Cardinal Invariants of Topological Groups and Applications to Κ-Pseudocompact Subgroups

Total Page:16

File Type:pdf, Size:1020Kb

Cardinal Invariants of Topological Groups and Applications to Κ-Pseudocompact Subgroups Universit`adegli Studi di Udine Facolt`adi Scienze Matematiche, Fisiche e Naturali Corso di Dottorato di Ricerca in Matematica Ciclo XX Tesi di Dottorato di Ricerca Cardinal invariants of topological groups and applications to κ-pseudocompact subgroups Relatore: Dottoranda: Prof. Dikran Dikranjan Anna Giordano Bruno 14 febbraio 2008 ii Contents Introduction v 1 General results, notation and terminology 1 1.1 Limit cardinals . 1 1.2 Abelian groups . 2 1.2.1 Ranks . 3 1.2.2 Abelian p-groups . 5 1.3 Topological spaces . 7 1.4 Topological groups . 8 1.4.1 Pontryagin-van Kampen duality . 9 1.4.2 Pseudocompact and precompact groups . 11 1.5 General properties of compact groups . 12 1.5.1 Properties of compact Zp-modules . 14 1.5.2 Essential dense and totally dense subgroups . 15 2 κ-Pseudocompactness 21 2.1 Characterization . 22 2.2 The family Λκ(G)................................ 25 2.3 The Pκ-topology . 28 3 The divisible weight 33 3.1 The power of singularity . 33 3.2 The divisible weight . 35 3.3 w-Divisibility . 38 3.4 κ-Singularity . 40 3.4.1 Characterization and properties . 41 3.4.2 Measuring κ-singularity . 43 3.5 The stable weight . 44 3.6 Super-κ-singularity . 47 4 Projection onto products 51 4.1 The \local" case . 53 4.2 Projection onto w-divisible products . 55 4.3 Projection onto w-divisible powers . 59 iii iv CONTENTS 4.4 The non-abelian case . 63 5 The free rank of abelian pseudocompact groups 65 5.1 Measuring dense pseudocompact subgroups . 65 5.2 The case of w-divisible pseudocompact abelian groups . 68 5.3 The general case . 71 6 Extremality 73 6.1 First results . 74 6.2 Construction of Gκ-dense subgroups . 75 6.3 The dense graph theorem . 77 6.4 Torsion abelian groups and extremality . 80 6.5 Proof of the main theorem . 83 7 Dense compact-like subgroups 87 7.1 Totally dense κ-pseudocompact subgroups . 87 7.1.1 κ-Boundedness . 87 7.1.2 The property TDκ ........................... 89 7.1.3 Main theorems . 91 7.2 Essential dense κ-pseudocompact subgroups . 93 7.3 Either totally dense or essential dense subgroups . 96 7.4 Small essential pseudocompact subgroups . 97 7.4.1 CR-cardinals . 97 7.4.2 Measuring essential subgroups . 98 7.4.3 Independence results . 102 7.5 Open problems . 104 Bibliography 107 Index 112 List of Symbols 115 Introduction Pseudocompactness was introduced by Hewitt with the aim to weaken compactness in the spirit of Weierstraß theorem: a Tychonov topological space X is pseudocompact if ev- ery real valued continuous function of X is bounded [49]. Pseudocompactness coincides with compactness for metric spaces. Pseudocompact groups were characterized by Com- fort and Ross [18, Theorem 4.1] (see Theorem 2.7). Moreover pseudocompact groups are precompact, that is their completion is compact [18, Theorem 1.1]. All topological groups in this thesis are Hausdorff. A relevant problem involving pseudocompact groups is that of extremality, which was introduced and studied by Comfort and co-authors since 1982 [14, 20]. The following are the main two levels of extremality. Definition 1. [7, 16, 29] A pseudocompact group is: • s-extremal if it has no proper dense pseudocompact subgroup; • r-extremal if there exists no strictly finer pseudocompact group topology. It was immediately observed that every pseudocompact metrizable (so compact) group is s- and r-extremal. So arose the natural question of whether every pseudocom- pact group that is either s- or r-extremal is metrizable [14, 20]. This question, posed in 1982, turned out to be very difficult and many papers in the following twenty-five years proposed partial solutions [7, 9, 11, 12, 13, 14, 16, 20, 21, 22, 29, 43]. Recently Comfort and van Mill proved that the answer to this question is positive: Theorem A. [22, Theorem 1.1] For a pseudocompact abelian group G the following conditions are equivalent: (a) G is s-extremal; (b) G is r-extremal; (c) G is metrizable. Studying this topic, we introduced singular groups in [29, Definition 1.2]. Definition 2. A topological abelian group G is singular if there exists a positive integer m such that w(mG) ≤ !. v vi INTRODUCTION The condition given in [29, Definition 1.2] to define singular abelian groups G was (1) there