Download Biopython Tutorial

Total Page:16

File Type:pdf, Size:1020Kb

Download Biopython Tutorial BioPython About the Tutorial Biopython is an open-source python tool mainly used in bioinformatics field. This tutorial walks through the basics of Biopython package, overview of bioinformatics, sequence manipulation and plotting, population genetics, cluster analysis, genome analysis, connecting with BioSQL databases and finally concludes with some examples. Audience This tutorial is prepared for professionals who are aspiring to make a career in the field of bioinformatics programming using python as programming tool. This tutorial is intended to make you comfortable in getting started with the Biopython concepts and its various functions. Prerequisites Before proceeding with the various types of concepts given in this tutorial, it is being assumed that the readers are already aware about bioinformatics. In addition to this, it will be very helpful if the readers have a sound knowledge on Python. Copyright & Disclaimer Copyright 2018 by Tutorials Point (I) Pvt. Ltd. All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any contents or a part of contents of this e-book in any manner without written consent of the publisher. We strive to update the contents of our website and tutorials as timely and as precisely as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our website or its contents including this tutorial. If you discover any errors on our website or in this tutorial, please notify us at [email protected] i BioPython Table of Contents About the Tutorial ............................................................................................................................................ i Audience ........................................................................................................................................................... i Prerequisites ..................................................................................................................................................... i Copyright & Disclaimer ..................................................................................................................................... i Table of Contents ............................................................................................................................................ ii 1. Biopython – Introduction .......................................................................................................................... 1 Features ........................................................................................................................................................... 1 Goals ................................................................................................................................................................ 1 Advantages ...................................................................................................................................................... 2 Sample Case Study .......................................................................................................................................... 2 2. Biopython – Installation ............................................................................................................................ 3 3. Biopython – Creating Simple Application .................................................................................................. 6 4. Biopython – Sequence .............................................................................................................................. 8 Alphabet Module ............................................................................................................................................. 8 Basic Operations ............................................................................................................................................ 10 5. Biopython – Advanced Sequence Operations.......................................................................................... 13 Complement and Reverse Complement ....................................................................................................... 13 GC Content .................................................................................................................................................... 14 Transcription ................................................................................................................................................. 14 Translation ..................................................................................................................................................... 14 6. Biopython – Sequence I/O Operations .................................................................................................... 17 SeqRecord ...................................................................................................................................................... 17 Parsing Sequence File Formats ...................................................................................................................... 17 FASTA ............................................................................................................................................................. 17 GenBank ........................................................................................................................................................ 19 7. Biopython – Sequence Alignments .......................................................................................................... 21 ii BioPython Parsing Sequence Alignment ......................................................................................................................... 21 Multiple Alignments ...................................................................................................................................... 22 Pairwise Sequence Alignment ....................................................................................................................... 23 Support for Sequence Alignment Tools ......................................................................................................... 25 8. Biopython – Overview of BLAST .............................................................................................................. 27 Running over Internet ................................................................................................................................... 27 Connecting and Searching ............................................................................................................................. 28 Running Standalone BLAST ............................................................................................................................ 30 Parsing BLAST Result ..................................................................................................................................... 33 9. Biopython – Entrez Database .................................................................................................................. 35 Database Connection Steps ........................................................................................................................... 35 Search Database ............................................................................................................................................ 37 Fetch Records ................................................................................................................................................ 39 10. Biopython – PDB Module ........................................................................................................................ 40 Protein Structure File Formats ...................................................................................................................... 40 mmCIF Parser ................................................................................................................................................ 40 PDB Parser ..................................................................................................................................................... 41 PDB Structure ................................................................................................................................................ 42 Model ............................................................................................................................................................ 42 Chain .............................................................................................................................................................. 43 Residue .......................................................................................................................................................... 43 Atoms ............................................................................................................................................................ 43 11. Biopython – Motif Objects ...................................................................................................................... 44 Creating Simple DNA Motif ..........................................................................................................................
