<<

Noncommutative Values of Observables and Quantum

— seminar at AS 2019 (Nov 2019)

OTTO C. W. KONG — Nat’l Central U, Taiwan STORY BACKGROUND :-

• Physics : quantum gravity/spacetime — quantum nature as discreteness Vs noncommutativity

• Mathematics : of noncommutative algebra — geometric picture unclear

• our results : 1st quantum model of space(time) as noncommutative geometry sure describes Nature — physical space = (symplectic geo.) — ∞-D K¨ahler manifold = 6D noncommutative geometry Noncommutative Geometry

• Duality between Algebra (Observables) ⇔ Geometry (Spacetime) — irreducible representation as (symplectic) space model — rep. of C∗-algebra as observables

• algebra – α(ˆpi, xˆi) • (phase space) – xˆi,ˆpi as noncommutative coordinates ?

• phase space is CP ∞ — (projective) Hilbert space as ∞-D manifold Intuitive Quantum Mechanics Vs Quantum Space(time)

• xˆi,p ˆi for CP ∞ (quantum physical space) — NC from coordinate transformation qn,sn −→ xˆi, pˆi — but ∞ real Vs 6 NC (operator) coordinates

• a with fixed coordinate values — 6 noncommutative values −→ infinite real values — all α(ˆpi, xˆi) has noncommutative number values each a piece of quantum information Intuitive Quantum Mechanics :-

• observables xˆi &p ˆi characterize the states — serve as coordinates variables for phase (symplectic) space

— fix values forx ˆi &p ˆi describe a state

• general observables β(ˆxi, pˆi)

• d 1 Hamiltonian dynamics dσ β = {β,βσ}Ω = ih¯ [β,βσ] ˆ βσ → βt(= H) as the energy observable =⇒ Heisenberg EoM

? Needs Noncommutative Geometry Classical Mechanics as Symplectic Geometry :-

• d i ∂H d i − ∂H Eq. of motion : dt x = ∂pi , dt p = ∂xi

• symplectic/Poisson structure : ( ωij = δij )

i i ∂f ∂Hσ ∂f ∂Hσ {f(x ,p ),Hσ}ω = i i − i i Pi  ∂x ∂p ∂p ∂x 

• d { } from geometry (coordinates indep.) dσ f = f,Hσ ω −→ f values on curves of constant Hσ for each value of σ

— Hσ generates transformations of geometry

• dynamics : energy function → phase sp same at all time Coordinate Transformation : ˆ n n i i fH :(q ,s ) −→ (ˆx , pˆ ) h ˆi i h ˆi i i ↔ φ|x |φ i ↔ φ|p |φ xˆ Hxˆi = 2¯h ,p ˆ Hpˆi = 2¯h

n n n n • states as |φi = z |zni, z = q + is as coordinates

• Hilbert space as d n n n n hφ|β|φi — dσ Hβ = {Hβ,Hβσ (q ,s )}, Hβ (z , z¯ )= 2¯h ∂H ∂H ⇒ d n βt d n βt — Schr¨odinger Eq. = dt q = ∂sn , dt s = − ∂qn

Cirelli et.al. 1990 h∂ H δmn¯ ∂ H • observable algebra as Hβ ?κ Hγ = Hβγ (= ¯ m β 2 n¯ γ ) Noncommutative Symplectic Geometry :-

∂ 1 i ∂ 1 i 1 • ∂xˆi = − ih¯ [ˆp , ·] , ∂pˆi = ih¯ [ˆx , ·], {β,γ}Ω = ih¯ [β,γ] ˆ ˆ d i ∂H d i ∂H =⇒ dt xˆ = ∂pˆi , dt pˆ = − ∂xˆi pip pi ∂V xj ˆ ˆ ˆi j d i ˆ d i (ˆ ) e.g. H = 2m + V (ˆx ) −→ dt xˆ = m , dt pˆ = − ∂xˆi — trivial classical limit ˆ • pull-backs under fH ∗ ∗ ∗ ˆ Ω ˆ ˆ fH ({β,γ} ) = H{β,γ}Ω = {Hβ ,Hγ } = {fH (β), fH (γ)} ˆ∗ ˆ∗ — Hamiltonian vector field XHβ = {·,Hβ } = fH (Xβ )= fH ({·,β}Ω)

— Heisenberg → Schr¨odinger • textbook Heisenberg Vs Schr¨odinger without dt d· 1 1 dt → d· 2¯h (hδφ|β|φi + hφ|β|δφi)= dHβ = Hdβ = 2¯h hφ|dβ|φi n n |δφi as |dφi = dz |zni with constant hφ|φi =z ¯nz (= 2¯h) — differential calculus

ˆ∗ • dHβ = Hdβ = fH (dβ)

• dβ(Xγ ) = Xγ (β) = {β,γ}Ω = −Xβ (γ) = −dγ(Xβ )

Ω(dβ, dγ) = {β,γ}Ω = Ω(Xβ, Xγ ) , Ω(dxˆi, dpˆj ) = δij ˆ∗ — as exact pullbacks ( map under fH to ) e e Ω(dHβ, dHγ ) = {Hβ,Hγ } = Ω(XHβ ,XHγ ) 1 → ∞ / Noncommutative Numbers :-

mn • 1 operator → ∞ matrix elements β → β |zmihzni

• von Neumann (real eigenvalue) measurement — one eigenvalue is useless, needs statistics over an ensemble — best single real number representation → expectation value — but why not use all information ?