exists a positive integer m such that G[m] is a Gδ-set of G, and it was given for pseudocompact abelian groups. Anyway for pseudocompact abelian groups these properties are equivalent and they are equivalent also to a third one, that is (2) G admits a closed torsion normal Gδ-subgroup. The condition in (2) can be given also for non-necessarily abelian topological groups. The equivalence of these three conditions for pseudocompact abelian groups is proved by Lemma 3.35 with κ = !. So singularity has various aspects and this is a reason for which it is useful in different topics, as we are going to describe. In [29] for example we proved Theorem A in the case when G is singular. Moreover we saw that singularity is a necessary condition for a pseudocompact abelian group to be either s- or r-extremal. Recently singular groups turned out to be useful in another case: in Section 3.1 we show that a counterexample for a recent conjecture which was in a preliminary version of [21] (see http://atlas-conferences.com/cgi-bin/abstract/cats-72) can be found by making use of singular groups. The form in (2) was already used in [32], where the problem of the characterization of compact groups admitting a proper dense subgroup with some compactness-like property was considered. We give a historical panoramic of the general problem and we focus our attention on the role of singular groups. We begin recalling some definitions. A subgroup H of a topological group G is strongly totally dense if H densely intersects every closed subgroup of G, and it is totally dense if H densely intersects every closed normal subgroup of G [63]. These two concepts coincide in the abelian case. The totally dense subgroups of a compact group K are precisely those dense subgroups of K that satisfy the open mapping theorem [30, 31, 48] (see Theorem 1.28), according to the \total minimality criterion" (see Theorem 1.50). The groups with this property were introduced in [30] under the name totally minimal: a topological group G is totally minimal if for every topological group H and for every continuous surjective homomorphism f : G ! H, f is open. A subgroup H of a topological group G is essential if H non-trivially intersects every non-trivial closed normal subgroup of G [59, 64]. A totally dense subgroup is necessarily dense and essential. A topological group G is minimal if there exists no strictly coarser group topology on G. A totally minimal group is minimal. A description of the dense minimal subgroups of compact groups was given in [59, 64] in terms of essential subgroups. According to the \minimality criterion" given in [31, 59, 64] (see Theorem 1.50) a dense subgroup H of a compact abelian group K is minimal if and only if H is essential in K. vii A particular case of the previous mentioned problem has been largely studied, that is the description of compact groups admitting proper totally dense subgroups with some other compactness-like property. To better explain this problem and the known results about it, we recall some definitions of compactness-like properties which did not appear until here: Definition 3. A Tychonov topological space X is: • !-bounded if every countable subset of X is contained in a compact subset of X; • countably compact if every countable open cover of X has a finite subcover; • strongly pseudocompact if X contains a dense countably compact subspace [2]. For topological groups we have the following chain of implications: compact ) !-bounded ) countably compact ) strongly pseudocompact ) pseudocompact ) precompact. It became clear that countable compactness and !-compactness have to be imme- diately ruled out, as no compact group can contain a proper strongly totally dense countably compact subgroup [32, Theorem 1.4] (see also [25] for stronger results). So one has to limit the compactness-like property within (strong) pseudocompactness. We study the problem of the existence of proper totally dense pseudocompact sub- groups of compact abelian groups. In view of our previous observation and of Comfort and Ross theorem about pseudocompact groups (see Theorem 2.7), this is equivalent to look for proper totally minimal Gδ-dense subgroups of compact abelian groups. This problem was studied for the first time by Comfort and Soundararajan [20], and they solved it in case K is a connected compact abelian group: the answer is if and only if K is non-metrizable. A