Monitoring the Transport Activity of P-Type Atpases
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plasma Membrane Ca2+–Atpase in Rat and Human Odontoblasts Mediates Dentin Mineralization
biomolecules Article Plasma Membrane Ca2+–ATPase in Rat and Human Odontoblasts Mediates Dentin Mineralization Maki Kimura 1,†, Hiroyuki Mochizuki 1,†, Ryouichi Satou 2, Miyu Iwasaki 2, Eitoyo Kokubu 3, Kyosuke Kono 1, Sachie Nomura 1, Takeshi Sakurai 1, Hidetaka Kuroda 1,4,† and Yoshiyuki Shibukawa 1,*,† 1 Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; [email protected] (M.K.); [email protected] (H.M.); [email protected] (K.K.); [email protected] (S.N.); [email protected] (T.S.); [email protected] (H.K.) 2 Department of Epidemiology and Public Health, Tokyo Dental College, Chiyodaku, Tokyo 101-0061, Japan; [email protected] (R.S.); [email protected] (M.I.) 3 Department of Microbiology, Tokyo Dental College, Chiyodaku, Tokyo 101-0061, Japan; [email protected] 4 Department of Dental Anesthesiology, Kanagawa Dental University, 1-23, Ogawacho, Kanagawa, Yokosuka-shi 238-8570, Japan * Correspondence: [email protected] † These authors contributed equally to this study. Abstract: Intracellular Ca2+ signaling engendered by Ca2+ influx and mobilization in odontoblasts is critical for dentinogenesis induced by multiple stimuli at the dentin surface. Increased Ca2+ is exported by the Na+–Ca2+ exchanger (NCX) and plasma membrane Ca2+–ATPase (PMCA) to Citation: Kimura, M.; Mochizuki, H.; maintain Ca2+ homeostasis. We previously demonstrated a functional coupling between Ca2+ Satou, R.; Iwasaki, M.; Kokubu, E.; extrusion by NCX and its influx through transient receptor potential channels in odontoblasts. Kono, K.; Nomura, S.; Sakurai, T.; Although the presence of PMCA in odontoblasts has been previously described, steady-state levels of Kuroda, H.; Shibukawa, Y. -
Myosin Vb Mediates Cu+ Export in Polarized Hepatocytes Arnab Gupta1,*,‡, Michael J
© 2016. Published by The Company of Biologists Ltd | Journal of Cell Science (2016) 129, 1179-1189 doi:10.1242/jcs.175307 RESEARCH ARTICLE Myosin Vb mediates Cu+ export in polarized hepatocytes Arnab Gupta1,*,‡, Michael J. Schell1, Ashima Bhattacharjee2, Svetlana Lutsenko2 and Ann L. Hubbard1 ABSTRACT myosin Vc (MYO5C; hereafter referred to as MyoVa and The cellular machinery responsible for Cu+-stimulated delivery of the MyoVc, respectively) are not highly expressed. Mutations in the MYO5B Wilson-disease-associated protein ATP7B to the apical domain of human gene lead to microvillus inclusion disease hepatocytes is poorly understood. We demonstrate that myosin Vb (MVID), in which the filamentous actin (F-actin)-rich apical regulates the Cu+-stimulated delivery of ATP7B to the apical domain microvilli of enterocytes are absent, with concomitantly of polarized hepatic cells, and that disruption of the ATP7B-myosin Vb disrupted localization of apical membrane proteins that include interaction reduces the apical surface expression of ATP7B. P-type ATPases (Knowles et al., 2014; Müller et al., 2008). The Overexpression of the myosin Vb tail, which competes for binding apical microvilli of hepatocytes are also disrupted in MVID, and of subapical cargos to myosin Vb bound to subapical actin, disrupted clinically MVID is associated with diarrhea and cholestasis the surface expression of ATP7B, leading to reduced cellular Cu+ (Girard et al., 2014; Knowles et al., 2014; Thoeni et al., 2014). export. The myosin-Vb-dependent targeting step occurred in parallel The cholestasis may be explained as a complication secondary to with hepatocyte-like polarity. If the myosin Vb tail was expressed hyperalimentation therapy. -
Ncomms4301.Pdf
