Schubert Calculus and Its Applications in Combinatorics and Representation Theory Guangzhou, China, November 2017 Springer Proceedings in Mathematics & Statistics

Total Page:16

File Type:pdf, Size:1020Kb

Schubert Calculus and Its Applications in Combinatorics and Representation Theory Guangzhou, China, November 2017 Springer Proceedings in Mathematics & Statistics Springer Proceedings in Mathematics & Statistics Jianxun Hu Changzheng Li Leonardo C. Mihalcea Editors Schubert Calculus and Its Applications in Combinatorics and Representation Theory Guangzhou, China, November 2017 Springer Proceedings in Mathematics & Statistics Volume 332 Springer Proceedings in Mathematics & Statistics This book series features volumes composed of selected contributions from workshops and conferences in all areas of current research in mathematics and statistics, including operation research and optimization. In addition to an overall evaluation of the interest, scientific quality, and timeliness of each proposal at the hands of the publisher, individual contributions are all refereed to the high quality standards of leading journals in the field. Thus, this series provides the research community with well-edited, authoritative reports on developments in the most exciting areas of mathematical and statistical research today. More information about this series at http://www.springer.com/series/10533 Jianxun Hu • Changzheng Li • Leonardo C. Mihalcea Editors Schubert Calculus and Its Applications in Combinatorics and Representation Theory Guangzhou, China, November 2017 123 Editors Jianxun Hu Changzheng Li School of Mathematics School of Mathematics Sun Yat-sen University Sun Yat-sen University Guangzhou, Guangdong, China Guangzhou, Guangdong, China Leonardo C. Mihalcea Department of Mathematics Virginia Tech Blacksburg, VA, USA ISSN 2194-1009 ISSN 2194-1017 (electronic) Springer Proceedings in Mathematics & Statistics ISBN 978-981-15-7450-4 ISBN 978-981-15-7451-1 (eBook) https://doi.org/10.1007/978-981-15-7451-1 Mathematics Subject Classification: 14N15, 14M15, 53D45, 17B45, 37K10 © Springer Nature Singapore Pte Ltd. 2020 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface With roots in enumerative geometry and Hilbert’s 15th problem, modern Schubert Calculus studies classical and quantum intersection rings on spaces with symme- tries, such as flag manifolds. The presence of symmetries leads to particularly rich structures, and it connects Schubert Calculus to many branches of mathematics, including algebraic geometry, combinatorics, representation theory, and theoretical physics. For instance, the study of the quantum cohomology ring of a Grassmann manifold combines all these areas in an organic way. The current volume show- cases some of the newest developments in the subject, as presented at the “International Festival in Schubert Calculus”, a conference held at Sun Yat-sen University in Guangzhou, China, during November 6–10, 2017. The event included a 1-day mini-school and a 4-day international conference entitled “Trends in Schubert Calculus”. There were over 80 participants, more than one half of which were international, from countries such as Australia, France, Germany, India, Japan, Korea, Poland, Russia, United Kingdom, and the U.S.A. This event continued the tradition of conferences in Schubert Calculus with large international participation; there were three such conferences in the past decade (Toronto 2010, Osaka 2012 and Bedlewo 2015). The current volume includes 12 papers authored by some of the speakers, covering a large array of topics, including several high-quality surveys. Each of the papers was refereed by two anonymous experts in the field. This volume could not have existed without the combined efforts of the authors and referees, and we are grateful for everyone’s contribution. Problems with roots in classical Schubert Calculus attracted significant attention. The factorial Grothendieck polynomials, which investigate polynomials repre- senting Schubert classes in K theory, were discussed in the paper by Matsumura and Sugimoto. The related problem of finding formulas for cohomology classes of various degeneracy loci is addressed in a paper by Darondeau and Pragacz. Yet another problem with roots in Schubert’s classical work, that of finding formulas for the order of contact between manifolds, is investigated in the paper by Domitrz, Mormul, and Pragacz. Finally, Duan and Zhao address and survey Schubert’s v vi Preface classical problem of characteristics, and find presentations for the integral coho- mology rings of flag manifolds, including those of exceptional Lie types. There are rich connections between Schubert Calculus and the combinatorics of symmetric functions and polynomials. A survey by Pechenik and Searles highlights the properties of some of the most important bases of polynomials relevant for geometry. Expanding on this, a topic of current high interest is to relate and apply Schubert Calculus methods to problems in (combinatorial and geometric) repre- sentation theory. Three papers in the volume address such connections: Anderson and Nigro investigate the geometric Satake correspondence in relation