2022 Galapagos Brochure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Synopsis of the Heteroptera Or True Bugs of the Galapagos Islands
Synopsis of the Heteroptera or True Bugs of the Galapagos Islands ' 4k. RICHARD C. JROESCHNE,RD SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 407 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Folklife Studies Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world of science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review. -
Petrology and Geochemistry of the GalÁ
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 98, NO. Bll, PAGES 19,533-19,563, NOVEMBER 10, 1993 Petrologyand Geochemistryof the GaMpagosIslands' Portrait of a PathologicalMantle Plume WILLIAM M. WmT• Departmentof GeologicalSciences, Cornell University, Ithaca, New York ALEXANDER R. McBIRNEY Centerfor Volcanology,University of Oregon,Eugene ROBERT A. DUNCAN Collegeof Oceanography,Oregon State University,Corvallis We reportnew major element,trace element,isotope ratio, and geochronologicaldata on the Galfipagos Archipelago.Magmas erupted from the largewestern volcanos are generallymoderately fractionated tholeiites of uniformcomposition; those erupted on otherislands are compositionallydiverse, ranging from tholeiites to picritic basanitoids.While thesevolcanos do notform a strictlylinear age progressive chain, the agesof the oldestdated flows on anygiven volcano do form a reasonableprogression from youngest in thewest to oldestin theeast, consistent with motionof theNazca plate with respect to thefixed hotspot reference frame. lsotoperatios in theGalfipagos display a considerablerange, from values typical of mid-oceanridge basalt on Genovesa(87Sr/86Sr: 0.70259, end: +9.4, 206pb/204pb:! 8.44), to typical oceanic island values on Floreana (87Sr/86Sr: 0.70366, œNd: +5.2, 206pb/204pb: 20.0). La/SmN rangesfrom 0.45 to 6.7; otherincompatible element abundances and ratios show comparable ranges. Isotope andincompatible element ratios define a horseshoepattern with the mostdepleted signatures in the centerof the GalfipagosArchipelago and the moreenriched -
DENNIS J. GEIST Department of Geological Sciences University of Idaho Moscow, ID 83844-3022 USA 208-885-6491 ([email protected])
DENNIS J. GEIST Department of Geological Sciences University of Idaho Moscow, ID 83844-3022 USA 208-885-6491 ([email protected]) EDUCATION 1985 Ph.D. - University of Oregon, Geology. 1980 A.B. - Dartmouth College, Earth Sciences. PROFESSIONAL 2000-present Professor of Geology, University of Idaho. 2001-2007 Chair of the Department of Geological Sciences, University of Idaho 1994-2000 Associate Professor of Geology, University of Idaho. 1990-1994 Assistant Professor of Geology, University of Idaho. 1988-1990 Assistant Professor of Geology, Hamilton College. 1986-1988 Postdoctoral Research Associate, University of Wyoming. 1985 Visiting Assistant Professor, University of Oregon. AWARDS AND PROFESSIONAL ACTIVITIES Distinguished Faculty Award, College of Science, 2011. Convener, Chapman Conference on Ocean Island Volcanism, 2011. Charles Darwin Foundation, Board of Directors, 2008-present. Chair, Program Committee, 2008-present. Pardee Keynote Speaker, Geological Society of America annual meeting, 2009. Ridge2000 Steering Committee, 2008-present. Science Reorganization Consultant, Charles Darwin Foundation, 2008. Consultant, White Pine County, Volcanic hazards at Yucca Mountain, 2008-2009. NSF Panel, Geochemistry and Petrology, 2006-2007. NSF Panel, Ridge2000, 2007-2008. Executive Committee, HOTSPOT: Snake River Scientific Drilling Project, 2004-present. Editorial Board, Journal of Petrology, 2000-2005. Board of Advisors, Journal of Petrology, 2005-present. University Research Excellence Award, University of Idaho, 2000. Co-Chief Scientist, Drift4 cruise, R/V Revelle, 2001. American Federation of Mineralogical Societies Distinguished Achievement Award 2003. Geological Society of America, Penrose Conference Committee, 2004-2007. American Geophysical Union, VGP Publications Committee, 2000-present. NSF Chautauqua Program Leader, Geology and Biodiversity of the Galápagos. 2007. Field Trip Leader, Cities on Volcanoes IV, Geology of the Galápagos Islands, 2006. -
Field Trip Guide: Part I
