Chapter 75 Case Studies of Delaware's Tidal Inlets
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Condition of Wetlands in the Broadkill River Watershed, Delaware
The citation for this document is: Rogerson,A.B., M.A. Jennette, and A.M. Howard. 2013. Condition of wetlands in the Broadkill River Watershed, Delaware. Delaware Department of Natural Resources and Environmental Control, Watershed Assessment and Management Section, Dover, USA. 59p. Broadkill Watershed Wetland Report i ACKNOWLEDGMENTS Funding for this project was provided by EPA REMAP and Region III Wetland Program Development Grant Assistance # CD-96312201-0, and the Delaware Department of Natural Resources and Environmental Control. This research and report were made possible by many who contributed their time and expertise. Tom Kincaid and Tony Olsen with the EPA Office of Research and Development Lab, Corvallis, Oregon provided technical support with the developing the data frame and statistical weights. Many individuals dedicated their time and hard work to collecting out assessment data, including seasonal hires Jocelyn Robinson and Megan Pulver and multiple volunteers. In addition, we thank the Environmental Lab Section for use of their biomass storage and oven space and the DNERR St. Jones Reserve for use of their boat. Broadkill Watershed Wetland Report ii Contents EXECUTIVE SUMMARY ........................................................................................................ 1 INTRODUCTION ..................................................................................................................... 4 WATERSHED OVERVIEW .................................................................................................... -
Numerical Study in Delaware Inland Bays
NUMERICAL STUDY IN DELAWARE INLAND BAYS BY LONG XU, DOMINIC DITORO AND JAMES T. KIRBY RESEARCH REPORT NO. CACR-06-04 AUGUST 2006 CENTER FOR APPLIED COASTAL RESEARCH Ocean Engineering Laboratory University of Delaware Newark, Delaware 19716 ACKNOWLEDGEMENT This study was supported by the Delaware Sea Grant Program, Project Number SG205-07 R/ETE-5 TABLE OF CONTENTS LIST OF FIGURES ............................... vi LIST OF TABLES ................................ xiii ABSTRACT ................................... xiv Chapter 1 INTRODUCTION .............................. 1 1.1 Background ................................ 1 1.2 Outline of Present Work ......................... 6 2 NUMERICAL MODELS .......................... 9 2.1 Hydrodynamic Model (ECOMSED) ................... 9 2.1.1 Hydrodynamic Module ...................... 10 2.1.2 Surface Heat Flux Module .................... 12 2.1.3 Boundary Conditions ....................... 14 2.1.4 Numerical Techniques ...................... 15 2.2 Water Quality Model (RCA) ....................... 16 2.2.1 Conservation of Mass ....................... 16 2.2.2 Model Kinetics .......................... 17 2.2.3 Boundary Conditions ....................... 19 3 MODEL IMPLEMENTATION FOR DELAWARE INLAND BAY SYSTEM ................................... 20 3.1 Model Domain .............................. 20 3.2 Model Grid ................................ 21 iv 3.3 Model Settings .............................. 21 3.4 Indian River Inlet Boundary Condition ................. 21 3.5 Freshwater Discharge .......................... -
Broadkill River Watershed Management Plan
Broadkill River Watershed Management Plan Final Plan January 2015 Prepared for: Department of Natural Resources and Environmental Control (DNREC) Prepared by: KCI Technologies, Inc. 1352 Marrows Road Suite 100 Newark, DE 19711 Broadkill River Watershed Management Plan Final Plan January 2015 Prepared for: Department of Natural Resources and Environmental Control (DNREC) Prepared by: KCI Technologies, Inc. 1352 Marrows Road Suite 100 Newark, DE 19711 KCI Job Order No. 17133560 Broadkill River Watershed Management Plan 2015 Table of Contents 1 Introduction ................................................................................................................... 