to minuscule Schubert Calculus; McGlade, Ram, and Yang wrote a survey on the combinatorics and geometry of integrable representations of quantum affine algebras with a particular focus on level 0; this is motivated by Schubert Calculus on semi-infinite flag manifolds. Finally, Su and Zhong wrote a survey showcasing applications of Maulik and Okounkov’s theory of stable envelopes on the cotangent bundle of a flag variety to various problems in geometry and representation theory. This recent direction, which one may call “Cotangent Schubert Calculus”, is closely related to the study of characteristic classes of singular varieties; from this viewpoint, it is studied by Fehér, Rimányi, and Weber. Methods and questions from Schubert Calculus can be adapted to varieties related to flag manifolds or to generalizations of the cohomology ring. A survey by Abe and Horiguchi is investigating the properties of the cohomology rings of Hessenberg varieties; these generalize the usual flag varieties, the Peterson variety, and the Springer fibre. In another direction, Hudson, Matsumura, and Perrin address the problem of defining stable Bott-Samelson classes in the algebraic cobordism; this is closely related to the outstanding problem of defining Schubert classes in more general oriented cohomology theories. Finally, a paper by Kim, Oh, Ueda, and Yoshida gives an expository account of quasimap theory, and proves a generalization of toric residue mirror symmetry to Grassmannians. These papers provide a broad overview of current interests in Schubert Calculus and related areas. We would like to thank again all the anonymous referees for their invaluable help, and the Springer editorial staff for the assistance with various technical parts. Finally, we are grateful to Sun Yat-sen University for generously providing funds for this conference and to Springer Nature for providing us the opportunity to publish these papers. All papers in this volume have been refereed and are in a final form. No version of any of them will be submitted for publication elsewhere. Guangzhou, China Jianxun Hu Guangzhou, China Changzheng Li Blacksburg, USA Leonardo C. Mihalcea May 2020 Contents Factorial Flagged Grothendieck Polynomials ..................... 1 Tomoo Matsumura and Shogo Sugimoto Flag Bundles, Segre Polynomials, and Push-Forwards .............. 17 Lionel Darondeau and Piotr Pragacz Order of Tangency Between Manifolds ......................... 27 Wojciech Domitrz, Piotr Mormul, and Piotr Pragacz On Schubert’s Problem of Characteristics ....................... 43 Haibao Duan and Xuezhi Zhao Asymmetric Function Theory ................................. 73 Oliver Pechenik and Dominic Searles Minuscule Schubert Calculus and the Geometric Satake Correspondence ........................................... 113 Dave Anderson and Antonio Nigro Positive Level, Negative Level and Level Zero .................... 153 Finn McGlade, Arun Ram, and Yaping Yang Stable Bases of the Springer Resolution and Representation Theory .................................................. 195 Changjian Su and Changlong Zhong Characteristic Classes of Orbit Stratifications, the Axiomatic Approach .................................... 223 László M. Fehér, Richárd Rimányi, and Andrzej Weber A Survey of Recent Developments on Hessenberg Varieties .......... 251 Hiraku Abe and Tatsuya Horiguchi vii viii
Recommended publications
  • Schubert Calculus According to Schubert
    Schubert Calculus according to Schubert Felice Ronga February 16, 2006 Abstract We try to understand and justify Schubert calculus the way Schubert did it. 1 Introduction In his famous book [7] “Kalk¨ulder abz¨ahlende Geometrie”, published in 1879, Dr. Hermann C. H. Schubert has developed a method for solving problems of enumerative geometry, called Schubert Calculus today, and has applied it to a great number of cases. This book is self-contained : given some aptitude to the mathematical reasoning, a little geometric intuition and a good knowledge of the german language, one can enjoy the many enumerative problems that are presented and solved. Hilbert’s 15th problems asks to give a rigourous foundation to Schubert’s method. This has been largely accomplished using intersection theory (see [4],[5], [2]), and most of Schubert’s calculations have been con- firmed. Our purpose is to understand and justify the very method that Schubert has used. We will also step through his calculations in some simple cases, in order to illustrate Schubert’s way of proceeding. Here is roughly in what Schubert’s method consists. First of all, we distinguish basic elements in the complex projective space : points, planes, lines. We shall represent by symbols, say x, y, conditions (in german : Bedingungen) that some geometric objects have to satisfy; the product x · y of two conditions represents the condition that x and y are satisfied, the sum x + y represents the condition that x or y is satisfied. The conditions on the basic elements that can be expressed using other basic elements (for example : the lines in space that must go through a given point) satisfy a number of formulas that can be determined rather easily by geometric reasoning.
