Fast Left-Kan Extensions Using the Chase

Total Page:16

File Type:pdf, Size:1020Kb

Fast Left-Kan Extensions Using the Chase Noname manuscript No. (will be inserted by the editor) Fast Left-Kan Extensions Using The Chase David I. Spivak · Ryan Wisnesky August 30, 2021 Abstract We show how any chase algorithm from relational database theory that computes initial models on finite-limit theories can be used to compute left-Kan extensions of set-valued functors, and prove that the core chase and the parallel chase both compute initial models on finite-limit theories. We also describe an op- timized implementation of the parallel chase specialized to left-Kan computations that achieves an order of magnitude improvement in our performance benchmarks compared to the next fastest left-Kan extension algorithm we are aware of. Keywords Computational category theory · left-Kan extensions · the Chase · Data migration · Data integration 1 Introduction Left-Kan extensions [8] are used for many purposes in automated reasoning: to enumerate the elements of finitely-presented algebraic structures such as monoids; to construct semi-decision procedures for Thue (equational) systems; to compute the cosets of groups; to compute the orbits of a group action; to compute quotients of sets by equivalence relations; and more. Left-Kan extensions are described category-theoretically, and we assume a knowledge of category theory [3] in this paper, but see the next section for a review. Let C and D be categories and F : C ! D a functor. Given a functor J : D ! Set, where D ! Set (also written SetD) is the category of functors from D to the category of sets, Set, we define ∆F (J): C ! Set := J ◦ F , and think of ∆F as a functor from D ! Set to C ! Set. ∆F has a left adjoint, which we write as ΣF , taking functors in C ! Set to functors in D ! Set. Given a functor I : C ! Set, the functor ΣF (I): D ! Set is called the left-Kan extension [8] of I along F . Left-Kan extensions always exist, up to unique isomorphism, but they need not be finite, (i.e., ΣF (I)(d) may have infinite cardinality for some object d 2 D, even when I(c) has finite cardinality for every object c 2 C). In this paper we Both authors at Conexus AI 2 David I. Spivak, Ryan Wisnesky describe how to compute finite left-Kan extensions when C, D, and F are finitely presented and I is finite, a semi-computable problem originally solved in [8] and significantly improved upon in [7]. 1.1 Motivation Our interest in left-Kan extensions comes from their use in data migration [24, 28,25], where C and D represent database schemas, F represents a \schema map- ping" [16] defining a translation from schema C to D, and I represents an in- put C-database (often called an instance) that we wish to migrate to schema D. Our implementation of the fastest left-Kan algorithm we knew of from existing literature [7] was impractical for large input instances, yet it bore a striking op- erational resemblance to an algorithm from relational database theory known as the chase [10], which is also used to solve data migration problems, and for which efficient implementations are known [5]. The chase takes a set of formulae F in a subset of first-order logic known to logicians as existential Horn logic [10], to category theorists as regular logic [22] to database theorists as embedded dependen- cies [10], and to topologists as lifting problems [27], and constructs an F-model chaseF (I) that is weakly initial among other such \F-repairs" of I. 1.2 Contributions In this paper, we: { show how any chase algorithm that computes initial models on finite-limit the- ories [1] (regular theories where every 9 quantifier is read as \exists-unique") can be used to compute left-Kan extensions of set-valued functors; and, { prove that the core chase [10] and the parallel chase [10] compute initial models on finite-limit theories; and, { describe an optimized left-Kan extension algorithm, inspired by the parallel chase, that achieves an order of magnitude improvement in our performance benchmarks compared to the next fastest left-Kan extension algorithm we are aware of [7]. 1.3 Outline This paper is structured as follows. In the next section we review category the- ory [3] and then describe a running example of a left-Kan extension. Then in section 2 we describe how to compute left-Kan extensions using chases that pro- duce initial models on finite-limit theories, as well as prove that the core chase and parallel chase construct initial models on finite-limit theories. In section 3 we describe our particular left-Kan algorithm implementation, compare it to the algorithm in [7], and provide experimental performance results. We conclude in section 4 by discussing the differences between the chase as used in relational database theory and as used in this paper. We assume knowledge of formal logic and algebraic specification at the level of [2], and knowledge of left-Kan extensions at the level of [8] and knowledge of the chase at the level of [10] is helpful. Fast Left-Kan Extensions Using The Chase 3 1.4 Review of Category Theory In this section, we review standard definitions and results from category theory [3]. A category C is an axiomatically-defined algebraic structure similar to a group, ring, or monoid. It consists of: { a set (or class), Ob(C), the members of which we call objects, and { for every two