Declining Oxygen in the World's Ocean and Coastal Waters

Total Page:16

File Type:pdf, Size:1020Kb

Declining Oxygen in the World's Ocean and Coastal Waters SUMMARY FOR POLICY MAKERS The Ocean is Losing its Breath Declining Oxygen in the World’s Ocean and United Nations Intergovernmental Educational, Scientific and Oceanographic Coastal Waters Cultural Organization Commission Published in 2018 by the Intergovernmental Oceanographic Commission of UNESCO (IOC-UNESCO) 7, place de Fontenoy, 75352 Paris 07 SP, France © IOC-UNESCO, 2018 Attribution-ShareAlike 3.0 IGO (CC-BY-SA 3.0 IGO) license (http://creativecommons.org/licenses/by-sa/3.0/igo/). By using the content of this publication, the users accept to be bound by the terms of use of the UNESCO Open Access Repository (http://www.unesco.org/open-access/terms-use-ccbysa-en). The present license applies exclusively to the textual content of the publication. For the use of any material not clearly identified as belonging to UNESCO, prior permission shall be requested from: [email protected] or UNESCO Publishing, 7, place de Fontenoy, 75352 Paris 07 SP France. Original title: The Ocean is Losing its Breath: Declining Oxygen in the World’s Ocean and Coastal Waters – Summary for Policy Makers. More Information on the Intergovernmental Oceanographic Commission of UNESCO (IOC-UNESCO) at http://ioc.unesco.org. The complete report should be cited as follows: Global Ocean Oxygen Network, Breitburg, D., M. Gregoire, K. Isensee (eds.) 2018. The ocean is losing its breath: Declining oxygen in the world’s ocean and coastal waters. IOC-UNESCO, IOC Technical Series, No. 137 40pp. (IOC/2018/ TS/137) The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of UNESCO and IOC concerning the legal status of any country or territory, or its authorities, or concerning the delimitation of the frontiers of any country or territory. The authors are responsible for the choice and presentation of the facts contained in the publication and for the opinion expressed therein, which are not necessarily those of UNESCO and do not commit the Organization. Graphic Design: UNESCO Cover design and typeset: Ana Carrasco-Martin Illustrations: Figures 3 and 5, Ana Carrasco-Martin Photos: © Andrey Kuzmin/Shutterstock.com, aquapix/Shutterstock. com, Milos Prelevic/Unsplash.com, NoPainNoGain/Shutterstock.com, Damsea/Shutterstock.com, Kaohanui/Shutterstock.com, Rich Carey/ Shutterstock.com, Hieu Vu Minh/Unsplash.com, Diego Fente Stamato / Shutterstock.com, Talia Cohen/Unsplash.com, Yanguang Ian/Unsplash. com, Digna Rueda Printed in UNESCO printshop, Paris, France (IOC/2018/TS/137 rev) (CLD 1863.18) The Ocean is Losing its Breath Declining Oxygen in the World’s Ocean and Coastal Waters Publication Team Prepared by the IOC expert working group: Global Ocean Oxygen NEtwork (GO2NE) Co-Chairs Denise Breitburg (Smithsonian Environmental Research Center, USA) Marilaure Grégoire (University of Liège, Belgium) Authors Kirsten Isensee (IOC-UNESCO, France) Francisco Chavez (MBARI, USA) Daniel Conley (Lund University, Sweden) Véronique Garçon (CNRS – Laboratoire d’Etudes en Géophysique et Océanographie Spatiales, France) Denis Gilbert (Fisheries and Oceans Canada, Canada) Dimitri Gutierrez (Instituto del Mar del Perú) Gil Jacinto (University of the Philippines Diliman) Lisa Levin (Scripps Institution of Oceanography, USA) Karin Limburg (SUNY College of Environmental Science and Forestry, USA) Ivonne Montes (Instituto Geofísico del Perú) Wajih Naqvi (National Institute of Oceanography, India) Andreas Oschlies (GEOMAR, Germany) Grant Pitcher (Department of Agriculture, Fisheries and Forestry, South Africa) Nancy Rabalais (Louisiana State University, Louisiana Universities Marine Consortium, USA) Mike Roman (University of Maryland, Center for Environmental Science, USA) Kenny Rose (University of Maryland, Center for Environmental Science, USA) Brad Seibel (University of South Florida, USA) Maciej Telszewski (International Ocean Carbon Coordination Project, Poland) Moriaki Yasuhara (The University