    [Show full text]
  • Cup Products in Surface Bundles, Higher Johnson Invariants, and Mmm Classes
    CUP PRODUCTS IN SURFACE BUNDLES, HIGHER JOHNSON INVARIANTS, AND MMM CLASSES NICK SALTER Abstract. In this paper we prove a family of results connecting the problem of computing cup products in surface bundles to various other objects that appear in the theory of the cohomology of the mapping class group Modg and the Torelli group Ig. We show that N. Kawazumi's twisted MMM class m0;k can be used to compute k-fold cup products in surface bundles, and that m0;k provides an extension of the higher Johnson invariant τk−2 k−2 k to H (Modg;∗; ^ H1). These results are used to show that the behavior of the restriction 4i 1 4i+2 of the even MMM classes e2i to H (Ig ) is completely determined by Im(τ4i) ≤ ^ H1, and to give a partial answer to a question of D. Johnson. We also use these ideas to show that all surface bundles with monodromy in the Johnson kernel Kg;∗ have cohomology rings isomorphic to that of a trivial bundle, implying the vanishing of all τi when restricted to Kg;∗. 1. Introduction The theme of this paper is the central role that the structure of the cup product in surface bundles plays in the understanding of the cohomology of the mapping class group and its subgroups. We use this perspective to gain a new understanding of the relationships between several well-known cohomology classes, and we also use these ideas to study the topology of surface bundles. 1 Denote by Modg (resp. Modg;∗; Modg) the mapping class group of a closed oriented surface of genus g (resp.
    [Show full text]
  • Derived Categories. Winter 2008/09
    Derived categories. Winter 2008/09 Igor V. Dolgachev May 5, 2009 ii Contents 1 Derived categories 1 1.1 Abelian categories .......................... 1 1.2 Derived categories .......................... 9 1.3 Derived functors ........................... 24 1.4 Spectral sequences .......................... 38 1.5 Exercises ............................... 44 2 Derived McKay correspondence 47 2.1 Derived category of coherent sheaves ................ 47 2.2 Fourier-Mukai Transform ...................... 59 2.3 Equivariant derived categories .................... 75 2.4 The Bridgeland-King-Reid Theorem ................ 86 2.5 Exercises ............................... 100 3 Reconstruction Theorems 105 3.1 Bondal-Orlov Theorem ........................ 105 3.2 Spherical objects ........................... 113 3.3 Semi-orthogonal decomposition ................... 121 3.4 Tilting objects ............................ 128 3.5 Exercises ............................... 131 iii iv CONTENTS Lecture 1 Derived categories 1.1 Abelian categories We assume that the reader is familiar with the concepts of categories and func- tors. We will assume that all categories are small, i.e. the class of objects Ob(C) in a category C is a set. A small category can be defined by two sets Mor(C) and Ob(C) together with two maps s, t : Mor(C) → Ob(C) defined by the source and the target of a morphism. There is a section e : Ob(C) → Mor(C) for both maps defined by the identity morphism. We identify Ob(C) with its image under e. The composition of morphisms is a map c : Mor(C) ×s,t Mor(C) → Mor(C). There are obvious properties of the maps (s, t, e, c) expressing the axioms of associativity and the identity of a category. For any A, B ∈ Ob(C) we denote −1 −1 by MorC(A, B) the subset s (A) ∩ t (B) and we denote by idA the element e(A) ∈ MorC(A, A).
