemical and Biological Information for Drug Design
The Brazilian Compound Library (BraCoLi) database: a Brazilian repository of chemical and biological information for drug design Gabriel Corrêa Veríssimo1*, Valtair Severino dos Santos Júnior1*, Ingrid Ariela do Rosário de Almeida1, Marina Sant'Anna Mitraud Ruas1, Lukas Galuppo Coutinho1, Renata Barbosa de Oliveira1, Ricardo José Alves1, Vinícius Gonçalves Maltarollo1‡ 1. Laboratório de Química Farmacêutica, Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. *The authors equally contributed to the manuscript ‡Correspondence author: [email protected] ABSTRACT The Brazilian Compound Library (BraCoLi) is a novel virtual library of manually curated compounds developed by Brazilian research groups to support further computer-aided drug design works. Herein, the first version of the database is described comprising 1,176 compounds. Also, the chemical diversity and drug-like profile of BraCoLi were defined to analyze its chemical space. A significant amount of the compounds fitted Lipinski and Veber’s rules, alongside other drug-likeness properties. Principal component analysis showed that BraCoLi is similar to other databases (FDA-approved drugs and NuBBEDB) regarding structural and physicochemical patterns. Finally, a scaffold analysis showed that BraCoLi presents several privileged chemical skeletons with great diversity. Keywords: drug design, database, chemical library, medicinal chemistry, cheminformatics. INTRODUCTION The application of computational tools as an ally in drug design was an important milestone in medicinal chemistry. This approach is known as computer-aided drug design (CADD) and it is extensively used in several studies to optimize the discovery and design of new drug candidates1,2. Molecular docking, structure-activity relationship 1 (SAR) studies, and virtual screening are a few examples of available computational techniques that are widely employed in drug design3. -
Swissadme: a Free Web Tool to Evaluate Pharmacokinetics, Drug
www.nature.com/scientificreports OPEN SwissADME: a free web tool to evaluate pharmacokinetics, drug- likeness and medicinal chemistry Received: 05 October 2016 Accepted: 13 January 2017 friendliness of small molecules Published: 03 March 2017 Antoine Daina1, Olivier Michielin1,2,3 & Vincent Zoete1 To be effective as a drug, a potent molecule must reach its target in the body in sufficient concentration, and stay there in a bioactive form long enough for the expected biologic events to occur. Drug development involves assessment of absorption, distribution, metabolism and excretion (ADME) increasingly earlier in the discovery process, at a stage when considered compounds are numerous but access to the physical samples is limited. In that context, computer models constitute valid alternatives to experiments. Here, we present the new SwissADME web tool that gives free access to a pool of fast yet robust predictive models for physicochemical properties, pharmacokinetics, drug-likeness and medicinal chemistry friendliness, among which in-house proficient methods such as the BOILED- Egg, iLOGP and Bioavailability Radar. Easy efficient input and interpretation are ensured thanks to a user-friendly interface through the login-free website http://www.swissadme.ch. Specialists, but also nonexpert in cheminformatics or computational chemistry can predict rapidly key parameters for a collection of molecules to support their drug discovery endeavours. During the time- and resource-consuming processes of drug discovery and development, a large number of molecular structures are evaluated according to very diverse parameters in order to steer the selection of which chemicals to synthetize, test and promote, with the final goal to identify those with the best chance to become an effective medicine for the patients. -
Importance of ADME and Bioanalysis in the Drug Discovery
alenc uiv e & eq B io io B a f v o a i l l a Journal of a b Vuppala et al., J Bioequiv Availab 2013, 5:4 n r i l i u t y o DOI: 10.4172/jbb.10000e31 J ISSN: 0975-0851 Bioequivalence & Bioavailability EditorialResearch Article OpenOpen Access Access Importance of ADME and Bioanalysis in the Drug Discovery Pradeep K Vuppala1*, Dileep R Janagam2 and Pavan Balabathula2 1Preclinical Pharmacokinetics Shared Resource, St. Jude Children’s Research Hospital, Memphis, TN, USA 2University of Tennessee Health Sciences Center, Memphis, TN, USA Editorial Bioanalytical support plays a vital role during the lead optimization stages. The major goal of the bioanalysis is to assess the over-all The hunt for new drugs can be divided into two stages: discovery ADME characteristics of the new chemical entities (NCE’s). Arrays and development. Drug discovery includes generating a hypothesis of of bioanalytical methods are required to completely describe the the target receptor for a particular disorder and screening the in vitro pharmacokinetic behavior in laboratory animals as well as in humans and/or in vivo biological activities of the new drug candidates. Drug [7]. Bioanalytical tools can play a significant role for the progress development involves the assessment of efficacy and toxicity of the new in drug discovery and development. Physiologic fluids such as blood, drug candidates. serum, plasma, urine and tissues are analyzed to determine the absorption and disposition of a drug candidate administered to a test To aid in a discovery program, accurate data on pharmacokinetics animal [8]. -
Natural Products As Leads to Potential Drugs: an Old Process Or the New Hope for Drug Discovery?