5 1.1 Watershed Plan Structure ............................................................................................................. 6 1.2 Regulatory and Programmatic Environment ................................................................................ 7 1.3 Watershed Priorities ..................................................................................................................... 8 2 Watershed Characteristics.............................................................................................. 8 2.1 Watershed Delineation and Planning Segments .......................................................................... 8 2.2 Broadkill River ............................................................................................................................. 10 2.3 Land Use ..................................................................................................................................... -
Federal Sand-Resource Assessment of the Delaware Shelf
FEDERAL SAND-RESOURCE ASSESSMENT OF THE DELAWARE SHELF Technical Report for Cooperative Agreement M14AC00003 Kelvin W. Ramsey, C. Robin Mattheus, John F. Wehmiller, Jaime L. Tomlinson, Trevor Metz Delaware Geological Survey University of Delaware May 2019 TABLE OF CONTENTS ABSTRACT ......…………………………………………………………………………………. 1 INTRODUCTION …………………………………………………………………….…….…… 2 Motivation …………………………………………………………………….…………. 2 Objectives ………………………………………………….………………….….……… 4 Background ……………………………………………………………………………… 4 Delaware Shelf Stratigraphy ………..……………………..…………….……….. 4 Delaware Coastal Plain Geology …………………………………….…………... 6 METHODS AND DATA MANAGEMENT …………………..………………………….…….. 8 DGS-BOEM Survey Area …..…………………………………………………………… 8 Stratigraphic Framework Mapping ………………………………………………………. 8 Geophysical Data ………………………………………………………………… 8 Core Data ……………………………………………………………………….. 11 Surface and Volume Models ……..…………………………………………………….. 12 GEOLOGIC MAPPING RESULTS …...……………………………………………………….. 12 Seismic Mapping …………….…………………………………………………………. 12 Subsurface Interpretations …………………………………….………….…….. 12 Seismic Units, Bounding Surfaces, and Facies …………………………. 13 Lithologic Mapping …………………………………………………………………….. 14 Sheet sand (Qss)..………………………………………………….……….…… 14 Shoal sand (Qsl) ………………………………………………………………… 16 Intershoal (Qis) …...………………………………………………….…………. 16 Ravinement lag deposits (Qrl) …………….………………….…….…….…….. 16 Lagoonal/Estuarine (Ql, Qlh, Qsi, Qo) ………………………………………….. 16 Marine sand (Qms).……………………………………………………….…….. 17 Fluvio-deltaic (Tbd)..…………………………………………………………… 17 SEDIMENT -
2019 Delaware Fishing Guide
• CHECK OUT THE F&W WEBSITE: WWW.FW.DELAWARE.GOV • 2019 DELAWARE FISHING GUIDE FISHING PHOTO CONTEST WINNERS See page 32 NEW for 2019 • New Cobia Record Follow us on • Five Elite Anglers named Facebook! • Possible start time change for trout stream opener DELAWARE DEPARTMENT OF NATURAL RESOURCES AND ENVIRONMENTAL CONTROL DIVISION OF FISH AND WILDLIFE “We Bring You Delaware’s Great Outdoors Through Science and Service” AMERICA’S #1 AMERICA’S... selling aluminum shing boats. #1 ... selling aluminum shing boats. Everything But The Water Everything But The Water 32415 Long Neck Road We are the exclusive Millsboro32415 Long , DE Neck 19966 Road WeAuthorized are the exclusive Tracker 302.945.1200Millsboro , DE 19966 Authorized Tracker 302.945.1200 Boats dealer on WWW.SHORTSMARINE.COM lowerBoats Delmarva. dealer on WWW.SHORTSMARINE.COM lower Delmarva. CONTENTS FISH & WILDLIFE DIRECTORY ..........................2 ARTIFICIAL REEF PROGRAM ...........................19 2019 LICENSE FEES ................................................4 ETHICAL CATCH AND RELEASE What’s New for 2019 ............................................................. 4 OF SHARKS ...........................................................20 Before You Fish ..................................................................... 4 BLUE CRAB, CLAMS, CONCHS & OYSTERS .... 22 FISHING LICENSE INFORMATION ....................5 Blue Crabs ........................................................................... 22 Fishing License Requirements and FIN Number .................. -