of Hong Kong, China) Jing Zhang (East China Normal University, China) Table of contents Table of 5 DEOXYGENATION DISRUPTS THE BIOLOGICAL AND ECOLOGICAL FUNCTIONING OF MARINE contents ECOSYSTEMS 20 5.1 Impact of deoxygenation Publication team on food security 22 List of figures/boxes 5.2 Habitat compression 22 5.3 Aquaculture 22 1 6 DECLINING OXYGEN IN THE WORLD’S OCEANS: 15 THINGS TO KNOW 6 UNDERSTANDING DEOXYGENATION AS ONE OF THE MANY HUMAN IMPACTS ON OUR OCEAN AND COASTAL WATERS 24 2 THE PROBLEM OF DECLINING OXYGEN 7 IN THE OCEAN 8 OBSERVING OXYGEN DECLINE AND ITS EFFECTS 28 3 HUMAN ACTIVITIES ARE CAUSING OXYGEN 8 DECLINES IN THE OPEN OCEAN AND COASTAL WATERS 12 WHAT CAN BE DONE TO REDUCE DEOXYGENATION AND PROTECT 3.1 Excess nutrients 13 ECOSYSTEMS SERVICES EXPOSED 3.2 Climate change 16 TO LOW OXYGEN 32 4 9 WHY IS DEOXYGENATION A PROBLEM? 18 LITERATURE 34 4.1. Climate regulation and nutrient cycling 19 4.2 N2O greehouse gas production 19 4.3 Phosphorus release 19 4.4 Hydrogen sulphide 19 4.5 Micronutrient cycling 19 4 IOC THE OCEAN IS LOSING ITS BREATH SUMMARY FOR POLICY MAKERS 2018 List of figures/ boxes Figure 16: Upwelling along the coast of Namibia List of figures Figure 17: Vertical expansion of OMZs in the tropical north-east Atlantic Figure 1: OMZs and areas with coastal hypoxia Figure 18: A fish kill due to low oxygen concentrations in the world’s ocean in Bolinao, Philippines Figure 2: Deoxygenation in the ocean – causes and Figure 19: Global warming, acidification and consequences deoxygenation are linked Figure 3: Dissolved oxygen concentrations at 300 m depth Figure 20: Oxygen requirements of fish increase with in the open ocean increasing temperatures Figure 4: Coastal upwelling Figure 21: Low dissolved oxygen and acidification (low pH, high pCO ) occur together Figure 5: Impacts of excess nutrients (eutrophication) on 2 ocean oxygen Figure 22: Photo illustrating the deployment of an Argo Float in the Indian Ocean Figure 6: The number of water bodies in which hypoxia associated with eutrophication has been Figure 23: Field monitoring, numerical modelling and reported has increased exponentially since the experiments 1960s Figure 24: Experiments in the Adriatic investigating Figure 7: Recovery of oxygen saturation in the upper the impact of low oxygen concentration in Thames River Estuary (UK) the seawater on the behaviour of bottom- dwelling animals Figure 8: The cumulative number of fish species recorded in the Thames between Kew and Gravesend Figure 25: Lamination of sediments from the Black from 1964 to 1980 Sea Figure 9: Sea floor area covered by water with <2 mg L-1 dissolved oxygen from 1900 to 2011 in the Baltic Sea List of boxes Figure 10: Estimated spatial extent of hypoxia <2 mg L−1 and anoxia during 2012 in the Baltic Sea Box 1: Definitions Figure 11: Change in dissolved oxygen per decade Box 2: Natural low oxygen systems: OMZs and since 1960 from surface waters to the ocean upwelling bottom Box 3: Management actions Figure 12: Projected change in dissolved oxygen concentrations between the 1990s and 2090s Box 4: Combined environmental cost of hypoxia and nitrogen loads Figure 13: Most coastal hypoxic zones occur in regions with a predicted end-of-century water Box 5: Ecosystem services temperature increase of >2°C Box 6: Measures to improve the understanding, Figure 14: In a warming world, coastal waters in many predicting and minimizing impacts of oxygen areas are expected to experience more severe decline in the ocean and prolonged hypoxia than at present under Box 7: Using paleo-records to understand long-term the same nutrient loads dynamics of dissolved oxygen in the ocean Figure 15: There is concern that expanding low oxygen areas may influence biogeochemical cycles in ways that further exacerbate deoxygenation and global warming IOC THE OCEAN IS LOSING ITS BREATH SUMMARY FOR POLICY MAKERS 2018 5 1 Declining oxygen in the world’s oceans: 15 things to know 6 IOC GLOBAL OCEAN SCIENCE REPORT 2017 DECLINING OXYGEN IN THE WORLD’S OCEANS: 15 THINGS TO KNOW 