Recommended publications
  • Python Data Analytics Open a File for Reading: Infile = Open("Input.Txt", "R")
    DATA 301: Data Analytics (2) Python File Input/Output DATA 301 Many data processing tasks require reading and writing to files. Introduction to Data Analytics I/O Type Python Data Analytics Open a file for reading: infile = open("input.txt", "r") Dr. Ramon Lawrence Open a file for writing: University of British Columbia Okanagan outfile = open("output.txt", "w") [email protected] Open a file for read/write: myfile = open("data.txt", "r+") DATA 301: Data Analytics (3) DATA 301: Data Analytics (4) Reading from a Text File (as one String) Reading from a Text File (line by line) infile = open("input.txt", "r") infile = open("input.txt", "r") for line in infile: print(line.strip('\n')) val = infile.read() Read all file as one string infile.close() print(val) infile.close() Close file # Alternate syntax - will auto-close file with open("input.txt", "r") as infile: for line in infile: print(line.strip('\n')) DATA 301: Data Analytics (5) DATA 301: Data Analytics (6) Writing to a Text File Other File Methods outfile = open("output.txt", "w") infile = open("input.txt", "r") for n in range(1,11): # Check if a file is closed outfile.write(str(n) + "\n") print(infile.closed)# False outfile.close() # Read all lines in the file into a list lines = infile.readlines() infile.close() print(infile.closed)# True DATA 301: Data Analytics (7) DATA 301: Data Analytics (8) Use Split to Process a CSV File Using csv Module to Process a CSV File with open("data.csv", "r") as infile: import csv for line in infile: line = line.strip(" \n") with open("data.csv", "r") as infile: fields = line.split(",") csvfile = csv.reader(infile) for i in range(0,len(fields)): for row in csvfile: fields[i] = fields[i].strip() if int(row[0]) > 1: print(fields) print(row) DATA 301: Data Analytics (9) DATA 301: Data Analytics (10) List all Files in a Directory Python File I/O Question Question: How many of the following statements are TRUE? import os print(os.listdir(".")) 1) A Python file is automatically closed for you.
    [Show full text]
  • Biopython BOSC 2007
    The 8th annual Bioinformatics Open Source Conference (BOSC 2007) 18th July, Vienna, Austria Biopython Project Update Peter Cock, MOAC Doctoral Training Centre, University of Warwick, UK Talk Outline What is python? What is Biopython? Short history Project organisation What can you do with it? How can you contribute? Acknowledgements The 8th annual Bioinformatics Open Source Conference Biopython Project Update @ BOSC 2007, Vienna, Austria What is Python? High level programming language Object orientated Open Source, free ($$$) Cross platform: Linux, Windows, Mac OS X, … Extensible in C, C++, … The 8th annual Bioinformatics Open Source Conference Biopython Project Update @ BOSC 2007, Vienna, Austria What is Biopython? Set of libraries for computational biology Open Source, free ($$$) Cross platform: Linux, Windows, Mac OS X, … Sibling project to BioPerl, BioRuby, BioJava, … The 8th annual Bioinformatics Open Source Conference Biopython Project Update @ BOSC 2007, Vienna, Austria Popularity by Google Hits Python 98 million Biopython 252,000 Perl 101 million BioPerlBioPerl 610,000 Ruby 101 million BioRuby 122,000 Java 289 million BioJava 185,000 Both Perl and Python are strong at text Python may have the edge for numerical work (with the Numerical python libraries) The 8th annual Bioinformatics Open Source Conference Biopython Project Update @ BOSC 2007, Vienna, Austria Biopython history 1999 : Started by Jeff Chang & Andrew Dalke 2000 : Biopython 0.90, first release 2001 : Biopython 1.00, “semi-complete” 2002