RI53 Geology of the Seaford Area, Delaware
State of Delaware DELAWARE GEOLOGICAL SURVEY Robert R. Jordan, State Geologist REPORT OF INVESTIGATIONS NO .. 53 GEOLOGY OF THE SEAFORD AREA, DELAWARE by A. Scott Andres and Kelvin W. Ramsey E -10 o o -10 -10 Alluivial deposits Oaf Nanticoke deposits On .. Swamp deposits Osw Beaverdam Formation Tbd With a contribution on palynology by Johan J. Groot University of Delaware Newark, Delaware 1996 State of Delaware DELAWARE GEOLOGICAL SURVEY Robert R. Jordan, State Geologist REPORT OF INVESTIGATIONS NO. 53 GEOLOGY OF THE SEAFORD AREA, DELAWARE by A. Scott Andres and Kelvin W. Ramsey With a contribution on palynology by Johan J. Groot University of Delaware Newark, Delaware 1996 CONTENTS Page Page ABSTRACf 1 Other Quaternary deposits 8 Marsh deposits 8 INTRODUCTION 1 Swamp and alluvial deposits 9 Purpose and Scope 1 Upland bog deposits ............................. .. 9 Location 1 Previous work ........................................ .. 1 GEOMORPHOLOGY 9 Acknowledgments 4 Floodplains 9 Upland Surfaces 10 METHODS OF STUDY 4 PALYNOLOGY OF THE SEAFORD AREA 14 STRATIGRAPHY 4 General Observations 14 Chesapeake Group 4 Palynomorph assemblages ofthe Choptank Formation 4 Beaverdam Formation 14 St. Marys Formation 5 Palynomorph assemblages ofthe Manokin Formation 5 Quaternary Sediments 14 Beaverdam Formation 6 Relation to previously recognized units 6 SUMMARY - GEOLOGIC HISTORY 15 Composition and textures 6 Tertiary 15 Thickness, distribution, and bounding relations 7 Quaternary 15 Nanticoke deposits 7 Quaternary depositional model 20 Relation to previously recognized units 7 REFERENCES CITED 21 Composition and textures 7 Thickness, distribution, and bounding relations 8 ILLUSTRATIONS Page Figure 1. Map showing area ofthe Seaford East and Seaford West quadrangles 2 2. Geologic map ofthe Seaford area, Delaware 3 3. -
GM18 Geologic Map of the Bethany Beach and Assawoman Bay
DELAWARE GEOLOGICAL SURVEY DELAWARE GEOLOGICAL SURVEY University of Delaware, Newark GEOLOGIC MAP OF THE BETHANY BEACH AND ASSAWOMAN BAY QUADRANGLES, DELAWARE David R. Wunsch, State Geologist GEOLOGIC MAP SERIES NO. 18 6' 75° 4' 2' 75° 0' 0" W 75° 7' 30" W 38° 37' 30" N EXPLANATION 38° 37' 30" N 10 Qd Qscy Qm Delaware Seashore State Park LONG NECK RD f Qm 1 FILL OMAR FORMATION Qo Qd Qm f 3 Man-made and natural materials (sand, gravel) emplaced in stream valleys or marshes to Light-gray to gray, silty clay to silty, very fine sand with scattered shell beds. The Omar Qd Qscy f 3 Formation consists of up to 5 ft of light to dark-gray, basal, pebbly, coarse to very coarse L O N G N E C K 7 Qss bring the topography above grade, usually in road beds, dams, or construction near a 20 shoreline. Fill deposits include sediment dredged from the marshes and offshore in sand that grades upward into 1 to 3 ft of gray to very dark-gray, fine to coarse silty sand Tbd f Qm Qm Indian River Bay and emplaced on the uplands. with scattered laminae to thin beds of peat composed of sand to gravel-size plant Steels Qbw 40 Qm Big Ditch fragments. The sands are overlain by 3 to 5 ft of very dark-gray to black organic-rich Cove f Qfs Qscy Qns sandy silt to silty clay. Above this organic-rich zone, in the areas where the Omar is 6 Qqw of Holocene lagoon (Ql) at depth thickest, 10 to 40 ft of greenish-gray, compact, silty clay to clayey silt is common. -
Broadkill Report Card FINAL