topological group admitting some dense pseudocompact subgroup is necessarily pseudocompact (see Corollary 2.14 with κ = !). A necessary condition for a topological group G to have a strongly totally dense pseudocompact subgroup was given in [32, Theorem 1.7]: G does not admit any closed Gδ-subgroup, that is G is non-singular. As noted above, this is the first time in which this concept appeared. In the case of compact abelian groups this condition, namely non-singularity, was proved to be also sufficient under the Lusin's Hypothesis, which states that 2@1 = 2@0 (it obviously negates the Continuum Hypothesis) [32, Theorem 1.8]. In [32, Problem 1.11] it was asked if it is possible to remove this set-theoretical condition. In the same paper it was proved that the compact abelian groups K with non- metrizable connected component have the following stronger property TD! relaxing countable compactness: there exists a proper totally dense subgroup H of K that con- tains a dense !-bounded subgroup of K [32, Theorem 1.9].
Recommended publications
  • Italia / Italy
    XIII IAAF World Championships Daegu (KOR) - 27 agosto-4 settembre Italia / Italy I componenti della staffetta 4x100 azzurra medaglia d’argento agli Europei 2010 di Barcellona The Italian 4x100 team, silver medallist at the 2010 European Championships of Brarelona La Delegazione The Delegation FIDAL La Delegazione / The Delegation Federazione Italiana Alberto Morini Capo Delegazione / Head of the Delegation di Atletica Leggera Franco Angelotti Consigliere Addetto / Council Member Italian Athletics Federation Francesco Uguagliati Direttore Tecnico / Technical Director Via Flaminia Nuova, 830 00191 Roma, Italia Vittorio Visini Assistente D.T. / Assistant to TD www.fidal.it Rita Bottiglieri Team Manager Francesco Cuccotti Team Manager Presidente /President Marco Sicari Addetto Stampa / Press Officer Franco Arese Pierluigi Fiorella Medico / Doctor Giuseppe Fischetto Medico / Doctor Consiglieri Antonio Abbruzzese Fisioterapista / Physio Council Members Maria M. Marello Fisioterapista / Physio Alberto Morini (Vice Presidente Vicario / Senior Vice President ) Filippo Di Mulo Tecnico / Coach Adriano Rossi (Vice Presidente / Giuseppe Mannella Tecnico / Coach Vice President ) Roberto Pericoli Tecnico / Coach Stefano Andreatta Fabio Pilori Tecnico / Coach Franco Angelotti Roberto Piscitelli Tecnico / Coach Marcello Bindi Nicola Silvaggi Tecnico / Coach Giovanni Caruso Angelo Zamperin Tecnico / Coach Alessandro Castelli Augusto D’agostino Michele Basile Tecnico Personale / Personal Coach Francesco De Feo Riccardo Ceccarini Tecnico Personale / Personal
    [Show full text]
  • Topological Entropy for Automorphisms of Totally Disconnected Locally Compact Groups
    http://topology.auburn.edu/tp/ Volume 45, 2015 Pages 175{187 http://topology.nipissingu.ca/tp/ Topological entropy for automorphisms of totally disconnected locally compact groups by Anna Giordano Bruno Electronically published on August 19, 2014 Topology Proceedings Web: http://topology.auburn.edu/tp/ Mail: Topology Proceedings Department of Mathematics & Statistics Auburn University, Alabama 36849, USA E-mail: [email protected] ISSN: 0146-4124 COPYRIGHT ⃝c by Topology Proceedings. All rights reserved. http://topology.auburn.edu/tp/ http://topology.nipissingu.ca/tp/ Volume 45 (2015) Pages 175-187 E-Published on August 19, 2014 TOPOLOGICAL ENTROPY FOR AUTOMORPHISMS OF TOTALLY DISCONNECTED LOCALLY COMPACT GROUPS ANNA GIORDANO BRUNO Abstract. We give a “limit-free formula” simplifying the compu- tation of the topological entropy for topological automorphisms of totally disconnected locally compact groups. This result allows us to extend to our setting several basic properties of the topological entropy known for compact groups. 1. Introduction In this paper we consider the topological entropy for topological auto- morphisms of totally disconnected locally compact groups. For a locally compact group G, let µ denote a left Haar measure on G. Moreover, let B(G) be the family of all open compact subgroups of G.A totally disconnected locally compact group G has B(G) as a local base at 1, as proved by van Dantzig in [14]. In [1] Adler, Konheim and McAndrew defined the topological entropy for continuous self-maps of compact spaces. Later on, in [3] Bowen in- troduced another notion of topological entropy for uniformly continuous self-maps of metric spaces.
