Sbotics - Gamified Framework for Educational Robotics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Robot Block-Based Programming
Robot Block-Based Programming Teaching children how to program an interactive robot using a block-based programming language Robin van der Wal Jannelie de Vries Luka Miljak Marcel Kuipers Bachelor's Thesis Computer Science Delft University of Technology 1 This report is under embargo from July 2017 until February 2018 Delft University of Technology Bachelor end project Robot Block-based Programming Final Report Authors: Robin van der Wal Luka Miljak Jannelie de Vries Marcel Kuipers July 5, 2017 Bachelor Project Committee Coach name: Koen Hindriks Client name: Joost Broekens Cordinator name: Ir. O.W. Visser Abstract Robots play an increasingly large role in society and some material already exists that allows children to program robots in elementary school. However, this material often neglects the interactive capabilities of modern robots. The aim of this project is to teach children how to write interactive programs for a robot. For this purpose, a NAO robot is used, which is a humanoid robot with advanced features. Children can use a web interface to create programs in a Block-Based Programming Language, which is then sent and processed by the robot in an intelligent manner, using an agent-based sys- tem. Over the course of ten weeks, based on research done in the first two weeks, a web interface and an intelligent agent were developed. The BlocklyKids lan- guage implements many concepts you would expect from a programming lan- guage. Using these concepts, children can solve exercises that are presented to them in the web interface. Testing BlocklyKids in the classroom helped in the development of the product. -
Automation and the Future of Work–1’, Nlr 119, Sept–Oct 2019
Part 1: New Left Review 119, Sept Oct 2019 Part 2: New Left Review 120, Nov Dec 2019 aaron benanav AUTOMATION AND THE FUTURE OF WORK—1 he world is abuzz with talk of automation. Rapid advances in artificial intelligence, machine learning and robotics seem set to transform the world of work. In the most advanced factories, companies like Tesla have been aiming for ‘lights- Tout’ production, in which fully automated work processes, no longer needing human hands, can run in the dark. Meanwhile, in the illu- minated halls of robotics conventions, machines are on display that can play ping-pong, cook food, have sex and even hold conversations. Computers are not only developing new strategies for playing Go, but are said to be writing symphonies that bring audiences to tears. Dressed in white lab coats or donning virtual suits, computers are learning to identify cancers and will soon be developing legal strategies. Trucks are already barrelling across the us without drivers; robotic dogs are carry- ing military-grade weapons across desolate plains. Are we living in the last days of human toil? Is what Edward Bellamy once called the ‘edict of Eden’ about to be revoked, as ‘men’—or at least, the wealthiest among them—become like gods?1 There are many reasons to doubt the hype. For one thing, machines remain comically incapable of opening doors or, alas, folding laundry. Robotic security guards are toppling into mall fountains. Computerized digital assistants can answer questions and translate documents, but not well enough to do the job without human intervention; the same is true of self-driving cars.2 In the midst of the American ‘Fight for Fifteen’ movement, billboards went up in San Francisco threatening to replace fast-food workers with touchscreens if a law raising the minimum wage were passed. -
Scratch, Blocky & Co., Blocksysteme Zum Programmieren