    [Show full text]
  • A Combinatorial Proof That Schubert Vs. Schur Coefficients Are Nonnegative
    A COMBINATORIAL PROOF THAT SCHUBERT VS. SCHUR COEFFICIENTS ARE NONNEGATIVE SAMI ASSAF, NANTEL BERGERON, AND FRANK SOTTILE Abstract. We give a combinatorial proof that the product of a Schubert polynomial by a Schur polynomial is a nonnegative sum of Schubert polynomials. Our proof uses Assaf’s theory of dual equivalence to show that a quasisymmetric function of Bergeron and Sottile is Schur-positive. By a geometric comparison theorem of Buch and Mihalcea, this implies the nonnegativity of Gromov-Witten invariants of the Grassmannian. Dedicated to the memory of Alain Lascoux Introduction A Littlewood-Richardson coefficient is the multiplicity of an irreducible representa- tion of the general linear group in a tensor product of two irreducible representations, and is thus a nonnegative integer. Littlewood and Richardson conjectured a formula for these coefficients in 1934 [25], which was proven in the 1970’s by Thomas [33] and Sch¨utzenberger [31]. Since Littlewood-Richardson coefficients may be defined combina- torially as the coefficients of Schur functions in the expansion of a product of two Schur functions, these proofs of the Littlewood-Richardson rule furnish combinatorial proofs of the nonnegativity of Schur structure constants. The Littlewood-Richardson coefficients are also the structure constants for expressing products in the cohomology of a Grassmannian in terms of its basis of Schubert classes. Independent of the Littlewood-Richardson rule, these Schubert structure constants are known to be nonnegative integers through geometric arguments. The integral cohomol- ogy ring of any flag manifold has a Schubert basis and again geometry implies that the corresponding Schubert structure constants are nonnegative integers.
    [Show full text]
  • Signed Exceptional Sequences and the Cluster Morphism Category
    SIGNED EXCEPTIONAL SEQUENCES AND THE CLUSTER MORPHISM CATEGORY KIYOSHI IGUSA AND GORDANA TODOROV Abstract. We introduce signed exceptional sequences as factorizations of morphisms in the cluster morphism category. The objects of this category are wide subcategories of the module category of a hereditary algebra. A morphism [T ]: A!B is an equivalence class of rigid objects T in the cluster category of A so that B is the right hom-ext perpendicular category of the underlying object jT j 2 A. Factorizations of a morphism [T ] are given by totally orderings of the components of T . This is equivalent to a \signed exceptional sequences." For an algebra of finite representation type, the geometric realization of the cluster morphism category is the Eilenberg-MacLane space with fundamental group equal to the \picture group" introduced by the authors in [IOTW15b]. Contents Introduction 2 1. Definition of cluster morphism category 4 1.1. Wide subcategories 4 1.2. Composition of cluster morphisms 7 1.3. Proof of Proposition 1.8 8 2. Signed exceptional sequences 16 2.1. Definition and basic properties 16 2.2. First main theorem 17 2.3. Permutation of signed exceptional sequences 19 2.4. c -vectors 20 3. Classifying space of the cluster morphism category 22 3.1. Statement of the theorem 23 3.2. HNN extensions and outline of proof 24 3.3. Definitions and proofs 26 3.4. Classifying space of a category and Lemmas 3.18, 3.19 29 3.5. Key lemma 30 3.6. G(S) is an HNN extension of G(S0) 32 4.