J. Med. Chem. 2008, 51, 2589–2599 2589 Natural Products as Leads to Potential Drugs: An Old Process or the New Hope for Drug Discovery? David J. Newman† Natural Products Branch, DeVelopmental Therapeutics Program, DCTD, National Cancer InstitutesFrederick, P.O. Box B, Frederick, Maryland 21702 ReceiVed April 5, 2007 I. Introduction From approximately the early 1980s, the “influence of natural products” upon drug discovery in all therapeutic areas apparently has been on the wane because of the advent of combinatorial chemistry technology and the “associated expectation” that these techniques would be the future source of massive numbers of novel skeletons and drug leads/new chemical entities (NCEa) where the intellectual property aspects would be very simple. As a result, natural product work in the pharmaceutical industry, except for less than a handful of large pharmaceutical compa- nies, effectively ceased from the end of the 1980s. Figure 1. Source of small molecule drugs, 1981–2006: major What has now transpired (cf. evidence shown in Newman categories, N ) 983 (in percentages). Codes are as in ref 1. Major and Cragg, 20071 and Figures 1 and 2 below showing the categories are as follows: “N”, natural product; “ND”, derived from a natural product and usually a semisynthetic modification; “S”, totally continued influence of natural products as leads to or sources synthetic drug often found by random screening/modification of an of drugs over the past 26 years (1981–2006)) is that, to date, existing agent; “S*”, made by total synthesis, but the pharmacophore there has only been one de novo combinatorial NCE approved is/was from a natural product. -
Quantifying Structure and Performance Diversity for Sets of Small Molecules
Quantifying structure and performance diversity SPECIAL FEATURE for sets of small molecules comprising small-molecule screening collections Paul A. Clemonsa,1, J. Anthony Wilsona, Vlado Dančíka,2, Sandrine Mullera, Hyman A. Carrinskia, Bridget K. Wagnera, Angela N. Koehlera, and Stuart L. Schreibera,b,c aBroad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142; bHoward Hughes Medical Institute, 7 Cambridge Center, Cambridge, MA 02142; and cDepartment of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138 Edited by Jack Halpern, University of Chicago, Chicago, IL, and approved March 21, 2011 (received for review February 28, 2011) Using a diverse collection of small molecules we recently found access property distributions acceptable for certain goals despite that compound sets from different sources (commercial; academic; nonadherence to established rules. natural) have different protein-binding behaviors, and these beha- Comparative analyses of compound sets usually use computed viors correlate with trends in stereochemical complexity for these properties (19, 22, 23) or historical assay results (24, 25). Signifi- compound sets. These results lend insight into structural features cant progress has been made quantifying and visualizing proper- that synthetic chemists might target when synthesizing screening ties of compound sets (26), including methods that relate collections for biological discovery. We report extensive character- structure to intuitive notions of shape (27–29), and similarity ization of structural properties and diversity of biological perfor- fusion methods (30–33) that describe relationships between sets. mance for these compounds and expand comparative analyses to Moreover, chemical similarity and diversity analyses continue to include physicochemical properties and three-dimensional shapes progress (34–37), including studies using Shannon entropy (38) as of predicted conformers. -
1097.Full.Pdf