Notizen Lothar Griess • 26. Mai 2018 Scratch, Blocky & Co., Blocksysteme zum Programmieren Scratch-Alternativen, … https://wiki.scratch.mit.edu/wiki/Alternatives_to_Scratch HTML5 als Grundlage wär besser, die Zukunft von Flash ist unklar. Liste der Modifikationen ... https://scratch-dach.info/wiki/Liste_der_Modifikationen Enchanting (Scratch Modifikation) ... https://scratch-dach.info/wiki/Enchanting_(Scratch_Modifikation) Beetle Blocks ist wie Scratch oder BlocksCAD für 3D-Grafiken... https://scratch-dach.info/wiki/Beetle_Blocks Beetle Blocks GitHub Repository ... https://github.com/ericrosenbaum/BeetleBlocks Beetle Blocks (3D-Design), … http://beetleblocks.com/ Mod Share … z.B.: Supported Scratch-Modifications … https://wiki.scratch.mit.edu/wiki/Mod_Share Scratch … https://wiki.scratch.mit.edu/wiki/Scratch Snap … https://wiki.scratch.mit.edu/wiki/Snap_(Scratch_Modification) Bingo … https://wiki.scratch.mit.edu/wiki/Bingo_(Scratch_Modification) Panther … https://wiki.scratch.mit.edu/wiki/Panther_(Scratch_Modification) Insanity … https://wiki.scratch.mit.edu/wiki/Insanity_(Scratch_Modification) … weitere: Stack, Kitcat, Ghost, Streak • • • Blockly is used by hundreds of projects, most of them educational: ... https://developers.google.com/blockly/ Blockly, RoboBlockly, ... https://code.org/learn Google Education, 1 Stunde, ... https://hourofcode.com/blockly Got PCs with slow (or non-existent) internet access? Download the Blockly tutorials that were the precursor of the Code.org tutorials - a single 3MB ZIP file can be loaded onto any computer or used off a memory stick Blockly Games … https://blockly-games.appspot.com/ App Inventor … http://appinventor.mit.edu/explore/ Code (div.) … https://code.org/ Ozo Blockly (Mini-Roboter) - Ozobot Bit robot using the OzoBlockly editor. … http://ozoblockly.com/ micro:bit (Raspberrs Pi, MicroPython) … http://microbit.org/ BlocklyProp … www.parallax.com/product/program-blocklyprop wonder workshop (dash-Roboter) … www.makewonder.de Robertar, NEPO (div.) … https://lab.open-roberta.org// Made w/ Code (div. -
A Survey on the Design Space of End-User-Oriented Languages for Specifying Robotic Missions
A survey on the design space of end-user-oriented languages for specifying robotic missions Downloaded from: https://research.chalmers.se, 2021-10-01 12:30 UTC Citation for the original published paper (version of record): Swaib, D., Berger, T., Menghi, C. et al (2021) A survey on the design space of end-user-oriented languages for specifying robotic missions Software and Systems Modeling, 20(4): 1123-1158 http://dx.doi.org/10.1007/s10270-020-00854-x N.B. When citing this work, cite the original published paper. research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is administrated and maintained by Chalmers Library (article starts on next page) Software and Systems Modeling https://doi.org/10.1007/s10270-020-00854-x REGULAR PAPER A survey on the design space of end-user-oriented languages for specifying robotic missions Swaib Dragule1,2 · Thorsten Berger1,3 · Claudio Menghi4 · Patrizio Pelliccione1,5 Received: 23 November 2019 / Revised: 2 September 2020 / Accepted: 27 October 2020 © The Author(s) 2021 Abstract Mobile robots are becoming increasingly important in society. Fulfilling complex missions in different contexts and envi- ronments, robots are promising instruments to support our everyday live. As such, the task of defining the robot’s mission is moving from professional developers and roboticists to the end-users. However, with the current state-of-the-art, defining missions is non-trivial and typically requires dedicated programming skills. Since end-users usually lack such skills, many commercial robots are nowadays equipped with environments and domain-specific languages tailored for end-users. -
A Study on the Suitability of Visual Languages for Non-Expert Robot Programmers
Received November 25, 2018, accepted January 23, 2019, date of publication January 29, 2019, date of current version February 14, 2019. Digital Object Identifier 10.1109/ACCESS.2019.2895913 A Study on the Suitability of Visual Languages for Non-Expert Robot Programmers JOSÉ MARÍA RODRÍGUEZ CORRAL 1, IVÁN RUÍZ-RUBE 1, ANTÓN CIVIT BALCELLS2, JOSÉ MIGUEL MOTA-MACÍAS1, ARTURO MORGADO-ESTÉVEZ1, AND JUAN MANUEL DODERO 1 1School of Engineering, University of Cádiz, 11519 Cádiz, Spain 2Technical School of Computer Engineering, University of Seville, 41012 Seville, Spain Corresponding author: José María Rodríguez Corral ([email protected]) This work was supported by the Spanish National Research Agency (AEI), under developed in the framework of the VISAIGLE Project with ERDF funds under Grant TIN2017-85797-R. ABSTRACT A visual programming language allows users and developers to create programs by manipulat- ing program elements graphically. Several studies have shown the benefits of visual languages for learning purposes and their applicability to robot