Ashtekar & Schilling 1998 • e e − e − [φ](β) = (Hβ , Xβn = i∂nHβ , Xβn¯ = i∂n¯ Hβ , Kmn¯ = i∂m∂n¯ Hβ ) — with a noncommutative product as an isomorphism — ∞ complex/real numbers → 1 noncommutative number Evaluation as an Algebra Homomorphism :- — real number is only an algebraic system

• classical [φ]: f(xi, pi) → IR (observables have real values) 2 2 1 e.g. E = p + x = pp + xx (1-D SHO m = 2 , k = 2) [φ](x)=2, [φ](p)=3 =⇒ [φ](E)=[φ](p2)+[φ](x2)=[φ](p)[φ](p)+[φ](x)[φ](x) = 13

[φ](xipi)=[φ](xi)[φ](pi)=[φ](pi)[φ](xi)=[φ](pixi)

• quantum [φ]: β(ˆxi, pˆi) → ?

[φ](ˆxi)[φ](ˆpi)=[φ](ˆpi)[φ](ˆxi)+[φ](i¯hIˆ)

=⇒ [φ](β(ˆxi, pˆi)) has to be a noncommutative algebra Noncommutative Number Product :-

= 2¯ = 2 ¯ Hβγ h X Xβn Xγn¯ , Xβγ n ih X Xβm Kγnm¯ , n e e e m e e X = 2ih¯ K X , K = 2ih¯ K K . βγ n¯ X βmn¯ γm¯ βγ mn¯ X βln¯ γml¯ e m e e e l e e

Can be Determined Experimentally :-

i • Kβmn¯ = − 2¯h hzn|β|zmi matrix elements f

i m • Xβn = 2¯h z¯ hzm|β|zni state information f

1 m n • Hβ = 2¯h z¯ z hzm|β|zni expectation value Answering Einstein-Bohr :-

• definite values forx ˆi andp ˆi as basic variables — no probability — Heisenberg uncertainty only about derivation from EV

• no hidden variables, but ‘hidden values’ of variables

• fully intuitive QM

• dynamics as geometry, from relativity symmetry — noncommutativity as curvature Lorentz Covariant Quantum Mechanics/ Spacetime

• quantum relativity HR(1, 3)

— Xµ , Pµ , Jµν (= XµPν − Xν Pµ) • pseudo-unitary rep. as in Minkowski spacetime

—x ˆi = xi? = xi + i∂pi ,p ˆi = pi? = pi − i∂xi

xˆ0 = ix4?, pˆ0 = ip4?

• Hilbert space with hh·|·ii = h·|P4|·i — perfect solutions to covariant Harmonic oscillator

• c → ∞ limit gives HR(3) QM at each time value — First Quantum Spacetime Model on firm ground

• projective Hilbert space of negative curvature

• noncommutative symplectic geometry

— can be described along same as HR case

• standard probability interpretation works when restricted to fix time

• classical limit as extension of Einstein theory Fundamental (Special) Quantum Relativity:

cf. Kowalski-Glikman & Smolin ; SO(2, 4) (cf. deformed S.R.) Chryssomalakos & Okon ; O.K.

• contains noncommuting Xµ and Pµ , I

• contains Lorentz symmetry Jµν • stable symmetry, no deformation • G, ¯h, c in structural constants • (Lie algebra) contractions as approximations

SO(2, 4) −→ HR(1, 3) −→ HGH (3) ⊃ G˜(3) ⊃ HR(3) ↓ 1 → ↓ ↓ ( c2 0) (¯h 0) ISO(1, 3) ⊂ S(1, 3) −→ SG(3) ⊃ G(3) • deformation is ‘inverse’ of contraction More Concluding Remarks :

• quantum geometry = noncommutative geometry starting from the simplest and most solid — Q.M.

• noncommutative symplectic geometry from physics understanding metric geometry ?

• → full noncommutativity, dynamic noncommutativity — (? QFT), Planck regime, quantum gravity

? quantum measurement deals with quantum information — a change of perspective similiar to Copernicus’ ? THANK YOU !

well done Otto !