    [Show full text]
  • Entropy on Abelian Groups
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Advances in Mathematics 298 (2016) 612–653 Contents lists available at ScienceDirect Advances in Mathematics www.elsevier.com/locate/aim Entropy on abelian groups Dikran Dikranjan 1, Anna Giordano Bruno ∗,2,3 Dipartimento di Matematica e Informatica, Università di Udine, Via delle Scienze, 206, 33100 Udine, Italy a r t i c l e i n f o a b s t r a c t Article history: We introduce the algebraic entropy for endomorphisms of Received 30 January 2015 arbitrary abelian groups, appropriately modifying existing Accepted 25 April 2016 notions of entropy. The basic properties of the algebraic Available online 11 May 2016 entropy are given, as well as various examples. The main Communicated by the Managing result of this paper is the Addition Theorem showing that the Editors of AIM algebraic entropy is additive in appropriate sense with respect Dedicated to Professor Justin Peters to invariant subgroups. We give several applications of the Addition Theorem, among them the Uniqueness Theorem for MSC: the algebraic entropy in the category of all abelian groups and 20K30 their endomorphisms. Furthermore, we point out the delicate 37A35 connection of the algebraic entropy with the Mahler measure 37B40 11R06 and Lehmer Problem in Number Theory. © 2016 The Authors. Published by Elsevier Inc. This is an Keywords: open access article under the CC BY license Discrete dynamical system (http://creativecommons.org/licenses/by/4.0/). Algebraic entropy Group endomorphism Abelian group Addition Theorem * Corresponding author. E-mail addresses: [email protected] (D.
    [Show full text]
  • Primati E Migliori Prestazioni Italiane (Aggiornati Al 13-7-2018)
    Primati e migliori prestazioni italiane (aggiornati al 13-7-2018) Primati italiani assoluti UOMINI 100m 9.99 Filippo Tortu (Fiamme Gialle) Madrid 22-6-18 200m 19.72A Pietro Mennea (Iveco Torino) Città del Messico 12-9-79 400m 45.12 Matteo Galvan (Fiamme Gialle) Rieti 25-6-16 45.12 Matteo Galvan (Fiamme Gialle) Amsterdam 7-7-16 800m 1:43.7m Marcello Fiasconaro (CUS Torino) Milano 27-6-73 1:43.74 Andrea Longo (Fiamme Oro) Rieti 3-9-00 1000m 2:15.76 Andrea Benvenuti (Fiamme Azzurre) Nuoro 12-9-92 1500m 3:32.78 Gennaro Di Napoli (Snam Gas M.) Rieti 9-9-90 1 miglio 3:51.96 Gennaro Di Napoli (Snam Gas M.) San Donato Milan. 30-5-92 2000m 4:55.0m Gennaro Di Napoli (Snam Gas M.) Torino 26-5-91 3000m 7:39.54 Gennaro Di Napoli (Snam San Donato) Formia 18-5-96 5000m 13:05.59 Salvatore Antibo (CUS Palermo) Bologna 18-7-90 10000m 27:16.50 Salvatore Antibo (CUS Palermo) Helsinki 29-6-89 20000m 58:43.8m Franco Fava (Fiamme Gialle) Roma 9-4-77 1 ora m 20.483 Giuseppe Gerbi (CUS Torino) Roma 17-4-82 25000m 1h16:40.0m Giuseppe Gerbi (CUS Torino) Novi Ligure 10-4-83 30000m 1h33:08.2m Massimo Magnani (CUS Ferrara) Bologna 11-4-82 3000m st 8:08.57 Francesco Panetta (P. Patria Osama) Roma 5-9-87 110m hs 13.28 Emanuele Abate (Fiamme Oro) Torino 8-6-12 400m hs 47.54 Fabrizio Mori (Fiamme Gialle) Edmonton 10-8-01 4x100m 38.17 Nazionale (R.