1. Oxygen is critical to the health of the ocean. It structures 11. Slowing and reversing deoxygenation will require reducing aquatic ecosystems and is a fundamental requirement for greenhouse gas and black carbon emissions globally marine life from the intertidal zone to the greatest depths and reducing nutrient discharges that reach coastal 1 of the ocean. waters. Concerted international efforts can reduce carbon 2. Oxygen is declining in the ocean. Since the 1960s, the area emissions. of low oxygen water in the open ocean has increased by 12. The decline in oxygen in the ocean is not happening in 4.5 million km2, and over 500 low oxygen sites have been isolation. At the same time, food webs are disturbed due to identified in estuaries and other coastal water bodies. overfishing and physical destruction of habitats, and waters are getting warmer, more acidic, and experience higher 3. Human activities are a major cause of oxygen decline in nutrient loads. Management of marine resources will be both the open ocean and coastal waters. Burning of fossil most effective if the cumulative effects of human activities fuels and discharges from agriculture and human waste, on marine ecosystems are considered. which result in climate change and increased nitrogen and phosphorus inputs, are the primary causes. 13. More accurate predictions of ocean deoxygenation, as well as improved understanding of its causes, consequences 4. Deoxygenation (a decline in oxygen) occurs when oxygen in and solutions, require expanding ocean oxygen observation, water is used up at a faster rate than it is replenished. Both long-term and multi-stressor experimental studies, and warming and nutrients increase microbial consumption of numerical modelling. oxygen. Warming also reduces the supply of oxygen to the open ocean and coastal waters by increasing stratification 14. Accurate oxygen measurements with appropriate temporal and decreasing the solubility of oxygen in water. resolution and adequate spatial coverage in the marine environment are needed to document the current status of 5.
Recommended publications
  • Trout Fishing in Hillsdale July, 2012 Guy Winig, Member Hillsdale Conservation Advisory Council
    Roe Jan Brown-released to fight another day. Trout Fishing in Hillsdale July, 2012 Guy Winig, member Hillsdale Conservation Advisory Council Trout are our canaries in a coalmine. They are an excellent indicator of stream health, requiring clean, cold, well-oxygenated water to thrive. Without very high quality surface waters, trout just cannot survive. Hillsdale is fortunate to have several miles of trout streams including the Roeliff Jansen Kill, Taconic Creek, Agawamuck Creek and Green River with numerous smaller and unnamed tributaries contributing to them. Our streams and their residents endure many perils including natural flood and drought cycles as well as man made impacts like pollution, invasive species, barriers and over –fishing. Erosion adds silt that smothers aquatic food sources and gravel spawning beds. Introduced Didymo algae (a.k.a. ‘Rock Snot’) now found in the Green River, also chokes the streambed. Loss of vegetation exposes water to heating and eliminates important breeding, feeding and cover areas for trout. Readers may recall the massive fish kill that resulted from the release of manure into the Roe Jan in the 90’s or tales of unscrupulous ‘sportsmen’ using small explosives and chlorine to kill all the fish in a segment of stream. Maybe the most harmful and insidious are non-point sources of pollution such as chemicals, fertilizers and heated runoff from parking lots, roads, roofs, crop fields and lawns. In 2009 and 2010, members of the community with help from the Columbia-Greene chapter of Trout Unlimited and the N.Y.S.D.E.C. Trees for Tributaries program planted several hundred small trees and shrubs on the banks and flood plain of the Roe Jan Kill through the Roe Jan Park in an effort to stabilize banks, introduce vegetative cover and provide shade to maintain cool stream temperatures.