    [Show full text]
  • The Bioperl Toolkit: Perl Modules for the Life Sciences
    Downloaded from genome.cshlp.org on January 25, 2012 - Published by Cold Spring Harbor Laboratory Press The Bioperl Toolkit: Perl Modules for the Life Sciences Jason E. Stajich, David Block, Kris Boulez, et al. Genome Res. 2002 12: 1611-1618 Access the most recent version at doi:10.1101/gr.361602 Supplemental http://genome.cshlp.org/content/suppl/2002/10/20/12.10.1611.DC1.html Material References This article cites 14 articles, 9 of which can be accessed free at: http://genome.cshlp.org/content/12/10/1611.full.html#ref-list-1 Article cited in: http://genome.cshlp.org/content/12/10/1611.full.html#related-urls Email alerting Receive free email alerts when new articles cite this article - sign up in the box at the service top right corner of the article or click here To subscribe to Genome Research go to: http://genome.cshlp.org/subscriptions Cold Spring Harbor Laboratory Press Downloaded from genome.cshlp.org on January 25, 2012 - Published by Cold Spring Harbor Laboratory Press Resource The Bioperl Toolkit: Perl Modules for the Life Sciences Jason E. Stajich,1,18,19 David Block,2,18 Kris Boulez,3 Steven E. Brenner,4 Stephen A. Chervitz,5 Chris Dagdigian,6 Georg Fuellen,7 James G.R. Gilbert,8 Ian Korf,9 Hilmar Lapp,10 Heikki Lehva¨slaiho,11 Chad Matsalla,12 Chris J. Mungall,13 Brian I. Osborne,14 Matthew R. Pocock,8 Peter Schattner,15 Martin Senger,11 Lincoln D. Stein,16 Elia Stupka,17 Mark D. Wilkinson,2 and Ewan Birney11 1University Program in Genetics, Duke University, Durham, North Carolina 27710, USA; 2National Research Council of
    [Show full text]
  • Structuration Écologique Et Évolutive Des Symbioses Mycorhiziennes Des
    Universit´ede La R´eunion { Ecole´ doctorale Sciences Technologie Sant´e{ Facult´edes Sciences et des Technologies Structuration ´ecologique et ´evolutive des symbioses mycorhiziennes des orchid´ees tropicales Th`ese de doctorat pr´esent´eeet soutenue publiquement le 19 novembre 2010 pour l'obtention du grade de Docteur de l'Universit´ede la R´eunion (sp´ecialit´eBiologie des Populations et Ecologie)´ par Florent Martos Composition du jury Pr´esidente: Mme Pascale Besse, Professeur `al'Universit´ede La R´eunion Rapporteurs : Mme Marie-Louise Cariou, Directrice de recherche au CNRS de Gif-sur-Yvette M. Raymond Tremblay, Professeur `al'Universit´ede Porto Rico Examinatrice : Mme Pascale Besse, Professeur `al'Universit´ede La R´eunion Directeurs : M. Thierry Pailler, Ma^ıtre de conf´erences HDR `al'Universit´ede La R´eunion M. Marc-Andr´e Selosse, Professeur `al'Universit´ede Montpellier Laboratoire d'Ecologie´ Marine Institut de Recherche pour le D´eveloppement 2 R´esum´e Les plantes n'exploitent pas seules les nutriments du sol, mais d´ependent de champignons avec lesquels elles forment des symbioses mycorhiziennes dans leurs racines. C'est en particulier vrai pour les 25 000 esp`ecesd'orchid´eesactuelles qui d´ependent toutes de champignons mycorhiziens pour accomplir leur cycle de vie. Elles produisent des graines microscopiques qui n'ont pas les ressources nutritives pour germer, mais qui d´ependent de la pr´esencede partenaires ad´equatspour nourrir l'embryon (h´et´erotrophie)jusqu’`al'apparition des feuilles (autotrophie). Les myco- rhiziens restent pr´esents dans les racines des adultes o`uils contribuent `ala nutrition, ce qui permet d'´etudierplus facilement la diversit´edes symbiotes `al'aide des ou- tils g´en´etiques.Conscients des biais des ´etudesen faveur des r´egionstemp´er´ees, nous avons ´etudi´ela diversit´edes mycorhiziens d'orchid´eestropicales `aLa R´eunion.