    [Show full text]
  • Provided by All-Athletics.Com Men's 100M Promotional 08.06.2017
    Men's 100m Promotional 08.06.2017 Start list 100m Time: 20:30 Records Lane Athlete Nat NR PB SB 1 Federico CATTANEO ITA 10.01 10.28 10.28 WR 9.58 Usain BOLT JAM Berlin 16.08.09 2 Aaron BROWN CAN 9.84 9.96 10.30 AR 9.86 Francis OBIKWELU POR Athina 22.08.04 AR 9.86 Jimmy VICAUT FRA Paris 04.07.15 3 Ben Youssef MEITÉ CIV 9.96 9.96 10.15 AR 9.86 Jimmy VICAUT FRA Montreuil-sous-Bois 07.06.16 4 Ronnie BAKER USA 9.69 9.98 9.98 NR 10.01 Pietro MENNEA ITA Ciudad de México 04.09.79 5 Jimmy VICAUT FRA 9.86 9.86 9.97 WJR 9.97 Trayvon BROMELL USA Eugene 13.06.14 6 Michael RODGERS USA 9.69 9.85 10.02 MR 9.75 Justin GATLIN USA 04.06.15 7 Chijindu UJAH GBR 9.87 9.96 10.10 DLR 9.69 Yohan BLAKE JAM Lausanne 23.08.12 8 Yoshihide KIRYU JPN 10.00 10.01 10.04 SB 9.88 Sydney SIAME ZAM Lusaka 08.04.17 9 Femi OGUNODE QAT 9.91 9.91 10.13 2017 World Outdoor list 9.88 +0.2 Sydney SIAME ZAM Lusaka 08.04.17 Medal Winners Roma previous Winners 9.92 +1.2 Akani SIMBINE RSA Pretoria 18.03.17 9.93 +0.4 Yohan BLAKE JAM Kingston 20.05.17 2016 - Rio de Janeiro Olympic Games 16 Justin GATLIN (USA) 9.93 9.95 +1.2 Thando ROTO RSA Pretoria 18.03.17 15 Justin GATLIN (USA) 9.75 1.
    [Show full text]
  • Dense Minimal Pseudocompact Subgroups of Compact Abelian Groups
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Topology and its Applications 155 (2008) 1919–1928 www.elsevier.com/locate/topol Dense minimal pseudocompact subgroups of compact Abelian groups Anna Giordano Bruno Dipartimento di Matematica e Informatica, Università di Udine, Via delle Scienze 206, 33100 Udine, Italy Received 4 October 2006; accepted 3 April 2007 Abstract Motivated by a recent theorem of Comfort and van Mill, we study when a pseudocompact Abelian group admits proper dense minimal pseudocompact subgroups and give a complete answer in the case of compact Abelian groups. Moreover we characterize compact Abelian groups that admit proper dense minimal subgroups. © 2008 Elsevier B.V. All rights reserved. MSC: primary 22A05, 54H11; secondary 22C05, 54D25 Keywords: Compact (Abelian) group; Minimal group; Essential subgroup; Pseudocompact group 1. Introduction Throughout this paper all topological groups are Hausdorff. A topological group G is pseudocompact if every continuous real-valued function of G is bounded [22]. Moreover a pseudocompact group G is s-extremal if it has no proper dense pseudocompact subgroup and r-extremal if there exists no strictly finer pseudocompact group topology on G [2]. Recently in [8] Comfort and van Mill proved the following relevant result about pseudocompact Abelian groups, which solves a problem raised in 1982 [3,7] and studied intensively since then. Theorem 1.1. (See [8].) A pseudocompact Abelian group G is either s-orr-extremal if and only if G is metrizable (hence compact). Note that according to Theorem 1.1 a pseudocompact Abelian group G has a proper dense pseudocompact sub- group if and only if G is non-metrizable.