programming. However, at present, there are not enough comparative studies on the suitability of textual and visual languages for this purpose. In this paper, we study if, as with a textual language, the use of a visual language could also be suitable in the context of robot programming and, if so, what the main advantages of using a visual language would be. For our experiments, we selected a sample of 60 individuals among students with adequate knowledge of procedural programming, that was divided into three groups. For the first group of 20 students, a learning scenario based on a textual object- oriented language was used for programming a specific commercial robotic ball with sensing, wireless communication, and output capabilities, whereas for the second and the third group, two learning scenarios based on visual languages were used for programming the robot. -
Robot Program
Celebrating AAAI's 25th Anniversary The Twentieth National Conference on Artificial Intelligence July 9-13, 2005, Pittsburgh, Pennsylvania We invite you to participate in the Fourteenth Annual AAAI Mobile Robot Competition and Exhibition, sponsored by the American Association for Artificial Intelligence. The Competition brings together teams from universities, colleges, and research laboratories to compete and to demonstrate cutting edge, state of the art research in robotics and artificial intelligence. The 2005 AAAI Mobile Robot Contest and Exhibition will include the Robot Challenge, the Open Interaction Task, the Scavenger Hunt, the Robot Exhibition, and the Mobile Robot Workshop. Registration is now open (final deadline is May 31). Full details of the events are available on the separate robot website. Competition Awards Scavenger Hunt First Place : Sony Aibo Prize HMC Hammer, Harvey Mudd College Open Interaction First Place : Evolution Robotics Prize Human Emulation Robots, Hanson Robotics Challenge : ActivMedia Prize LABORIUS, Universite de Sherbrooke Technical Achievement Awards Map Building and HRI LABORIUS, Université de Sherbrooke Overall Excellence for a Fully Autonomous System HMC Hammer, Harvey Mudd College Robust Path Fnding and Object Recognition UML Robotics Lab, University of Massachusetts, Lowell Control Interface Usability UML Robotics Lab, University of Massachusetts, Lowell Visionary Hardware Concept Claytronics, Carnegie Mellon University Engaging Interaction Using a Cognitve Model NRL-MU, Naval Research Laboratory, -
Open Roberta Lab, an Alternative to EV3-G by Koldo Olaskoaga
Open Roberta Lab, an alternative to EV3-G By Koldo Olaskoaga The time when digital devices were limited to desktop and laptop computers is well past and Little by little it is becoming more usual to run applications from within a browser or on a mobile device with files that are stored in the cloud. Among other things, this favors collaboration and sharing the development of projects. In This context, LEGO® have maintained is focus on locally installed software on computers with Windows or Mac OS X operating systems, a paid version in the case of the Education software. At the beginning of this year they presented an iPad version that was associated to the Education license and in the month of November the LEGO MINDSTORMS Programmer app, a mobile version of the EV3-G programming environment was made available for both iPad and Android. This is, however, not a full version of the software as the palette of programming blocks is limited. Project Open Roberta Roberta is a project that emerged in Germany in 2002. Its goal, as noted on its web page, is to foster in both boys and girls a long lasting interest in STEM (science, technology, engineering, and math). They make a special emphasis on the involvement of girls. This project has been financed both by Germany’s ministry of education and investigation as well as the UE between 2005 and 2009. Currently it is financed by several German federal states in collaboration with various companies and foundations. In 2012, tenth anniversary of Roberta, an idea came about to create a cloud based software to program LEGO MINDSTORMS™ robots. -
Self-Localization of a Biped Robot in the Robocup™ Standard Platform League Domain