+ 2013 C BroadkillWatershed About the Watershed Located in Sussex County, Delaware, the Broadkill watershed encompasses 68,500 acres within the Delaware Bay and Estuary Basin and is primarily comprised of agricultural land with urban development and a wildlife refuge. The Broadkill River headwaters originate near the Town of Milton and flow 25 miles eastward towards Broadkill Beach where it outlets to the Delaware Bay through the Roosevelt Inlet. Twenty percent of the watershed is covered in wetlands. Flat wetlands, usually forested, form the headwaters of the Broadkill River in the western portion of the watershed. Riverine wetlands follow tributaries and streams throughout the central portion of the watershed, and expansive tidal wetlands run A crayfish burrow found in a riverine wetland along the Broadkill River until it reaches the Delaware Bay. in the Broadkill watershed. Pockets of depressions, including rare Coastal Plain ponds, are scattered throughout the watershed. How Are Wetlands Graded? There are many different types of wetlands in Delaware, and to accurately grade their health, they are broken into two categories based on how they receive their water supply: tidal wetlands and non-tidal wetlands. Tidal wetlands have water moving in and out of them in cycles based on the moon’s gravitational pull (the tides), and the Mid-Atlantic Tidal Wetland Rapid Assessment Method (MidTRAM) is used to grade them. The tidal wetlands that are assessed are called estuarine, or saltwater wetlands. Non-tidal wetlands are all freshwater and include riverine, flat and depression wetlands. They receive their water from rain, snow and underground springs. The Delaware Rapid Assessment Procedure (DERAP) is used to grade them. -
Wetlands of Delaware
SE M3ER 985 U.s. - artm nt of h - n erior S ate of D lawa FiSh and Wildlife Service Department of Natural Resourc and Enviro mental Con ra I WETLANDS OF DELAWARE by Ralph W. Tiner, Jr. Regional Wetland Coordinator Habitat Resources U.S. Fish and Wildlife Service Region 5 Newton Corner, MA 02158 SEPTEMBER 1985 Project Officer David L. Hardin Department of Natural Resources and Environmental Control Wetlands Section State of Delaware 89 Kings Highway Dover, DE 19903 Cooperative Publication U.S. Fish and Wildlife Service Delaware Department of Natural Region 5 Resources and Environmental Habitat Resources Control One Gateway Center Division of Environmental Control Newton Corner, MA 02158 89 Kings Highway Dover, DE 19903 This report should be cited as follows: Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service, National Wetlands Inventory, Newton Corner, MA and Delaware Department of Natural Resources and Environmental Control, Wetlands Section, Dover, DE. Cooperative Publication. 77 pp. Acknowledgements Many individuals have contributed to the successful completion of the wetlands inventory in Delaware and to the preparation of this report. The Delaware Department of Natural Resources and Environmental Control, Wetlands Section contributed funds for wetland mapping and database construction and printed this report. David Hardin served as project officer for this work and offered invaluable assistance throughout the project, especially in coor dinating technical review of the draft report and during field investigations. The U.S. Army Corps of Engineers, Philadelphia District also provided funds for map production. William Zinni and Anthony Davis performed wetland photo interpretation and quality control of draft maps, and reviewed portions of this report. -
North Atlantic Ocean
210 ¢ U.S. Coast Pilot 3, Chapter 6 26 SEP 2021 75°W 74°30'W Chart Coverage in Coast Pilot 3—Chapter 6 NOAA’s Online Interactive Chart Catalog has complete chart coverage http://www.charts.noaa.gov/InteractiveCatalog/nrnc.shtml Trenton 75°30'W 12314 P ENNSYLV ANIA Philadelphia 40°N 12313 Camden E R I V R E R Wilmington A W A L E D NEW JERSEY 12312 SALEM RIVER CHESAPEAKE & DELAWARE CANAL 39°30'N 12304 12311 Atlantic City MAURICE RIVER DELAWARE BAY 39°N 12214 CAPE MAY INLET DELAWARE 12216 Lewes Cape Henlopen NORTH ATL ANTIC OCEAN INDIAN RIVER INLET 38°30'N 26 SEP 2021 U.S. Coast Pilot 3, Chapter 6 ¢ 211 Delaware Bay (1) This chapter describes Delaware Bay and River and (10) Mileages shown in this chapter, such as Mile 0.9E their navigable tributaries and includes an explanation of and Mile 12W, are the nautical miles above the Delaware the Traffic Separation Scheme at the entrance to the bay. Capes (or “the Capes”), referring to a line from Cape May Major ports covered are Wilmington, Chester, Light to the tip of Cape Henlopen. The letters N, S, E, or Philadelphia, Camden and Trenton, with major facilities W, following the numbers, denote by compass points the at Delaware City, Deepwater Point and Marcus Hook. side of the river where each feature is located. Also described are Christina River, Salem River, and (11) The approaches to Delaware Bay have few off-lying Schuylkill River, the principal tributaries of Delaware dangers. River and other minor waterways, including Mispillion, (12) The 100-fathom curve is 50 to 75 miles off Delaware Maurice and Cohansey Rivers. -