    [Show full text]
  • Bioinformatics and Computational Biology with Biopython
    Biopython 1 Bioinformatics and Computational Biology with Biopython Michiel J.L. de Hoon1 Brad Chapman2 Iddo Friedberg3 [email protected] [email protected] [email protected] 1 Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan 2 Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA 3 The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA Keywords: Python, scripting language, open source 1 Introduction In recent years, high-level scripting languages such as Python, Perl, and Ruby have gained widespread use in bioinformatics. Python [3] is particularly useful for bioinformatics as well as computational biology because of its numerical capabilities through the Numerical Python project [1], in addition to the features typically found in scripting languages. Because of its clear syntax, Python is remarkably easy to learn, making it suitable for occasional as well as experienced programmers. The open-source Biopython project [2] is an international collaboration that develops libraries for Python to facilitate common tasks in bioinformatics. 2 Summary of current features of Biopython Biopython contains parsers for a large number of file formats such as BLAST, FASTA, Swiss-Prot, PubMed, KEGG, GenBank, AlignACE, Prosite, LocusLink, and PDB. Sequences are described by a standard object-oriented representation, creating an integrated framework for manipulating and ana- lyzing such sequences. Biopython enables users to
    [Show full text]
  • Biopython Project Update 2013
    Biopython Project Update 2013 Peter Cock & the Biopython Developers, BOSC 2013, Berlin, Germany Twitter: @pjacock & @biopython Introduction 2 My Employer After PhD joined Scottish Crop Research Institute In 2011, SCRI (Dundee) & MLURI (Aberdeen) merged as The James Hutton Institute Government funded research institute I work mainly on the genomics of Plant Pathogens I use Biopython in my day to day work More about this in tomorrow’s panel discussion, “Strategies for Funding and Maintaining Open Source Software” 3 Biopython Open source bioinformatics library for Python Sister project to: BioPerl BioRuby BioJava EMBOSS etc (see OBF Project BOF meeting tonight) Long running! 4 Brief History of Biopython 1999 - Started by Andrew Dalke & Jef Chang 2000 - First release, announcement publication Chapman & Chang (2000). ACM SIGBIO Newsletter 20, 15-19 2001 - Biopython 1.00 2009 - Application note publication Cock et al. (2009) DOI:10.1093/bioinformatics/btp163 2011 - Biopython 1.57 and 1.58 2012 - Biopython 1.59 and 1.60 2013 - Biopython 1.61 and 1.62 beta 5 Recap from last BOSC 2012 Eric Talevich presented in Boston Biopython 1.58, 1.59 and 1.60 Visualization enhancements for chromosome and genome diagrams, and phylogenetic trees More file format parsers BGZF compression Google Summer of Code students ... Bio.Phylo paper submitted and in review ... Biopython working nicely under PyPy 1.9 ... 6 Publications 7 Bio.Phylo paper published Talevich et al (2012) DOI:10.1186/1471-2105-13-209 Talevich et al. BMC Bioinformatics 2012, 13:209 http://www.biomedcentral.com/1471-2105/13/209 SOFTWARE OpenAccess Bio.Phylo: A unified toolkit for processing, analyzing and visualizing phylogenetic trees in Biopython Eric Talevich1*, Brandon M Invergo2,PeterJACock3 and Brad A Chapman4 Abstract Background: Ongoing innovation in phylogenetics and evolutionary biology has been accompanied by a proliferation of software tools, data formats, analytical techniques and web servers.
    [Show full text]
  • Biopython Tutorial and Cookbook
    Biopython Tutorial and Cookbook Jeff Chang, Brad Chapman, Iddo Friedberg, Thomas Hamelryck Last Update{15 June 2003 Contents 1 Introduction 4 1.1 What is Biopython?.........................................4 1.1.1 What can I find in the biopython package.........................4 1.2 Installing Biopython.........................................5 1.3 FAQ..................................................5 2 Quick Start { What can you do with Biopython?6 2.1 General overview of what Biopython provides...........................6 2.2 Working with sequences.......................................6 2.3 A usage example........................................... 10 2.4 Parsing biological file formats.................................... 10 2.4.1 General parser design.................................... 