ARTICLE Received 8 Jul 2013 | Accepted 23 Jan 2014 | Published 13 Feb 2014 DOI: 10.1038/ncomms4301 Genome-wide RNAi ionomics screen reveals new genes and regulation of human trace element metabolism Mikalai Malinouski1,2, Nesrin M. Hasan3, Yan Zhang1,4, Javier Seravalli2, Jie Lin4,5, Andrei Avanesov1, Svetlana Lutsenko3 & Vadim N. Gladyshev1 Trace elements are essential for human metabolism and dysregulation of their homoeostasis is associated with numerous disorders. Here we characterize mechanisms that regulate trace elements in human cells by designing and performing a genome-wide high-throughput siRNA/ionomics screen, and examining top hits in cellular and biochemical assays. The screen reveals high stability of the ionomes, especially the zinc ionome, and yields known regulators and novel candidates. We further uncover fundamental differences in the regulation of different trace elements. Specifically, selenium levels are controlled through the selenocysteine machinery and expression of abundant selenoproteins; copper balance is affected by lipid metabolism and requires machinery involved in protein trafficking and post-translational modifications; and the iron levels are influenced by iron import and expression of the iron/haeme-containing enzymes. Our approach can be applied to a variety of disease models and/or nutritional conditions, and the generated data set opens new directions for studies of human trace element metabolism. 1 Genetics Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA. 2 Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA. 3 Department of Physiology, Johns Hopkins University, Baltimore, Maryland 21205, USA. 4 Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China. -
Molecular Mechanisms Regulating Copper Balance in Human Cells
MOLECULAR MECHANISMS REGULATING COPPER BALANCE IN HUMAN CELLS by Nesrin M. Hasan A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland August 2014 ©2014 Nesrin M. Hasan All Rights Reserved Intended to be blank ii ABSTRACT Precise copper balance is essential for normal growth, differentiation, and function of human cells. Loss of copper homeostasis is associated with heart hypertrophy, liver failure, neuronal de-myelination and other pathologies. The copper-transporting ATPases ATP7A and ATP7B maintain cellular copper homeostasis. In response to copper elevation, they traffic from the trans-Golgi network (TGN) to vesicles where they sequester excess copper for further export. The mechanisms regulating activity and trafficking of ATP7A/7B are not well understood. Our studies focused on determining the role of kinase-mediated phosphorylation in copper induced trafficking of ATP7B, and identifying and characterizing novel regulators of ATP7A. We have shown that Ser- 340/341 region of ATP7B plays an important role in interactions between the N-terminus and the nucleotide-binding domain and that mutations in these residues result in vesicular localization of the protein independent of the intracellular copper levels. We have determined that structural changes that alter the inter-domain interactions initiate exit of ATP7B from the TGN and that the role of copper-induced kinase-mediated hyperphosphorylation might be to maintain an open interface between the domains of ATP7B. In a separate study, seven proteins were identified, which upon knockdown result in increased intracellular copper levels. We performed an initial characterization of the knock-downs and obtained intriguing results indicating that these proteins regulate ATP7A protein levels, post-translational modifications, and copper-dependent trafficking. -
SERCA in Genesis of Arrhythmias: What We Already Know and What Is New?