The Galápagos as a Laboratory for the Earth Sciences July, 2011 Field Trip Guide: Part I. The Geology of the Galápagos Part II. Sierra Negra Volcano Part III. Santa Cruz Volcano Dennis Geist Noémi d’Ozouville Karen Harpp Geological Sciences Galápagos Islands Integrated Water Studies University of Idaho Charles Darwin Research Station Moscow ID 83844 USA Puerto Ayora, Galápagos, Ecuador Figure 1 Figure 2 Page 1 Figure 3 Figure 4 Figure 5 Captions for Color Figures (preceding pages): 1. Regional topography and bathymetry of the Galápagos. 2. Tectonic setting of the Galápagos and the Galápagos Spreading Center (from Wilson and Hey, 1995). Note that the azimuth of Nazca Plate motion is 91° in the hotspot reference frame, perpendicular to the motion of the Nazca Plate relative to the Cocos plate. 3. Aerial view of graben on the south side of Santa Cruz Island. 4. Detailed topography of Santa Cruz highlands. Note the abundant satellite cones and pit craters decorating the landscape. 5. InSAR imges of recent deformation of Sierra Negra’s caldera floor, from University of Miami Geodesy Lab; Baker, S., Bagnardi, M., Amelung, F., unpublished 2011. Introduction: Regional Setting of the Galápagos Islands Tectonic Setting The Galápagos Islands lie on the Nazca Plate just south of an active mid-ocean ridge, the Galápagos Spreading Center (GSC; Hey, 1977). The motion of the Nazca Plate in the hotspot reference frame is about 37 km/my at an azimuth of 91o. Owing to relatively fast migration of the GSC to the northwest, the absolute motion of the Nazca plate is nearly parallel to the ridge, thus almost perpendicular to relative motion. -
Submarine Deep-Water Lava Flows at the Base of the Western Galápagos Platform Molly Anderson Boise State University
Boise State University ScholarWorks Geosciences Faculty Publications and Presentations Department of Geosciences 10-1-2018 Submarine Deep-Water Lava Flows at the Base of the Western Galápagos Platform Molly Anderson Boise State University V. Dorsey Wanless Boise State University Darin M. Schwartz Boise State University Emma McCully Boise State University Daniel J. Fornari Woods Hole Oceanographic Institution See next page for additional authors This document was originally published in Geochemistry, Geophysics, Geosystems by Wiley on behalf of the American Geophysical Union. Copyright restrictions may apply. doi: 10.1029/2018GC007632 Authors Molly Anderson, V. Dorsey Wanless, Darin M. Schwartz, Emma McCully, Daniel J. Fornari, Meghan R. Jones, and S. Adam Soule This article is available at ScholarWorks: https://scholarworks.boisestate.edu/geo_facpubs/446 Geochemistry, Geophysics, Geosystems RESEARCH ARTICLE Submarine Deep-Water Lava Flows at the Base of the Western 10.1029/2018GC007632 Galápagos Platform Key Points: Molly Anderson1, V. Dorsey Wanless1 , Darin M. Schwartz1, Emma McCully1, Daniel J. Fornari2, • fl Deep-water lava ows at the base of 2 2 the Galápagos Platform are Meghan R. Jones , and S. Adam Soule composed of multiple eruptions, 1 2 including alkalic and tholeiitic lavas Department of Geosciences, Boise State University, Boise, ID, USA, Geology and Geophysics Department, Woods Hole • Tholeiitic lavas are formed by higher Oceanographic Institution, Woods Hole, MA, USA extents of melting and likely pass through the lower portion of the Fernandina magma chamber Abstract To investigate the initial phases of magmatism at the leading edge of the upwelling mantle • Alkalic magmas are formed by lower fl extents of melting at the leading plume, we mapped, photographed, and collected samples from two long, deep-water lava ows located at edge of the plume and may be the western base of the Galápagos Platform using the remotely operated vehicle Hercules. -
Lithological Structure of the Galápagos Plume
Article Volume 14, Number 10 15 October 2013 doi: 10.1002/ggge.20270 ISSN: 1525-2027 Lithological structure of the Galapagos Plume Christopher Vidito and Claude Herzberg Department of Earth and Planetary Sciences, Rutgers University, 610 Taylor Road, Piscataway, New Jersey, 08854-8066, USA ([email protected]) Esteban Gazel Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA Dennis Geist Department of Geological Science, University of Idaho, Moscow, Idaho, USA Karen Harpp Geology Department, Colgate University, Hamilton, New York, USA [1] We have measured Ni, Ca, and Mn in olivine phenocrysts from volcanoes in the Galapagos Archipelago to infer the mantle source lithologies. Results show that peridotite is the dominant source lithology for Fernandina, Floreana, Genovesa, Wolf Island, and Darwin Island. These volcanoes largely characterize the PLUME, WD, FLO, and DUM Nd, Sr, and Pb isotopic endmembers of Harpp and White (2001). Volcan Wolf, Alcedo, Marchena, and Cerro Azul, also produced from the melting of peridotite sources, have isotopic compositions that can be defined by mixing of the four isotopic endmembers. Our analysis suggests that peridotite was present in the sources of the volcanoes covered in this study and therefore is the dominant source lithology of the Galapagos plume. Pyroxenite melting is generally focused in two isotopically distinct domains: Roca Redonda, Volcan Ecuador, and Sierra Negra in the enriched western part of the archipelago and Santiago, Santa Cruz, and Santa Fe in the depleted east. One implication of this finding is that the Western and Eastern Pyroxenite Domains represent two separate bodies of recycled crust within the Galapagos mantle plume.