    [Show full text]
  • Representations of Semisimple Lie Algebras in Prime Characteristic and the Noncommutative Springer Resolution
    Annals of Mathematics 178 (2013), 835{919 http://dx.doi.org/10.4007/annals.2013.178.3.2 Representations of semisimple Lie algebras in prime characteristic and the noncommutative Springer resolution By Roman Bezrukavnikov and Ivan Mirkovic´ To Joseph Bernstein with admiration and gratitude Abstract We prove most of Lusztig's conjectures on the canonical basis in homol- ogy of a Springer fiber. The conjectures predict that this basis controls numerics of representations of the Lie algebra of a semisimple algebraic group over an algebraically closed field of positive characteristic. We check this for almost all characteristics. To this end we construct a noncom- mutative resolution of the nilpotent cone which is derived equivalent to the Springer resolution. On the one hand, this noncommutative resolution is closely related to the positive characteristic derived localization equiva- lences obtained earlier by the present authors and Rumynin. On the other hand, it is compatible with the t-structure arising from an equivalence with the derived category of perverse sheaves on the affine flag variety of the Langlands dual group. This equivalence established by Arkhipov and the first author fits the framework of local geometric Langlands duality. The latter compatibility allows one to apply Frobenius purity theorem to deduce the desired properties of the basis. We expect the noncommutative counterpart of the Springer resolution to be of independent interest from the perspectives of algebraic geometry and geometric Langlands duality. Contents 0. Introduction 837 0.1. Notations and conventions 841 1. t-structures on cotangent bundles of flag varieties: statements and preliminaries 842 R.B.
    [Show full text]
  • From Triangulated Categories to Cluster Algebras
    FROM TRIANGULATED CATEGORIES TO CLUSTER ALGEBRAS PHILIPPE CALDERO AND BERNHARD KELLER Abstract. The cluster category is a triangulated category introduced for its combinato- rial similarities with cluster algebras. We prove that a cluster algebra A of finite type can be realized as a Hall algebra, called exceptional Hall algebra, of the cluster category. This realization provides a natural basis for A. We prove new results and formulate conjectures on ‘good basis’ properties, positivity, denominator theorems and toric degenerations. 1. Introduction Cluster algebras were introduced by S. Fomin and A. Zelevinsky [12]. They are subrings of the field Q(u1, . , um) of rational functions in m indeterminates, and defined via a set of generators constructed inductively. These generators are called cluster variables and are grouped into subsets of fixed finite cardinality called clusters. The induction process begins with a pair (x,B), called a seed, where x is an initial cluster and B is a rectangular matrix with integer coefficients. The first aim of the theory was to provide an algebraic framework for the study of total positivity and of Lusztig/Kashiwara’s canonical bases of quantum groups. The first result is the Laurent phenomenon which asserts that the cluster variables, and thus the cluster ±1 ±1 algebra they generate, are contained in the Laurent polynomial ring Z[u1 , . , um ]. Since its foundation, the theory of cluster algebras has witnessed intense activity, both in its own foundations and in its connections with other research areas. One important aim has been to prove, as in [1], [31], that many algebras encountered in the theory of reductive Lie groups have (at least conjecturally) a structure of cluster algebra with an explicit seed.
    [Show full text]
  • On Milnor Classes of Constructible Functions
    Universidade Federal da Paraíba Universidade Federal de Campina Grande Programa Associado de Pós-Graduação em Matemática Doutorado em Matemática On Milnor classes of constructible functions por Mauri Pereira da Silva João Pessoa - PB Setembro/2019 On Milnor classes of constructible functions por Mauri Pereira da Silva y sob orientação do Prof. Dr. Roberto Callejas Bedregal Tese apresentada ao Corpo Docente do Programa Associado de Pós-Graduação em Matemática - UFPB/UFCG, como requisito parcial para obtenção do título de Doutor em Matemática. João Pessoa - PB Setembro/2019 yEste trabalho contou com apoio nanceiro da CAPES ii Catalogação na publicação Seção de Catalogação e Classificação S586o Silva, Mauri Pereira da. On Milnor classes of constructible functions / Mauri Pereira da Silva. - João Pessoa, 2019. 77 f. Orientação: Roberto Callejas-Bedregal. Tese (Doutorado) - UFPB/CCEN. 1. Número de Milnor. 2. Classe de Milnor. 3. Classe de Segre. 4. Classes características. 5. Variedades singulares. I. Callejas-Bedregal, Roberto. II. Título. UFPB/BC Resumo O principal objetivo deste trabalho é apresentar uma generalização do importante inva- riante da Teoria das Singularidades, chamado número de Milnor. Tal generalização é o que chamamos de número de Milnor logarítmico. Bem como explanar sobre denições um pouco mais gerais no contexto de funções construtíveis, apresentando observações, exemplos e propriedades. Dentre os conceitos que trabalhamos estão também a classe de Fulton-Johnson, a classe de Schwartz-MacPherson, a classe de Milnor e a classe de Segre. Palavras-chave: Número de Milnor; Classe de Milnor; Classe de Segre; Classes ca- racterísticas; variedades singulares. iv Abstract The main goal of this thesis is to present a generalization of the important invariant of the singularity theory, called the Milnor number.