Review 43 SERCA in genesis of arrhythmias: what we already know and what is new? Nilüfer Erkasap Department of Physiology, Medical Faculty, Eskiflehir Osmangazi University, Eskiflehir, Turkey ABSTRACT This review mainly focuses on the structure, function of the sarco(endo)plasmic reticulum calcium pump (SERCA) and its role in genesis of arrhythmias. SERCA is a membrane protein that belongs to the family of P-type ion translocating ATPases and pumps free cytosolic calcium into intracellular stores. Active transport of Ca2+ is achieved, according to the E1-E2 model, changing of SERCA structure by Ca2+. The affinity of Ca2+ -binding sites varies from high (E1) to low (E2). Three different SERCA genes were identified-SERCA1, SERCA2, and SERCA3. SERCA is mainly represented by the SERCA2a isoform in the heart. In heart muscle, during systole, depolarization triggers the release of Ca2+ from the sarcoplasmic reticulum (SR) and starts contraction. During diastole, muscle relaxation occurs as Ca2+ is again removed from cytosol, predominantly by accumulation into SR via the action of SERCA2a. The main regulator of SERCA2a is phospholamban and another regulator proteolipid of SERCA is sarcolipin. There are a lot of studies on the effect of decreased and/or increased SERCA activity in genesis of arrhythmia. Actually both decrease and increase of SERCA activity in the heart result in some pathological mechanisms such as heart failure and arrhythmia. (Anadolu Kardiyol Derg 2007: 7 Suppl 1; 43-6) Key words: sarco(endo)plasmic reticulum, SERCA, arrhythmia, calcium channels Introduction from cytosol, predominantly by accumulation into sarcoplasmic reticulum via the action of sarco(endo)plasmic reticulum Cardiac physiology is a major area of research in basic and Ca ATPase (SERCA). -
Endoplasmic Reticulum Potassium–Hydrogen Exchanger and Small
Research Article 625 Endoplasmic reticulum potassium–hydrogen exchanger and small conductance calcium-activated potassium channel activities are essential for ER calcium uptake in neurons and cardiomyocytes Malle Kuum1,2,3, Vladimir Veksler2,3, Joanna Liiv1, Renee Ventura-Clapier2,3 and Allen Kaasik1,* 1Department of Pharmacology, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 19, Tartu EE-51014, Estonia 2INSERM, U-769, 5, rue Jean-Baptiste Clement, Chaˆtenay-Malabry F-92296, France 3Universite´ Paris-Sud, 5, rue Jean-Baptiste Clement, Chaˆtenay-Malabry F-92296, France *Author for correspondence ([email protected]) Accepted 12 September 2011 Journal of Cell Science 125, 625–633 ß 2012. Published by The Company of Biologists Ltd doi: 10.1242/jcs.090126 Summary Calcium pumping into the endoplasmic reticulum (ER) lumen is thought to be coupled to a countertransport of protons through sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) and the members of the ClC family of chloride channels. However, pH in the ER lumen remains neutral, which suggests a mechanism responsible for proton re-entry. We studied whether cation–proton exchangers could act as routes for such a re-entry. ER Ca2+ uptake was measured in permeabilized immortalized hypothalamic neurons, primary rat cortical neurons and mouse cardiac fibers. Replacement of K+ in the uptake solution with Na+ or tetraethylammonium led to a strong inhibition of Ca2+ uptake in neurons and cardiomyocytes. Furthermore, inhibitors of the potassium–proton exchanger (quinine or propranolol) but not of the sodium–proton exchanger reduced ER Ca2+ uptake by 56–82%. Externally added nigericin, a potassium– + proton exchanger, attenuated the inhibitory effect of propranolol. -
Genome-Wide Identification and Characterization of Apple P3A-Type Atpase Genes, with Implications for Alkaline Stress Responses
Article Genome-Wide Identification and Characterization of Apple P3A-Type ATPase Genes, with Implications for Alkaline Stress Responses Baiquan Ma y , Meng Gao y, Lihua Zhang, Haiyan Zhao, Lingcheng Zhu, Jing Su, Cuiying Li, Mingjun Li , Fengwang Ma * and Yangyang Yuan * State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China; [email protected] (B.M.); [email protected] (M.G.); [email protected] (L.Z.); [email protected] (H.Z.); [email protected] (L.Z.); [email protected] (J.S.); [email protected] (C.L.); [email protected] (M.L.) * Correspondence: [email protected] (F.M.); [email protected] (Y.Y.); Tel.: +86-029-8708-2648 (F.M.) These authors contributed equally to this work. y Received: 4 January 2020; Accepted: 5 March 2020; Published: 6 March 2020 Abstract: The P3A-type ATPases play crucial roles in various physiological