    [Show full text]
  • Biogeochemistry of Mediterranean Wetlands: a Review About the Effects of Water-Level Fluctuations on Phosphorus Cycling and Greenhouse Gas Emissions
    water Review Biogeochemistry of Mediterranean Wetlands: A Review about the Effects of Water-Level Fluctuations on Phosphorus Cycling and Greenhouse Gas Emissions Inmaculada de Vicente 1,2 1 Departamento de Ecología, Universidad de Granada, 18071 Granada, Spain; [email protected]; Tel.: +34-95-824-9768 2 Instituto del Agua, Universidad de Granada, 18071 Granada, Spain Abstract: Although Mediterranean wetlands are characterized by extreme natural water level fluctu- ations in response to irregular precipitation patterns, global climate change is expected to amplify this pattern by shortening precipitation seasons and increasing the incidence of summer droughts in this area. As a consequence, a part of the lake sediment will be exposed to air-drying in dry years when the water table becomes low. This periodic sediment exposure to dry/wet cycles will likely affect biogeochemical processes. Unexpectedly, to date, few studies are focused on assessing the effects of water level fluctuations on the biogeochemistry of these ecosystems. In this review, we investigate the potential impacts of water level fluctuations on phosphorus dynamics and on greenhouse gases emissions in Mediterranean wetlands. Major drivers of global change, and specially water level fluctuations, will lead to the degradation of water quality in Mediterranean wetlands by increasing the availability of phosphorus concentration in the water column upon rewetting of dry sediment. CO2 fluxes are likely to be enhanced during desiccation, while inundation is likely to decrease cumulative CO emissions, as well as N O emissions, although increasing CH emissions. Citation: de Vicente, I. 2 2 4 Biogeochemistry of Mediterranean However, there exists a complete gap of knowledge about the net effect of water level fluctuations Wetlands: A Review about the Effects induced by global change on greenhouse gases emission.
    [Show full text]
  • 8.4 the Significance of Ocean Deoxygenation for Continental Margin Mesopelagic Communities J
    8.4 The significance of ocean deoxygenation for continental margin mesopelagic communities J. Anthony Koslow 8.4 The significance of ocean deoxygenation for continental margin mesopelagic communities J. Anthony Koslow Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia and Scripps Institution of Oceanography, University of California, SD, La Jolla, CA 92093 USA. Email: [email protected] Summary • Global climate models predict global warming will lead to declines in midwater oxygen concentrations, with greatest impact in regions of oxygen minimum zones (OMZ) along continental margins. Time series from these regions indicate that there have been significant changes in oxygen concentration, with evidence of both decadal variability and a secular declining trend in recent decades. The areal extent and volume of hypoxic and suboxic waters have increased substantially in recent decades with significant shoaling of hypoxic boundary layers along continental margins. • The mesopelagic communities in OMZ regions are unique, with the fauna noted for their adaptations to hypoxic and suboxic environments. However, mesopelagic faunas differ considerably, such that deoxygenation and warming could lead to the increased dominance of subtropical and tropical faunas most highly adapted to OMZ conditions. • Denitrifying bacteria within the suboxic zones of the ocean’s OMZs account for about a third of the ocean’s loss of fixed nitrogen. Denitrification in the eastern tropical Pacific has varied by about a factor of 4 over the past 50 years, about half due to variation in the volume of suboxic waters in the Pacific. Continued long- term deoxygenation could lead to decreased nutrient content and hence decreased ocean productivity and decreased ocean uptake of carbon dioxide (CO2).