    [Show full text]
  • Genomic Tableaux As a Semistandard Analogue of Increasing Tableaux
    GENOMIC TABLEAUX OLIVER PECHENIK AND ALEXANDER YONG ABSTRACT. We explain how genomic tableaux [Pechenik-Yong ’15] are a semistandard com- plement to increasing tableaux [Thomas-Yong ’09]. From this perspective, one inherits ge- nomic versions of jeu de taquin, Knuth equivalence, infusion and Bender-Knuth involu- tions, as well as Schur functions from (shifted) semistandard Young tableaux theory. These are applied to obtain new Littlewood-Richardson rules for K-theory Schubert calculus of Grassmannians (after [Buch ’02]) and maximal orthogonal Grassmannians (after [Clifford- Thomas-Yong ’14], [Buch-Ravikumar ’12]). For the unsolved case of Lagrangian Grassman- nians, sharp upper and lower bounds using genomic tableaux are conjectured. CONTENTS 1. Introduction 2 1.1. History and overview 2 1.2. Genomic tableau results 3 1.3. Genomic rules in Schubert calculus 4 2. K-(semi)standardization maps 5 3. Genomic words and Knuth equivalence 7 4. Genomic jeu de taquin 8 5. Three proofs of the Genomic Littlewood-Richardson rule (Theorem1.4) 10 5.1. Proof 1: Bijection with increasing tableaux 10 5.2. Proof 2: Bijection with set-valued tableaux 11 5.3. Proof 3: Bijection with puzzles 13 6. Infusion, Bender-Knuth involutions and the genomic Schur function 14 arXiv:1603.08490v1 [math.CO] 28 Mar 2016 7. Shifted genomic tableaux 15 8. MaximalorthogonalandLagrangianGrassmannians 18 9. Proof of OG Genomic Littlewood-Richardson rule (Theorem 8.1) 21 9.1. Shifted K-(semi)standardization maps 21 9.2. Genomic P -Knuth equivalence 23 9.3. Shifted jeu de taquin and the conclusion of the proof 27 Acknowledgments 28 References 28 Date: March 28, 2016.
    [Show full text]
  • The Contributions of Stanley to the Fabric of Symmetric and Quasisymmetric Functions
    THE CONTRIBUTIONS OF STANLEY TO THE FABRIC OF SYMMETRIC AND QUASISYMMETRIC FUNCTIONS SARA C. BILLEY AND PETER R. W. MCNAMARA A E S A D I Dedicated to L N T C H R on the occasion of his 70th birthday. Y R Abstract. We weave together a tale of two rings, SYM and QSYM, following one gold thread spun by Richard Stanley. The lesson we learn from this tale is that \Combinatorial objects like to be counted by quasisymmetric functions." 1. Introduction The twentieth century was a remarkable era for the theory of symmetric func- tions. Schur expanded the range of applications far beyond roots of polynomials to the representation theory of GLn and Sn and beyond. Specht, Hall and Mac- donald unified the algebraic theory making it far more accessible. Lesieur recog- nized the connection between Schur functions and the topology of Grassmannian manifolds spurring interest and further developments by Borel, Bott, Bernstein{ Gelfand{Gelfand, Demazure and many others. Now, symmetric functions routinely appear in many aspects of mathematics and theoretical physics, and have significant importance in quantum computation. In that era of mathematical giants, Richard Stanley's contributions to symmet- ric functions are shining examples of how enumerative combinatorics has inspired and influenced some of the best work of the century. In this article, we focus on a few of the gems that continue to grow in importance over time. Specifically, we survey some results and applications for Stanley symmetric functions, chromatic symmetric functions, P -partitions, generalized Robinson{Schensted{Knuth corre- spondence, and flag symmetry of posets.