10 2.4.2 Writing your own consumer................................. 11 2.4.3 Making it easier....................................... 13 2.4.4 FASTA files as Dictionaries................................. 14 2.4.5 I love parsing { please don't stop talking about it!.................... 16 2.5 Connecting with biological databases................................ 16 2.6 What to do next........................................... 17 3 Cookbook { Cool things to do with it 18 3.1 BLAST................................................ 18 3.1.1 Running BLAST over the internet............................. 18 3.1.2 Parsing the output from the WWW version of BLAST.................. 19 3.1.3 The BLAST record class................................... 21 3.1.4 Running BLAST
    [Show full text]
  • Lepidosaphes Chinensis Chamberlin: Chinese Mussel Scale Hemiptera: Diaspididae Current Rating: Q Proposed Rating: A
    CALIFORNIA DEPARTMENT OF cdfa FOOD & AGR I CULT URE ~ California Pest Rating Proposal Lepidosaphes chinensis Chamberlin: Chinese mussel scale Hemiptera: Diaspididae Current Rating: Q Proposed Rating: A Comment Period: 5/26/2021 – 7/10/2021 Initiating Event: Lepidosaphes chinensis is frequently intercepted in California on Dracaena plants from Florida, Ecuador, and Asia (China and Thailand). It was collected twice on orchids in Los Angeles County in 1934 and 1935 but it was since eradicated (Gill, 1997). It was also recently found in a nursery in Monterey County in 2011 (California Department of Food and Agriculture). It has not been rated. Therefore, a pest rating proposal is needed. History & Status: Background: The scale Lepidosaphes chinensis is reported to feed on plants in eight families: Arecaceae, Asparagaceae, Elaeagnaceae, Euphorbiaceae, Fabaceae, Magnoliaceae, Orchidaceae, and Pandanaceae (García Morales et al., 2016). Reported hosts Beaucarnea recurvata, Dracaena (including D. braunii, or lucky bamboo), Ficus, Sansevieriana trifasciata, and Yucca elephantipes (California Department of Food and Agriculture; Łabanowski, 2017; Suh and Bombay, 2015). Infestations are reported to cause chlorosis, necrosis, wilting, and black streaks, and heavy infestations cause the death of affected leaves (Malumphy et al., 2012; Stocks, 2014). No reports of economic damage were found, but it is apparent that the value of ornamental plants can be lowered, and this scale was deemed to have the potential to become a significant economic and ecological pest in Florida (Stocks, 2014). CALIFORNIA DEPARTMENT OF cdfa FOOD & AGR I CULT URE ~ Worldwide Distribution: Lepidosaphes chinensis is apparently native to eastern Asia, where it is reported from China, Hong Kong, Laos, Philippines, Singapore, Vietnam, Taiwan, and Thailand (Martin and Lau, 2011; García Morales et al., 2016; Suh and Bombay, 2015).
    [Show full text]
  • July-August Bay Leaf
    July-August 2005 The Bay Leaf California Native Plant Society • East Bay Chapter • Alameda & Contra Costa Counties www.ebcnps.org CALENDAR OF EVENTS Native Here p. 6 Saturday July 16, 10:00 am, field Trip to Cedar Fridays, July 1, 8, 15, 22, 29 and Aug 5, 12, 19, 26 Mountain Native Here Nursery open 9-noon Sunday July 24 at 2 pm, Pioneer Tree Trail, Samuel Saturdays, July 2, 9, 16, 23, 30 and Aug 6, 13, 20, Taylor State Park 27 nursery open 10-1 Saturday August 6 10:00 am, field trip onBlue Oak/ Tuesdays, July 5, 12, 19, 26 and Aug 2, 9, 16, 23, 30 Spengler Trail to Chaparral in Briones Regional Native Here seed collecting, 9 am Park Wednesday August 24 6:30 pm, keying session at Plant Sale Activities p. 6 Native Here Nursery Tuesdays, July 5, 12, 19, 26, 9 am to 2 pm, Merritt College, Oakland Board of Directors’ Meeting Saturday, August 13th, 10 am, Merritt College, Oak- Field Trips p. 5 land Saturday, July 9, 2005, Field Trip to Calaveras Big Trees State Park and Environs MOUNT DIABLO BUCKWHEAT REDISCOVERED Eriogonum truncatum has been dubbed the “Holy Grail I was working on the Mount Diablo project and target- of the East Bay” by Barbara Ertter. For such a delicate ing areas favorable to unusual plants. Further, a close plant, this name is somewhat deceptive. When Seth eye was to be kept for the diabolically elusive Mount Adams of Save Mount Diablo was brought to the site, Diablo Buckwheat that I believed was present in some he was unable to perceive the plant though it stood difficult to reach spot on the mountain.