County Council Minutes
SUSSEX COUNTY COUNCIL-GEORGETOWN, DELAWARE-MAY 14, 1974 Call to The regular meeting of the Sussex County Council was held Order on Tuesday, May 14, 1974 at 10:00 A. M. with the following members present: Oliver E. Hill President Ralph E. Benson Vice President John T. Cannon, Sr. Member William B. Chandler, Jr. Member Richard L. Timmons Member The meeting was opened with the repeating of the Lord's Prayer and the Pledge of Allegiance to the flag. M 230 74 A Motion was made by Mr. Cannon, seconded by Mr. Benson, to Minutes approve the minutes of the previous meeting as presented. Approved Motion Adopted by Voice Vote. Corre The following correspondence was read by Mr. Schrader, Act spondence ing County Solicitor: Division of Environmental Control. Re: Public Hearing to be held in the Middle Conference Room Highway Administration Building, Route 113, Dover, Delaware on May 30, 1974 at 10:00 A. M. to consider the proposed Fiscal Year 1975 Priority List for Construction Grants pur suant to 7 Delaware Code, 6021. Ralph J. O'Day. Re: Opposing the adoption of a Building Code for Sussex County. Selbyville Volunteer Fire Company, Inc. Re: Announcing the dedication ceremony for their new fire hall on North Main Street to be held on May 19, 1974 at 1:00 p. M. Stanley R. Habiger, Secretary of the Senate of the State of Delaware. Re: Announcing the deadline for introduction of legislation will be May 15, 1974. Wilgus Associates, Inc. Re: Submitting a proposal outlining the construction of an "Industrial Apartment" Complex at the Sussex County Industrial Airpark. -
A Case Study: the Impact of the 1962 Northeaster on Delaware’S Atlantic Coastline
A CASE STUDY: THE IMPACT OF THE 1962 NORTHEASTER ON DELAWARE’S ATLANTIC COASTLINE by Elizabeth Ann McCarty A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Master of Science in Geological Sciences. Fall 2009 Copyright 2009 Elizabeth Ann McCarty All Rights Reserved A CASE STUDY: THE IMPACT OF THE 1962 NORTHEASTER ON DELAWARE’S ATLANTIC COASTLINE by Elizabeth Ann McCarty Approved: __________________________________________________________ John Madsen, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: __________________________________________________________ Susan McGeary, Ph.D. Chair of the Department of Geological Sciences Approved: __________________________________________________________ Nancy Targett, Ph.D. Dean of the College of Earth, Ocean, and Environment Approved: __________________________________________________________ Debra Hess Norris, M.S. Vice Provost for Graduate and Professional Education “We learn geology the morning after the earthquake.” -Ralph Waldo Emerson ACKNOWLEDGMENTS John Madsen, Ph.D, Department of Geosciences, University of Delaware, for his advisement throughout my program at the University of Delaware. Kelvin Ramsey, Ph.D., Delaware Geological Survey, and Susan McGeary, Ph.D., Chair, Department of Geosciences, University of Delaware, for their participation on my committee and assistance throughout my program. Tony Pratt and Jennifer Wheatley, Department of Natural Resources and Environmental Control, for providing aerial photographs of the storm. Dr. Andrew Morang, U.S. Army Corps of Engineers Engineering Research & Development Center, for providing aerial photographs and other pertinent information. Bart Wilson, United States Geological Survey (USGS), and DNREC‟s Delaware Coastal Program, for Light Detection and Ranging (LiDAR) and Digital Elevation Model (DEM) data.