1521-009X/47/10/1097–1099$35.00 https://doi.org/10.1124/dmd.119.088708 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 47:1097–1099, October 2019 Copyright ª 2019 by The American Society for Pharmacology and Experimental Therapeutics Special Section on Pharmacokinetic and Drug Metabolism Properties of Novel Therapeutic Modalities—Commentary Pharmacokinetic and Drug Metabolism Properties of Novel Therapeutic Modalities Brooke M. Rock and Robert S. Foti Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (B.M.R.) and Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F.) Received July 10, 2019; accepted July 26, 2019 Downloaded from ABSTRACT The discovery and development of novel pharmaceutical therapies in experimental and analytical tools will become increasingly is rapidly transitioning from a small molecule–dominated focus to evident, both to increase the speed and efficiency of identifying safe a more balanced portfolio consisting of small molecules, mono- and efficacious molecules and simultaneously decreasing our de- clonal antibodies, engineered proteins (modified endogenous pro- pendence on in vivo studies in preclinical species. The research and dmd.aspetjournals.org teins, bispecific antibodies, and fusion proteins), oligonucleotides, commentary included in this special issue will provide researchers, and gene-based therapies. This commentary, and the special issue clinicians, and the patients we serve more options in the ongoing as a whole, aims to highlight -
Generic Drug Development and Safety Evaluation
U.S. FOOD & DRUG ADMIN I STRATION Generic Drug Development and Safety Evaluation Howard D. Chazin, MD, MBA, Director CDER Office of Generic Drugs Clinical Safety Surveillance Staff (CSSS) CDER Pediatric Advisory Committee Meeting September 20, 2018 1 Outline 1. Basis for Generic Drug Approvals 2. Contents of an Abbreviated New Drug Application (ANDA) 3. Generic Drug Development • Pharmaceutical Equivalence • Bioequivalence • Therapeutic Equivalence 4. Generic Drug Safety Surveillance • Premarket • Postmarketing 2 Generic Drug Approval • Approval of generic drug starts with a “listed drug” – generally an “innovator” or “brand name” drug. • This is the reference listed drug (RLD) • Abbreviated New Drug Application (ANDA) relies on FDA’s finding of safety and effectiveness for the RLD during the Investigational New Drug (IND) and New Drug Application (NDA) phases of drug review. • Requires demonstration of “sameness” of a number of characteristics + additional information to permit reliance on the RLD 3 Modern Generic Drug Approval Pathway Drug Price Competition and Patent Term Restoration Act of 1984 (Hatch-Waxman Amendments) • First statutory provisions expressly pertaining to generic drugs. • Created the basic scheme under which generic drugs are approved today. • Allowed FDA to approve - under new section 505(j) - generic applications for duplicates of drugs submitted under 505(b). 4 Hatch-Waxman Amendments • Brand Industry Gains: • 5-year New Chemical Entity (NCE) Exclusivity • 3-year New Clinical Studies Exclusivity • Patent Term Extension -
Pharmacophore Hybridisation and Nanoscale Assembly to Discover Self-Delivering Lysosomotropic New-Chemical Entities for Cancer Therapy
ARTICLE https://doi.org/10.1038/s41467-020-18399-4 OPEN Pharmacophore hybridisation and nanoscale assembly to discover self-delivering lysosomotropic new-chemical entities for cancer therapy Zhao Ma 1,2, Jin Li1, Kai Lin 1, Mythili Ramachandran1, Dalin Zhang1, Megan Showalter3, Cristabelle De Souza1, Aaron Lindstrom1, Lucas N. Solano1, Bei Jia1, Shiro Urayama 4, Yuyou Duan5, ✉ Oliver Fiehn 3, Tzu-yin Lin6, Minyong Li 2,7 & Yuanpei Li 1 1234567890():,; Integration of the unique advantages of the fields of drug discovery and drug delivery is invaluable for the advancement of drug development. Here we propose a self-delivering one-component new-chemical-entity nanomedicine (ONN) strategy to improve cancer therapy through incorporation of the self-assembly principle into drug design. A lysosomo- tropic detergent (MSDH) and an autophagy inhibitor (Lys05) are hybridised to develop bisaminoquinoline derivatives that can intrinsically form nanoassemblies. The selected BAQ12 and BAQ13 ONNs are highly effective in inducing lysosomal disruption, lysosomal dysfunction and autophagy blockade and exhibit 30-fold higher antiproliferative activity than hydroxychloroquine used in clinical trials. These single-drug nanoparticles demonstrate excellent pharmacokinetic and toxicological profiles and dramatic antitumour efficacy in vivo. In addition, they are able to encapsulate and deliver additional drugs to tumour sites and are thus promising agents for autophagy inhibition-based combination therapy. Given their transdisciplinary advantages, these BAQ ONNs have enormous potential to improve cancer therapy. 1 Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA. 2 Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, China.