    [Show full text]
  • Hypoxia Infographic
    Understanding HYP XIA Hypoxia is an environmental phenomenon where the concentration of dissolved oxygen in the water column decreases to a level that can no longer 1 support living aquatic organisms. The level is often considered to be 2 mg O2 per liter of water or lower. Hypoxic and anoxic (no oxygen) waters have existed throughout geologic time, but their occurrence in shallow coastal and estuarine areas appears to be increasing as a result of human activities. 2 What causes hypoxia? In 2015, scientists determined the Gulf of Mexico dead zone to be 6,474 square miles, which is an area about the size of Connecticut and Rhode Island combined. 3 Major events leading to the formation of hypoxia in the Gulf of Mexico include: Coastal Hypoxia and Eutrophication Sunlight Watershed Areas of anthropogenically-influenced n> In the past century, Hypoxia has become a global concern with estuarine and coastal hypoxia. 550 over 550 coastal areas identified as experiencing this issue. 4 Runoff and nutrient 1 loading of the Mississippi River. Nutrient-rich water from the Mississippi River forms 1960 a surface lens. 1970 Combined, Dead Zones 1980 cover 4x the area of the 1990 Great Lakes. % 2000 Nutrient-enhanced 4 2 primary production, Only a small fraction of the 550-plus Number of dead zones has approximately Today, there is currently about 1,148,000 km2 or eutrophication. hypoxia zones exhibited any signs doubled each decade since the 1960’s. 5 of seabed covered by Oxygen Minimum Phytoplankton growth of improvement. 5 Zones (OMZs) (<0.5 ml of O /liter) 5 is fueled by nutrients.
    [Show full text]
  • Gulf of Mexico Hypoxia Monitoring Strategy
    Gulf of Mexico Hypoxia Monitoring Strategy Hypoxia Zone Areal Extent (km2) Interpolation Observations Data Analysis Workshop Steering Committee Trevor Meckley, Alan Lewitus, A White Paper by the Steering Committee of the: Dave Scheurer, Dave Hilmer NOAA National Ocean Service, National 6th Annual NOAA/NGI Hypoxia Research Centers of Coastal Ocean Science Coordination Workshop: Establishing a Steve Ashby Cooperative Hypoxic Zone Monitoring Program Northern Gulf Institute convened by the NOAA National Centers for Steve DiMarco Texas A&M University Coastal Ocean Science and Northern Gulf Institute Steve Giordano on 12-13 September 2016 at the Mississippi State NOAA National Marine Fisheries Service University Science and Technology Center at Rick Greene NASA's Stennis Space Center in Mississippi. EPA Office of Research and Development Stephan Howden University of Southern Mississippi Barb Kirkpatrick Gulf of Mexico Coastal Ocean Observing System Troy Pierce EPA Gulf of Mexico Program Nancy Rabalais Louisiana Universities Marine Consortium Rick Raynie Louisiana Coastal Protection and Restoration Authority Mike Woodside USGS National Water Quality Program Abstract The Gulf of Mexico Hypoxia Monitoring Strategy is a resource to inform the proceedings of the 6th Annual NOAA/NGI Hypoxia Research Coordination Workshop: Establishing a Cooperative Hypoxic Zone Monitoring Program. It provides a framework for a cooperative hypoxia monitoring program based on programmatic and financial requirements that are designed to meet management needs. The Monitoring Strategy includes sections on management drivers, current monitoring capabilities and gaps, and projected programmatic, data, and financial requirements based on the input of multiple partners and the responses from a survey of modelers currently applying deterministic 3D time variable models to Gulf hypoxia assessment and prediction.