processes via the generation + of a transmembrane H gradient (DpH). However, the P3A-type ATPase superfamily in apple remains relatively uncharacterized. In this study, 15 apple P3A-type ATPase genes were identified based on the new GDDH13 draft genome sequence. The exon-intron organization of these genes, the physical and chemical properties, and conserved motifs of the encoded enzymes were investigated. Analyses of the chromosome localization and ! values of the apple P3A-type ATPase genes revealed the duplicated genes were influenced by purifying selection pressure. Six clades and frequent old duplication events were detected. Moreover, the significance of differences in the evolutionary rates of the P3A-type ATPase genes were revealed. -
Crystal Structure of the Calcium Pump of Sarcoplasmic Reticulum at 2.6 AÊ Resolution
articles Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 AÊ resolution Chikashi Toyoshima*², Masayoshi Nakasako*²³, Hiromi Nomura* & Haruo Ogawa* * Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan ² The Harima Institute, The Institute of Physical and Chemical Research, Sayo-gun, Hyo-go 679-5143, Japan ³ PRESTO, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan ............................................................................................................................................................................................................................................................................ Calcium ATPase is a member of the P-type ATPases that transport ions across the membrane against a concentration gradient. Here we have solved the crystal structure of the calcium ATPase of skeletal muscle sarcoplasmic reticulum (SERCA1a) at 2.6 AÊ resolution with two calcium ions bound in the transmembrane domain, which comprises ten a-helices. The two calcium ions are located side by side and are surrounded by four transmembrane helices, two of which are unwound for ef®cient coordination geometry. The cytoplasmic region consists of three well separated domains, with the phosphorylation site in the central catalytic domain and the adenosine-binding site on another domain. The phosphorylation domain has the same fold as haloacid dehalogenase. Comparison with a low-resolution electron density map of the enzyme in the absence -
Clinical Significance of P‑Class Pumps in Cancer (Review)
ONCOLOGY LETTERS 22: 658, 2021 Clinical significance of P‑class pumps in cancer (Review) SOPHIA C. THEMISTOCLEOUS1*, ANDREAS YIALLOURIS1*, CONSTANTINOS TSIOUTIS1, APOSTOLOS ZARAVINOS2,3, ELIZABETH O. JOHNSON1 and IOANNIS PATRIKIOS1 1Department of Medicine, School of Medicine; 2Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus; 3College of Medicine, Member of Qatar University Health, Qatar University, 2713 Doha, Qatar Received January 25, 2021; Accepted Apri 12, 2021 DOI: 10.3892/ol.2021.12919 Abstract. P‑class pumps are specific ion transporters involved Contents in maintaining intracellular/extracellular ion homeostasis, gene transcription, and cell proliferation and migration in all 1. Introduction eukaryotic cells. The present review aimed to evaluate the 2. Methodology role of P‑type pumps [Na+/K+ ATPase (NKA), H+/K+ ATPase 3. NKA (HKA) and Ca2+‑ATPase] in cancer cells across three fronts, 4. SERCA pump namely structure, function and genetic expression. It has 5. HKA been shown that administration of specific P‑class pumps 6. Clinical studies of P‑class pump modulators inhibitors can have different effects by: i) Altering pump func‑ 7. Concluding remarks and future perspectives tion; ii) inhibiting cell proliferation; iii) inducing apoptosis; iv) modifying metabolic pathways; and v) induce sensitivity to chemotherapy and lead to antitumor effects. For example, 1. Introduction the NKA β2 subunit can be downregulated by gemcitabine, resulting in increased apoptosis of cancer cells. The sarco‑ The movement of ions across a biological membrane is a endoplasmic reticulum calcium ATPase can be inhibited by crucial physiological process necessary for maintaining thapsigargin resulting in decreased prostate tumor volume, cellular homeostasis. -
1 1 2 the Novel Leishmanial Copper P-Type Atpase Plays a Vital Role In