    [Show full text]
  • LISTE ITALIANE OUTDOOR 2008 Con I Dati Ricevuti Al 21 Gennaio 2009
    LISTE ITALIANE OUTDOOR 2008 con i dati ricevuti al 21 gennaio 2009 DONNE 100 metri (11.95) 11.27+1.3 Anita Pistone (Esercito)76 RM052 (4) Annecy, FRA 21-6 11.35+1.5 Vincenza Calì (Fiamme Azzurre)83 RM002 (3) Milano 2-7 11.37+2.0 Pistone (2) Pavia 11-5 11.40+1.4 Pistone b2(1) Pavia 11-5 11.40+1.8 Pistone b1(1) Cagliari 19-7 11.43-0.2 Pistone b3(2) Pechino 16-8 11.45+1.0 Calì (4) Torino 6-6 11.45+1.1 Pistone (1) Cagliari 19-7 11.46+0.2 Pistone A1(4) Ginevra 31-5 11.47+0.2 Calì A1(5) Ginevra 31-5 11.51+0.5 Audrey Alloh (Atl. Marathon)87 FI002 A4(1) Ginevra 31-5 11.51+1.5 Manuela Grillo (Forestale)77 RI224 (1) Rieti 10-6 11.51+1.8 Martina Giovanetti (Forestale)87 RI224 b1(2) Cagliari 19-7 11.51+1.1 Grillo (2) Cagliari 19-7 11.52+1.6 Calì B(1fc) Rieti 17-5 11.53+0.4 Grillo b2(1) Cagliari 19-7 11.54-0.4 Giovanetti (1) Trento 5-7 11.56+0.1 Pistone qf5(6) Pechino 16-8 11.56+1.1 Calì (4) Rovereto 10-9 11.57+1.1 Doris Tomasini (Quercia Rovereto)84 TN109 (1) Bellinzona, SVIZ 21-6 11.58-0.6 Pistone (2) Firenze 27-6 11.59+1.5 Grillo (6) Milano 2-7 11.60+1.1 Giulia Arcioni (Forestale)86 RI224 A(1) Rieti 17-5 11.60-0.2 Calì (1fc) Rieti 5-7 11.60+0.7 Alloh b3(1) Cagliari 19-7 performances (11.60) 11.66+1.5 Rita De Cesaris (Esercito)82 RM052 (2) Rieti 10-6 11.66+1.8 M.