    [Show full text]
  • Localized Plankton Blooms and Jubilees on the Gulf Coast Gordon Gunter Gulf Coast Research Laboratory
    Gulf Research Reports Volume 6 | Issue 3 January 1979 Localized Plankton Blooms and Jubilees on the Gulf Coast Gordon Gunter Gulf Coast Research Laboratory Charles H. Lyles Gulf Coast Research Laboratory DOI: 10.18785/grr.0603.12 Follow this and additional works at: http://aquila.usm.edu/gcr Part of the Marine Biology Commons Recommended Citation Gunter, G. and C. H. Lyles. 1979. Localized Plankton Blooms and Jubilees on the Gulf Coast. Gulf Research Reports 6 (3): 297-299. Retrieved from http://aquila.usm.edu/gcr/vol6/iss3/12 This Short Communication is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Gulf Research Reports, Vol. 6,NO. 3,291-299, 1919. LOCALIZED PLANKTON BLOOMS AND JUBILEES ON THE GULF COAST GORDON GUNTER AND CHARLES H. LYLES Gulf Coast Research Laboratory, Ocean Springs, Mississippi 39564 and Gulf States Marine Fisheries Commission, Ocean Springs, Mississippi 39564 ABSTRACT The writers describe various small types of plankton blooms such as those occurring in boat slips, the head of a large bayou and a strip type bloom of Chaeroceras on the Gulf beach. Oyster kills from “poison water” draining off of marshes are said to be caused by plankton bloom. Small “jubilees” are said to be caused by localized blooms and one of these is described as it occurred. In November 1938, Dr. Margaretha Brongersma-Sanders of billions of Chaetoceras sp., a common open sea diatom.
    [Show full text]
  • The Potential of Mangroves in the Treatment of Shrimp Aquaculture Effluent on the Eastern Coast of Thailand
    The Potential of Mangroves in the Treatment of Shrimp Aquaculture Effluent on the Eastern Coast of Thailand 7 Nina Fancy B. Sc.(Horn), Queen's University, 1999 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in the Department of Geography O Nina Fancy, 2004 University of Victoria AII rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. Supervisor: Dr. Mark Flaherty ABSTRACT This thesis examines the potential of low-cost, low-maintenance mangroves in the treatment of nutrient-rich effluent originating from a shnmp fmon the coast of Thailand's Chanthaburi province. The objective of this thesis is to identify the environmental impact of shnmp aquaculture effluent and to determine if mangrove wetlands can be used as effective biofiltration areas to remove significant quantities of nitrate, ammonia and nitrite from shrimp wastewater. The study mangrove was found to remove an average of 44.5% of nitrate, 46.6% of ammonia and 59.0% of nitrite from shrimp effluent. The ratio of mangrove treatment area to shrimp fmrequired to adequately treat daily effluxes of wastewater from shrimp fmswas calculated to . be 1: 14. This ratio is significantly less spatially demanding than ratios calculated by .-: P 0 previous researchers and reveals the potential of mangroves to be used as large-scale wastewater treatment areas in shrimp-producing nations. TABLE OF CONTENTS .. ABSTRACT ..............................................................................................................11
    [Show full text]
  • Issues Brief: Ocean Deoxygenation
    DECEMBER 2019 OCEAN DEOXYGENATION • The oxygen content of the ocean has declined by around 2% since the middle of the 20th century overall, while the volume of ocean waters completely depleted of oxygen has quadrupled since the 1960s. • Ocean oxygen levels are expected to fall on average by 3–4% by 2100 overall due to climate change and increased nutrient discharges, though the scale of effect seen will vary regionally. • Consequences of ocean oxygen decline include decreased biodiversity, shifts in species distributions, displacement or reduction in fishery resources and expanding algal blooms. • Ocean deoxygenation threatens to disrupt the ocean’s food provisioning ecosystem services. • To slow and reverse the loss of oxygen, humans must urgently mitigate climate change globally and nutrient pollution locally. What is the issue? conditions. In 2011 there were around 700 reported sites worldwide affected by low oxygen conditions – Globally, oceans have lost around 2% of dissolved up from only 45 before the 1960s. The volume of oxygen since the 1950s and are expected to lose anoxic ocean waters – areas completely depleted of about 3–4% by the year 2100 under a business-as- oxygen – has quadrupled since the 1960s. Evidence usual scenario (Representative Concentration suggests that temperature increases explain about Pathway 8.5), though the scale of effect is predicted 50% of oxygen loss in the upper 1000 m of the to vary regionally. Much of the oxygen loss is ocean. concentrated in the upper 1000m where species richness and abundance is highest. Even slight overall reductions in the levels of oxygen dissolved in the oceans can induce oxygen stress in marine organisms by depriving them of an adequate oxygen supply at the tissue level (termed hypoxia).