bioRxiv preprint doi: https://doi.org/10.1101/2021.01.01.425060; this version posted January 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 3 The novel leishmanial Copper P-type ATPase plays a vital role in intracellular parasite survival 4 5 Rupam Paul#1, Sourav Banerjee#1, Samarpita Sen1, Pratiksha Dubey2, Anand K Bachhawat2, 6 Rupak Datta$1, Arnab Gupta$1 7 8 1Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 9 West Bengal -741246, India 10 2Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge 11 city, Sector 81, Manauli, PO, Sahibzada Ajit Singh Nagar, Punjab-140306, India 12 13 # contributed equally 14 $Correspondence to 15 Arnab Gupta: [email protected]; Rupak Datta: [email protected] 16 17 18 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.01.425060; this version posted January 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 Abstract 20 Copper is essential for all life forms; however in excess it is extremely toxic. Toxic properties of copper are 21 utilized by hosts against various pathogenic invasions. Leishmania, in its both free-living and intracellular 22 forms was found to exhibit appreciable tolerance towards copper-stress. To determine the mechanism of 23 copper-stress evasion employed by Leishmania we identified and characterized the hitherto unknown Copper- 24 ATPase in Leishmania major and determined its role in parasite’s survival in host macrophage cells. -
Craniofacial Diseases Caused by Defects in Intracellular Trafficking
G C A T T A C G G C A T genes Review Craniofacial Diseases Caused by Defects in Intracellular Trafficking Chung-Ling Lu and Jinoh Kim * Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-515-294-3401 Abstract: Cells use membrane-bound carriers to transport cargo molecules like membrane proteins and soluble proteins, to their destinations. Many signaling receptors and ligands are synthesized in the endoplasmic reticulum and are transported to their destinations through intracellular trafficking pathways. Some of the signaling molecules play a critical role in craniofacial morphogenesis. Not surprisingly, variants in the genes encoding intracellular trafficking machinery can cause craniofacial diseases. Despite the fundamental importance of the trafficking pathways in craniofacial morphogen- esis, relatively less emphasis is placed on this topic, thus far. Here, we describe craniofacial diseases caused by lesions in the intracellular trafficking machinery and possible treatment strategies for such diseases. Keywords: craniofacial diseases; intracellular trafficking; secretory pathway; endosome/lysosome targeting; endocytosis 1. Introduction Citation: Lu, C.-L.; Kim, J. Craniofacial malformations are common birth defects that often manifest as part of Craniofacial Diseases Caused by a syndrome. These developmental defects are involved in three-fourths of all congenital Defects in Intracellular Trafficking. defects in humans, affecting the development of the head, face, and neck [1]. Overt cranio- Genes 2021, 12, 726. https://doi.org/ facial malformations include cleft lip with or without cleft palate (CL/P), cleft palate alone 10.3390/genes12050726 (CP), craniosynostosis, microtia, and hemifacial macrosomia, although craniofacial dys- morphism is also common [2]. -
Plasma Membrane Ca2+ Atpase Isoform 4 (PMCA4) Has an Important Role in Numerous Hallmarks of Pancreatic Cancer
cancers Article Plasma Membrane Ca2+ ATPase Isoform 4 (PMCA4) Has an Important Role in Numerous Hallmarks of Pancreatic Cancer Pishyaporn Sritangos 1 , Eduardo Pena Alarcon 1, Andrew D. James 2, Ahlam Sultan 3, Daniel A. Richardson 1 and Jason I. E. Bruce 1,* 1 Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; [email protected] (P.S.); [email protected] (E.P.A.); [email protected] (D.A.R.) 2 Department of Biology, University of York, Heslington, York YO10 5DD, UK; [email protected] 3 Department of Pharmaceutical Science, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; [email protected] * Correspondence: [email protected]; Tel.:+44-16-12-75-54-84 Received: 13 November 2019; Accepted: 10 January 2020; Published: 16 January 2020 Abstract: Pancreatic ductal adenocarcinoma (PDAC) is largely resistant to standard treatments leading to poor patient survival. The expression of plasma membrane calcium ATPase-4 (PMCA4) is reported to modulate key cancer hallmarks including cell migration, growth, and apoptotic resistance. Data-mining revealed that PMCA4 was over-expressed in pancreatic ductal adenocarcinoma (PDAC) tumors which correlated with poor patient survival. Western blot and RT-qPCR revealed that MIA PaCa-2 cells almost exclusively express PMCA4 making these a suitable cellular model of PDAC with poor patient survival. Knockdown of PMCA4 in MIA PaCa-2 cells (using siRNA) reduced cytosolic 2+ 2+ Ca ([Ca ]i) clearance, cell migration, and sensitized cells to apoptosis, without affecting cell growth.