    [Show full text]
  • The Bogomolov-Prokhorov Invariant of Surfaces As Equivariant Cohomology
    Bull. Korean Math. Soc. 54 (2017), No. 5, pp. 1725{1741 https://doi.org/10.4134/BKMS.b160689 pISSN: 1015-8634 / eISSN: 2234-3016 THE BOGOMOLOV-PROKHOROV INVARIANT OF SURFACES AS EQUIVARIANT COHOMOLOGY Evgeny Shinder Abstract. For a complex smooth projective surface M with an action of a finite cyclic group G we give a uniform proof of the isomorphism between 1 2 the invariant H (G; H (M; Z)) and the first cohomology of the divisors fixed by the action, using G-equivariant cohomology. This generalizes the main result of Bogomolov and Prokhorov [4]. 1. Introduction Let M be a smooth projective complex variety and G be a finite group acting faithfully on M. In this note we consider the cohomology group 1 2 (1.1) H (G; H (M; Z)) of the singular cohomology H2(M; Z) considered as a G-module. It is easy to see that this cohomology group is a stable birational invariant of the pair (G; M) (see Section 2). In a slightly different context, when M is defined over an arbitrary field K, the analogous group H1(Gal(Ksep=K); P ic(M)) has been considered by Manin who used it to study rationality of del Pezzo surfaces over K [9, 10]. Bogomolov and Prokhorov used the cohomology group (1.2) H1(G; P ic(M)) in [4] when M is a smooth rational surface and G is a finite group to study conjugacy classes in the Cremona groups. Note that for such a surface we have a canonical isomorphism H2(M; Z) ' P ic(M) so that in this case (1.1) and (1.2) are the same.
    [Show full text]
  • Chern-Schwartz-Macpherson Classes for Schubert Cells in Flag Manifolds
    CHERN-SCHWARTZ-MACPHERSON CLASSES FOR SCHUBERT CELLS IN FLAG MANIFOLDS PAOLO ALUFFI AND LEONARDO C. MIHALCEA Abstract. We obtain an algorithm describing the Chern-Schwartz-MacPherson (CSM) classes of Schubert cells in generalized flag manifolds G B. In analogy to how the ordinary { divided di↵erence operators act on Schubert classes, each CSM class of a Schubert class of a Schubert cell is obtained by applying certain Demazure-Lusztig type operators to the CSM class of a cell of dimension one less. By functoriality, we deduce algorithmic expressions for CSM classes of Schubert cells in any flag manifold G P . We conjecture { that the CSM classes of Schubert cells are an e↵ective combination of (homology) Schubert classes, and prove that this is the case in several classes of examples. 1. Introduction A classical problem in Algebraic Geometry is to define characteristic classes of singular algebraic varieties generalizing the notion of the total Chern class of the tangent bundle of a non-singular variety. The existence of a functorial theory of Chern classes for pos- sibly singular varieties was conjectured by Grothendieck and Deligne, and established by R. MacPherson [Mac74]. This theory associates a class c ' H X with every con- ˚p qP ˚p q structible function ' on X, such that c 11 X c TX X if X is a smooth compact complex variety. (The theory was later extended˚p q“ top arbitraryqXr s algebraically closed fields of characteristic 0, with values in the Chow group [Ken90], [Alu06b].) The strong functorial- ity properties satisfied by these classes determine them uniquely; we refer to 3 below for § details.
    [Show full text]