    [Show full text]
  • Metaproteomics Reveals Differential Modes of Metabolic Coupling Among Ubiquitous Oxygen Minimum Zone Microbes
    Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes Alyse K. Hawleya, Heather M. Brewerb, Angela D. Norbeckb, Ljiljana Paša-Tolicb, and Steven J. Hallama,c,d,1 aDepartment of Microbiology and Immunology, cGraduate Program in Bioinformatics, and dGenome Sciences and Technology Training Program, University of British Columbia, Vancouver, BC, Canada V6T 1Z3; and bBiological and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 Edited by Edward F. DeLong, Massachusetts Institute of Technology, Cambridge, MA, and approved June 10, 2014 (received for review November 26, 2013) Marine oxygen minimum zones (OMZs) are intrinsic water column transformations in nonsulfidic OMZs, providing evidence for features arising from respiratory oxygen demand during organic a cryptic sulfur cycle with the potential to drive inorganic carbon matter degradation in stratified waters. Currently OMZs are expand- fixation processes (13). Indeed, many of the key microbial players ing due to global climate change with resulting feedback on marine implicated in nitrogen and sulfur transformations in OMZs, in- ecosystem function. Here we use metaproteomics to chart spatial cluding Thaumarchaeota, Nitrospina, Nitrospira, Planctomycetes, and temporal patterns of gene expression along defined redox and SUP05/ARCTIC96BD-19 Gammaproteobacteria have the gradients in a seasonally stratified fjord to better understand metabolic potential for inorganic carbon fixation (14–19), and
    [Show full text]
  • Linking Biodiversity Above and Below the Marine Sediment–Water Interface
    Articles Linking Biodiversity Above and Below the Marine Sediment–Water Interface PAUL V. R. SNELGROVE, MELANIE C. AUSTEN, GUY BOUCHER, CARLO HEIP, PATRICIA A. HUTCHINGS, GARY M. KING, ISAO KOIKE, P. JOHN D. LAMBSHEAD, AND CRAIG R. SMITH hanges in the marine environment are evident on Ca global scale (McGowan et al. 1998), and although bio- THE ORGANISMS LIVING ON THE OCEAN diversity in the oceans is poorly described, abundances and FLOOR ARE LINKED TO THOSE LIVING IN distributions of both commercially exploited (Safina 1998) and nonexploited (Pearson and Rosenberg 1978) species have THE OCEAN ABOVE, BUT WHETHER OR changed. Not only have major changes occurred but the rate of alteration of marine ecosystems appears to be accelerating HOW THE BIODIVERSITY IN THESE TWO (e.g., Cohen and Carlton 1998). Unfortunately, the impact of these changes in biodiversity on the basic functioning of ma- REALMS IS LINKED REMAINS LARGELY rine ecosystems remains uncertain, as does the oceans’ capacity UNKNOWN to withstand multiple human disturbances (Snelgrove et al. 1997). The dynamics of many marine ecosystems, as well as of important fisheries, depend on close coupling between benthic (bottom living) and pelagic (water column) organ- The sediment–water interface (SWI) in marine ecosystems isms (Steele 1974). Our knowledge of the natural history of is one of the most clearly defined ecological boundaries on these systems remains limited, and scientific interest in map- Earth. Many organisms in the water column, such as salps ping the diversity of organisms and how they live has been and jellyfish, have flimsy and attenuated morphologies that marginalized in recent years.