Graz University of Technology Christof Rath, Bakk.techn. Self-localization of a biped robot in the RoboCup™ Standard Platform League domain Master’s thesis Institute for Software Technology Graz University of Technology Inffeldgasse 16b/II, A – 8010 Graz Head: Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Slany Supervisor: Dipl.-Ing. Dr.techn. Gerald Steinbauer Evaluator: Univ.-Prof. Dipl.-Ing. Dr.techn. Franz Wotawa Graz, (March, 2010) ii Always check the pool before you jump in—you never know! Senat Deutsche Fassung: Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008 Genehmigung des Senates am 1.12.2008 EIDESSTATTLICHE ERKLÄRUNG Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommene Stellen als solche kenntlich gemacht habe. Graz, am …………………………… ……………………………………………….. (Unterschrift) Englische Fassung: STATUTORY DECLARATION I declare that I have authored this thesis independently, that I have not used other than the declared sources / resources, and that I have explicitly marked all material which has been quoted either literally or by content from the used sources. …………………………… ……………………………………………….. date (signature) iv v Acknowledgments In order of appearance—almost. My thanks to my always supporting family, to my aunt, who sponsored a big part of my studies. To Ruth my love, who was always patient, even when it seemed to never end, and who made with me the sole thing that really matters, our daughter Charlotta. My thoughts to my grandmother, who would have loved to witness my graduation. I want to thank Gerald Steinbauer, who brought me to the science of robotics and to the RoboCup™, and who gave me the freedom to explore the topics and aspects of this thesis, and to Franz Wotawa who had always an open door and a good advice. -
FLL Programming and Robot Design
Robot Design and Programming Who are we? • Debbie English • Computer Science/developer/connected & automated vehicle • Mentor of FLL – 7 year, FTC – 2 years, FRC(#4499) – going into 8th season! • FLL volunteer/assisting Liberty tournament – over 10 years • John Wiens • Senior at Colorado School of Mines, Electrical Engineering • Mentor of FRC #4499, Student on FRC 3 years, FLL – 2 years, • FLL Ref – 5 years, FLL Judge 2 years • Hailey Holman • Member of FRC #4499, FLL #? Years • FLL Volunteer experience What makes a good robot • Consistency • Consistency • Consistency • If your robot cannot perform a task 10 times in a row without failing, it will probably not work properly in competition! • Keep it simple (KISS) Introduction to Robot Design • As stated previously the best robots are the ones that are the most consistent. Total point potential doesn’t matter if you can never achieve it. • Things to help with robot consistency: • Quality robot construction • Sensors • Thoroughly test robot code • Build Mission Models correctly • Practice running your robot in tournament conditions • Do not overextend your team’s capabilities Robot Design and Construction - Strategy • There is no one design that is correct in FLL, many different designs and strategies are effective. • Things to consider when constructing a robot: • Make sure that your robot is rigid. Wobbly or flexible frames hurt overall robot consistency. • Design your robot to be unaffected by map defects such as wrinkles or warped baseboards. • Do not underestimate the difficulty of traversing the field. Easy, High Scoring missions that are far away require a lot of time and make your robot more likely to get stuck. -
Open Roberta Lab Jan Preclík1 E-Mail: [email protected] 1 Jiráskovo Gymnázium, Náchod, Řezníčkova 451
Open Roberta Lab Jan Preclík1 e-mail: [email protected] 1 Jiráskovo gymnázium, Náchod, Řezníčkova 451 Klíčová slova Open Roberta, výuková robotika, grafické programování, Blockly, LEGO Mindstorms, BBC micro:bit 1 Open Roberta Lab 1.1 Historie Open Roberta Lab (https://lab.open-roberta.org) je cloudové prostředí určené k programování nejrůznějších robotických stavebnic a výukových vývojových desek. Jde o Open Source projekt, prostředí je dostupné zcela zdarma a v češtině. Projekt vznikl v rámci německé vzdělávací iniciativy „Roberta— Learning with robots“ [1], kterou inicioval Frauhofer Institute for Intelligent Analysis and Information Systems [2]. Cílem projektu je zpřístupnit žákům i učitelům vývojové prostředí, které na ně bude klást co nejmenší nároky (např. na nutnost instalace, znalost programování…). Projekt podporuje i firma Google. 