    [Show full text]
  • Special Status Vascular Plant Surveys and Habitat Modeling in Yosemite National Park, 2003–2004
    National Park Service U.S. Department of the Interior Natural Resource Program Center Special Status Vascular Plant Surveys and Habitat Modeling in Yosemite National Park, 2003–2004 Natural Resource Technical Report NPS/SIEN/NRTR—2010/389 ON THE COVER USGS and NPS joint survey for Tompkins’ sedge (Carex tompkinsii), south side Merced River, El Portal, Mariposa County, California (upper left); Yosemite onion (Allium yosemitense) (upper right); Yosemite lewisia (Lewisia disepala) (lower left); habitat model for mountain lady’s slipper (Cypripedium montanum) in Yosemite National Park, California (lower right). Photographs by: Peggy E. Moore. Special Status Vascular Plant Surveys and Habitat Modeling in Yosemite National Park, 2003–2004 Natural Resource Technical Report NPS/SIEN/NRTR—2010/389 Peggy E. Moore, Alison E. L. Colwell, and Charlotte L. Coulter U.S. Geological Survey Western Ecological Research Center 5083 Foresta Road El Portal, California 95318 October 2010 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Technical Report Series is used to disseminate results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service mission. The series provides contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations.
    [Show full text]
  • Ukiah Western Hills Open Land Acquisition & Limited Development
    Ukiah Western Hills Open Land Acquisition & Limited Development Agreement Draft Initial Study & Mitigated Negative Declaration Attachments April 16, 2021 ATTACHMENT A Existing Site Photographs Existing access road Existing water tank site Existing "house site" on one of the proposed Development Parcels ATTACHMENT B Prepared For: Michelle Irace, Planning Manager Department of Community Development 300 Seminary Avenue, Ukiah, CA 95482 APNs: 001-040-83, 157- 070-01, 157-070-02, and 003-190-01 Prepared by Jacobszoon & Associates, Inc. Alicia Ives Ringstad Senior Wildlife Biologist [email protected] Date: March 11, 2021 Updated: April 8, 2021 Biological Assessment Report Table of Contents Section 1.0: Introduction .................................................................................................................................................................. 2 Section 2.0: Regulations and Descriptions ....................................................................................................................................... 2 2.1 Regulatory Setting ................................................................................................................................................................. 2 2.2 Natural Communities and Sensitive Natural Communities .................................................................................................... 3 2.3 Special-Status Species...........................................................................................................................................................
    [Show full text]
  • Why Do We Want to Use Python for Bioinformatics? Biopython
    Why do we want to use Python for bioinformatics? Some examples: 3d Modeling of proteins and protein dynamics: https://pymol.org/2/ PyMOL 2.3 PyMOL is a user-sponsored molecular visualization system on an open-source foundation. Machine Learning tools: scikit-learn keras Tensorflow Pytorch Biopython https://biopython.org Biopython 1.73 The Biopython Project is an international association of developers of freely available Python (http://w w w . python.org) tools for computational biology. Similarly, there exist BioPerl and BioJava Projects. >>> import Bio from Bio.Seq import Seq #create a sequence object my_seq = Seq('CATGTAGACTAG') #print out some details about it print 'seq %s is %i bases long' % (my_seq, len(my_seq)) print 'reverse complement is %s' % my_seq.reverse_complement() print 'protein translation is %s' % my_seq.translate() ###OUTPUT seq CATGTAGACTAG is 12 bases long reverse complement is CTAGTCTACATG protein translation is HVD* Use the SeqIO module for reading or w riting sequences as SeqRecord objects. For multiple sequence alignment files, you can alternatively use the AlignIO module. Tutorial online: http://biopython.org/DIST/docs/tutorial/Tutorial.html The main Biopython releases have lots of functionality, including: • The ability to parse bioinformatics files into Python utilizable data structures, including support for the following formats: – Blast output – both from standalone and WWW Blast – Clustalw – FASTA – GenBank (NCBI annoted collection of public DNA sequences) – PubMed and Medline – ExPASy files, like Enzyme and Prosite (Protein DB) ExPasy is a bioinformatics portal operated by the Swiss Institute of Bioinformatics – UniGene – SwissProt (Proteic sequences DB) • Files in the supported formats can be iterated over record by record or indexed and accessed via a Dictionary interface.
    [Show full text]