    [Show full text]
  • Mixing Between Oxic and Anoxic Waters of the Black Sea As Traced by Chernobyl Cesium Isotopes
    Deep-Sea Research, Vol 38. Suppl 2. pp S72>-S745. 1991. 019~149191 53.00 + 0.00 Pnnted 10 Great Bntam © 1991Pergamon Press pic Mixing between oxic and anoxic waters of the Black Sea as traced by Chernobyl cesium isotopes KEN O. BUESSELER, * HUGH D. LIVINGSTON* and SUSAN A. CASSO* (Received 14 August 1989; in revised form 16 November 1990; accepted 28 November 1990) Abstract-The Chernobyl nuclear power station accident in 1986 released readily measureable quantities of fallout 134CS and 137Cs to Black Sea surface waters. This pulse-like input of tracers can be used to follow the physical mixing of the surface oxic waters, now labeled with the Chemobyl tracers, and the deeper anoxic waters, which were initially Chemobyl free. By 1988, there is clear evidence of Chernobyl Cs penetration below the oxic/anoxic interface at deep water stations in the western and eastern basins of the Black Sea. This rapid penetration of surface waters across the pycnocline cannot be explained by vertical mixing processes alone. Data from profiles at the mouth of the Bosporus suggest that significant ventilation of intermediate depths can occur as the outflowmg Black Sea waters are entrained with the inflowing Mediterranean waters, forming a sub-surface water mass which is recognized by its surface water characteristics, i.e. initially a relatively high oxygen content and Chernobyl Cs signal. The lateral propagation ofthis signal along isopycnals into the basin interior would provide a rapid and effective mechanism for ventilating intermediate depths of the Black Sea. This process could also account for the lateral injection of resuspended margin sediments into the basin interior.
    [Show full text]
  • Climate-Driven Deoxygenation Elevates Fishing Vulnerability for The
    RESEARCH ARTICLE Climate-driven deoxygenation elevates fishing vulnerability for the ocean’s widest ranging shark Marisa Vedor1,2, Nuno Queiroz1,3†*, Gonzalo Mucientes1,4, Ana Couto1, Ivo da Costa1, Anto´ nio dos Santos1, Frederic Vandeperre5,6,7, Jorge Fontes5,7, Pedro Afonso5,7, Rui Rosa2, Nicolas E Humphries3, David W Sims3,8,9†* 1CIBIO/InBIO, Universidade do Porto, Campus Agra´rio de Vaira˜ o, Vaira˜ o, Portugal; 2MARE, Laborato´rio Marı´timo da Guia, Faculdade de Cieˆncias da Universidade de Lisboa, Av. Nossa Senhora do Cabo, Cascais, Portugal; 3Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, United Kingdom; 4Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Cientı´ficas (IIM-CSIC), Vigo, Spain; 5IMAR – Institute of Marine Research, Departamento de Oceanografia e Pescas, Universidade dos Ac¸ores, Horta, Portugal; 6MARE – Marine and Environmental Sciences Centre, Faculdade de Cieˆncias da Universidade de Lisboa, Lisbon, Portugal; 7Okeanos - Departamento de Oceanografia e Pescas, Universidade dos Ac¸ores, Horta, Portugal; 8Centre for Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom; 9Ocean and Earth Science, National Oceanography Centre Southampton, Waterfront Campus, University of Southampton, Southampton, United Kingdom *For correspondence: [email protected] (NQ); Abstract Climate-driven expansions of ocean hypoxic zones are predicted to concentrate [email protected] (DWS) pelagic fish in oxygenated surface layers, but how expanding hypoxia and fisheries will interact to affect threatened pelagic sharks remains unknown. Here, analysis of satellite-tracked blue sharks †These authors contributed equally to this work and environmental modelling in the eastern tropical Atlantic oxygen minimum zone (OMZ) shows shark maximum dive depths decreased due to combined effects of decreasing dissolved oxygen Competing interests: The (DO) at depth, high sea surface temperatures, and increased surface-layer net primary production.
    [Show full text]