    [Show full text]
  • Curriculum Vitae
    Curriculum vitae di Dikran Dikranjan Nato: il 5.02.1050 a Rousse (Bulgaria), cittadinanza italiana. Laurea in Mathematica: Universit`adi Sofia, conseguito nel 1973 Ph.D. in Mathematica: Universit`adi Sofia, conseguito nel 1978 Secondo Dottorato (perfezonamento): alla Scuola Normale Superiore di Pisa 1980-1983. Posizioni accademci 1978{1986 ricercatore presso Institute of Mathematics, Bulgarian Academy of Sciences, Sofia. 1986{1992 Professore Associato presso Institute of Mathematics, Bulgarian Academy of Sciences. 1992{2000, Professore Associato in Algebra, Universit`adi Udine 2000{2020, Professore ordinaro di Algebra, Universit`adi Udine Interessi scientifici e attivit`adi ricerca e didattica L’attivit`adi ricerca si `econcretizzata in oltre 250 pubblicazioni scientifiche apparse su riviste internazionali, cinque mono- grafie e un libero di testo in diverse aree dell'algebra, topologia, dinamici sistemi e teoria delle categorie. Ha diretto 13 tesi di dottorato e numerosi tesi di laurea in questi campi della matematica. Ha tenuto i corsi d Algebra (I e II), Topologia (I e II), Istituzioni di Algebra Superiore e Teoria delle categorie. Responsabile o coordinatore di programmi di ricerca nazionali o internazionali Collaborative research grant of NATO, CRG 950347, for the project \Topological and algebraic representation theorems and their applications" in 1995-96, extended for 1997-98 (for collaboration with the University of West Virginia, USA). Research grant of the Italian Minsitry of University and Research MURST for 1998 for the project
    [Show full text]
  • Abstracts of Talks Joint Meeting of the Italian Mathematical Union, the Italian Society of Industrial and Applied Mathematics and the Polish Mathematical Society
    Abstracts of talks Joint meeting of the Italian Mathematical Union, the Italian Society of Industrial and Applied Mathematics and the Polish Mathematical Society Wrocław, 17-20 September 2018 MAIN ORGANIZERS CO-ORGANIZERS SPONSORS Contents I Conference Information Conference Schedule.................................................... 13 II Plenary Lectures Plenary Speakers......................................................... 17 Guest Plenary Speaker.................................................... 22 III Sessions 1 Model Theory......................................................... 25 2 Number Theory........................................................ 31 3 Projective Varieties and their Arrangements............................... 37 4 Algebraic Geometry................................................... 43 5 Algebraic Geometry and Interdisciplinary Applications..................... 47 6 Arithmetic Algebraic Geometry......................................... 53 7 Group Theory......................................................... 59 8 Geometric Function and Mapping Theory................................ 71 9 Complex Analysis and Geometry........................................ 77 10 Optimization, Microstructures, and Applications to Mechanics.............. 81 11 Variational and Set-valued Methods in Differential Problems................ 89 12 Topological Methods and Boundary Value Problems...................... 95 13 Variational Problems and Nonlinear PDEs............................... 103 14 Nonlinear Variational Methods
    [Show full text]
  • Salto Con L'asta
    www.sportolimpico.it SALTO CON L’ASTA – DONNE Tutte le prestazioni fino a 4.30 [165] Aggiornamento: fine stagione 2020 prestazione ottenuta ai Giochi Olimpici prestazione ottenuta ai Campionati Mondiali prestazione ottenuta ai Campionati Europei Al 31 Dic 2000 4.28 Arianna Farfaletti Casale (24) 23 Set 00 4.27 Francesca Dolcini (26) 21 Set 00 4.20 Maria Carla Bresciani (27) 26 Lug 00 4.10 Anna Tamburini (27) 7 Giu 00 4.00 Francesca Zanini (18) 22 Lug 00 3.90 Annalisa Meacci (24) 25 Giu 00 3.85 Chiara Zanelli (23) 21 Giu 00 3.80 Maria Chiara Romano (23) 5 Set 97 3.80 Francesca Dessì (25) 14 Set 98 3.80 Vanessa Soldera (17) 26 Giu 99 3.80 Anna Giordano Bruno (20) 22 Lug 00 3.80 Pamela Azzolini (18) 7 Ott 00 Al 31 Dic 2020 4.60 Anna GIORDANO BRUNO (29) 13-12-80 1) Milano 2 Ago 09 4.60i-Jr Roberta BRUNI (19) 8-3-94 1) Ancona 17 Feb 13 4.55 Giordano Bruno (29) 1) Trieste 25 Lug 09 4.52 Bruni (25) 1) Chiari 2 Set 19 4.51i-Jr Bruni (19) 1) Fermo 2 Feb 13 4.51 Sonia MALAVISI (22) 30-10-94 2) Padova 17 Lug 16 4.50 Giordano Bruno (29) Qlf) Berlino 15 Ago 09 4.50 Giordano Bruno (29) 1) Gorizia 2 Set 09 4.50i Giordano Bruno (30) 1) Udine 6 Feb 10 4.50 Giordano Bruno (31) 1) Vicenza 10 Lug 11 -(10) 4.50 Malavisi (22) 1) Castiglione d.