1.2 Proč Open Roberta Lab? V dnešní době máme k dispozici mnoho „hraček“ (= robotických stavebnic a vývojových desek), které můžeme v oblasti STE(A)M využívat. Každý výrobce většinou nabízí svoje vlastní softwarové řešení, jak jeho produkt programovat. Výhodou takového řešení je optimalizace pro konkrétní hardware a možnost využít všech možností, které nabízí. Nevýhodou může být nutnost se stále učit něco nového (filozofii ovládání, syntaxi…), snad nejhorší je situace, kdy se nové prostředí podobná jinému, ale v některých směrech se chová „trochu“ jinak. Open Roberta Lab se pokouší nabídnout jednotné softwarové řešení pro různé HW platformy v čistě online podobě. Nevýhodou je horší spolupráce s hardwarem, kdy u některých platforem nejsou podporovány všechny možnosti. Nevýhodou čistě online řešení (kromě nutnosti připojení k internetu) je také to, že pro spolupráci s některými platformami je nutno na PC nainstalovat komunikační software, který zajistí propojení mezi Open Roberta a připojeným HW. -
Robotics INNOVATORS Handbook Version 1.2 by PAU, Pan Aryan University BELOW ARE the KEYWORDS YOU NEED to BE AWARE of WHEN WORKING in ROBOTICS
Robotics INNOVATORS handbook Version 1.2 by PAU, Pan Aryan University BELOW ARE THE KEYWORDS YOU NEED TO BE AWARE OF WHEN WORKING IN ROBOTICS. Eventually PAA, Pan Aryan Associations will be established for each field of robotic work listed below & these Pan Aryan Associations will research, develop, collaborate, innovate & network. 5G AARNET ABB Group ABU Robocon ACIS ACOUSTIC PROXIMITY SENSOR ACTIVE CHORD MECHANISM ADAPTIVE SUSPENSION VEHICLE Robot (ASV) ALL TYPES OF ROBOTS | ROBOTS ROBOTICS ANTHROPOMORPHISM AR ARAA | This is the site of the Australian Robotics and Automation Association ARTICULATED GEOMETRY ASIMO ASIMOV THREE LAWS ATHLETE ATTRACTION GRIPPER (MAGNETIC GRIPPER) AUTOMATED GUIDED VEHICLE AUTONOMOUS ROBOT AZIMUTH-RANGE NAVIGATION Abengoa Solar Abilis Solutions Acoustical engineering Active Components Active appearance model Active contour model Actuator Adam Link Adaptable robotics Adaptive control Adaptive filter Adelbrecht Adept Technology Adhesion Gripper for Robotic Arms Adventures of Sonic the Hedgehog Aerospace Affine transformation Agency (philosophy) Agricultural robot Albert Hubo Albert One Alex Raymond Algorithm can help robots determine orientation of objects Alice mobile robot Allen (robot) Amusement Robot An overview of autonomous robots and articles with technologies used to build autonomous robots Analytical dynamics Andrey Nechypurenko Android Android (operating system) Android (robot) Android science Anisotropic diffusion Ant robotics Anthrobotics Apex Automation Applied science Arduino Arduino Robotics Are -
Simulating Lego Mindstorms EV3 Robots Using Unity and Python
Bachelor thesis Computer Science Simulating Lego Mindstorms EV3 robots using Unity and Python Author: Leo Cornelissen – s4606566 Supervisor: prof. dr. J.J.M. Hooman Second supervisor: drs. H.C.W. Kuppens Date: 23-01-2019 Radboud University Nijmegen 1 ABSTRACT The Lego Mindstorms line of ‘toys’ has been popular in computer science education for a while; with its highly configurable set-ups and support for all kinds of programming languages. The latest edition, called the EV3, is able to run custom Linux operating systems. Simulating these robots could save schools money and time. Furthermore, the idea of a programmable robot could be extended to offer even more benefits. This thesis handles the creation a framework to mirror the process of controlling a robot with custom code in simulation. Python is used to write programs for the robot/simulator, and the game engine Unity is used to create a digital environment for the robots to interact with. To start development, a list of requirements is created to narrow down the scope of the project. These requirements are then compared to other EV3 simulators are available online. 2 CONTENTS 1 Introduction .......................................................................................................................................... 5 1.1 Simulating embedded systems ..................................................................................................... 5 1.2 Lego Mindstorms .........................................................................................................................