    [Show full text]
  • Topological Groups: Yesterday, Today, Tomorrow
    axioms Topological Groups: Yesterday, Today, Tomorrow Edited by Sidney A. Morris Printed Edition of the Special Issue Published in Axioms www.mdpi.com/journal/axioms Sidney A. Morris (Ed.) Topological Groups: Yesterday, Today, Tomorrow This book is a reprint of the Special Issue that appeared in the online, open access journal, Axioms (ISSN 2075-1680) from 2015–2016, available at: http://www.mdpi.com/journal/axioms/special_issues/topological_groups_yesterd ay_today_tomorrow Guest Editor Sidney A. Morris School of Science, IT, and Engineering Federation University Australia Australia Editorial Office MDPI AG St. Alban-Anlage 66 Basel, Switzerland Publisher Shu-Kun Lin Managing Editor Qiang Liu 1. Edition 2016 MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade ISBN 978-3-03842-268-6 (Hbk) ISBN 978-3-03842-269-3 (electronic) Articles in this volume are Open Access and distributed under the Creative Commons Attribution license (CC BY), which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book taken as a whole is © 2016 MDPI, Basel, Switzerland, distributed under the terms and conditions of the Creative Commons by Attribution (CC BY-NC-ND) license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Table of Contents List of Contributors ............................................................................................................ V About the Guest Editor................................................................................................... VII Sidney A. Morris An Overview of Topological Groups: Yesterday, Today, Tomorrow Reprinted from: Axioms 2016, 5(2), 11 http://www.mdpi.com/2075-1680/5/2/11 .......................................................................... 1 Karl H. Hofmann and Sidney A.
    [Show full text]
  • Master Schedule.Xlsx
    Date Baton Rouge Berlin Morning Time Time Sex Event Round Saturday 8/15 3:05 AM 10:05 M Shot PutQualification Saturday 8/15 3:10 AM 10:10 W 100 Metres Hurdles Heptathlon Saturday 8/15 3:50 AM 10:50 W 3000 Metres Steeplechase Heats Saturday 8/15 4:00 AM 11:00 W Triple Jump Qualification Saturday 8/15 4:20 AM 11:20 W High Jump Heptathlon Saturday 8/15 4:40 AM 11:40 M 100 Metres Heats SaturdaSaturdayy 88/15/15 55:00:00 AM 12:00M Hammer Throw QQualificationualification Saturday 8/15 5:50 AM 12:50 W 400 Metres Heats Saturday 8/15 6:00 AM 13:00 M 20 Kilometres Race Walk Final Saturday 8/15 6:20 AM 13:20 M Hammer ThrowQualification Afternoon session Saturday 8/15 11:15 AM 18:15 M 1500 Metres Heats Saturday 8/15 11:20 AM 18:20 W Shot Put Heptathlon Saturday 8/15 11:50 AM 18:50 M 100 Metres Quarter-Final Saturday 8/15 12:00 PM 19:00 W Pole Vault Qualification Saturday 8/15 12:25 PM 19:25 W 10,000 Metres Final Saturday 8/15 1:15 PM 20:15 M Shot Put Final Saturday 8/15 1:20 PM 20:20 M 400 Metres Hurdles Heats Saturday 8/15 2:10 PM 21:10 W 200 Metres Heptathlon Date Baton Rouge Berlin Date Time Time Morning session Sex Event Round Sunday 8/16 3:05 AM 10:05 W Shot PutQualification Sunday 8/16 3:10 AM 10:10 W 800 Metres Heats Sunday 8/16 3:45 AM 10:45 W Javelin Throw Qualification Sunday 8/16 4:00 AM 11:00 M 3000 Metres Steeplechase Heats Sunday 8/16 4:35 AM 11:35 W Long Jump Heptathlon SundaSundayy 88/16/16 44:55:55 AM 11:11:5555 W 100 Metres Heats Sunday 8/16 5:00 AM 12:00 W 20 Kilometres Race Walk Final Sunday 8/16 5:15 AM 12:15 W Javelin Throw
    [Show full text]