objects c1; c2, a set (or class) C(c1; c2), the members of which we call morphisms (or arrows) from c1 to c2, and { for every three objects c1; c2; c3, a function ◦c1;c2;c3 : C(c2; c3) × C(c1; c2) ! C(c1; c3), which we call composition, and { for every object c, an arrow idc 2 C(c; c), which we call the identity for c. We may write f : c1 ! c2 instead of f 2 C(c1; c2), and drop object subscripts on id and ◦, when doing so does not create ambiguity. The sets and functions above must obey axioms stating that ◦ is associative and id is its unit: id ◦ f = f f ◦ id = f f ◦ (g ◦ h) = (f ◦ g) ◦ h Two morphisms f : c1 ! c2 and g : c2 ! c1 such that f ◦ g = id and g ◦ f = id are said to be an isomorphism. We may write f; g or f:g to indicate g ◦ f and write c 2 C to indicate c 2 Ob(c) when it is clear c is an object. An example category is the category of sets and total functions, Set, which has for objects all the \small" sets in some set theory, such as ZFC, and for morphisms X to Y the total functions X ! Y represented as sets. The isomorphisms of Set are exactly the bijections. Programming languages often form categories, with types as objects and programs taking inputs of type t1 and returning outputs of type t2 as morphisms t1 ! t2. A relational database schema consisting of single-part foreign keys and single-part unique identifiers also forms a category, say C, and we may consider C-databases as functors C ! Set [24], with the pleasant property that natural transformations of such functors correspond exactly to the C-database homomorphisms in the sense of relational database theory [10] (bearing in mind some caveats discussed in the conclusion to this paper). A functor F : C ! D between categories C and D consists of: { a function F : Ob(C) ! Ob(D), and { for every c1; c2 2 Ob(C), a function Fc1;c2 : C(c1; c2) ! D(F (c1);F (c2)), where we may omit object subscripts when they can be inferred, such that F (idc) = idF (c) F (f ◦ g) = F (f) ◦ F (g): A natural transformation h : F ! G between functors F; G : C ! D consists of a family of morphisms hc : F (c) ! G(c), indexed by objects in C, called the com- ponents of h, such that for every f : c1 ! c2 in C, hc2 ◦ F (f) = G(f) ◦ hc1 . Given (small [3]) categories C and D, the functors from C to D form a category, C ! D (written also DC ), whose morphisms are natural transformations. The category of all (small) categories forms a category in the obvious way. A natural transforma- tion is called a natural isomorphism when all of its components are isomorphisms. The family of equations defining a natural transformation may be rendered as a 4 David I. Spivak, Ryan Wisnesky commutative diagram: F (f) F (c1) / F (c2) hc1 hc2 G(c1) / G(c2) G(f) Such a diagram indicates that all compositions of morphisms that start at the same object and end at the same object are to commute (be equal morphisms) in D; in this case, there are two such paths, east-south and south-east. Because categories are algebraic objects, they can be defined by generators and relations (or as we like to say, generators and equations) in a manner similar to e.g. groups. Formally, let G be a directed multi-graph with nodes N and edges E, and let a path from node n1 to node nk consist of a continuous, possibly 0-length list of edges n1 !e1 n2 ! ::: !ek nk. An equation p = q (from node n1 to node nk) is a pair of paths p and q (each from n1 to nk), and given a set of equations Eq , we say that two paths p and q (each from n1 to nk) are equivalent according to Eq if there is a way to re-write (in the sense of a Thue system [3]) p into q according to Eq and the usual axioms of equality (reflexivity, symmetry, transitivity) and congruence (if p = q, then p:e = q:e).
Recommended publications
  • Giraud's Theorem
    Giraud’s Theorem 25 February and 4 March 2019 The Giraud’s axioms allow us to determine when a category is a topos. Lurie’s version indicates the equivalence between the axioms, the left exact localizations, and Grothendieck topologies, i.e. Proposition 1. [2] Let X be a category. The following conditions are equivalent: 1. The category X is equivalent to the category of sheaves of sets of some Grothendieck site. 2. The category X is equivalent to a left exact localization of the category of presheaves of sets on some small category C. 3. Giraud’s axiom are satisfied: (a) The category X is presentable. (b) Colimits in X are universal. (c) Coproducts in X are disjoint. (d) Equivalence relations in X are effective. 1 Sheaf and Grothendieck topologies This section is based in [4]. The continuity of a reald-valued function on topological space can be determined locally. Let (X;t) be a topological space and U an open subset of X. If U is S covered by open subsets Ui, i.e. U = i2I Ui and fi : Ui ! R are continuos functions then there exist a continuos function f : U ! R if and only if the fi match on all the overlaps Ui \Uj and f jUi = fi. The previuos paragraph is so technical, let us see a more enjoyable example. Example 1. Let (X;t) be a topological space such that X = U1 [U2 then X can be seen as the following diagram: X s O e U1 tU1\U2 U2 o U1 O O U2 o U1 \U2 If we form the category OX (the objects are the open sets and the morphisms are given by the op inclusion), the previous paragraph defined a functor between OX and Set i.e it sends an open set U to the set of all continuos functions of domain U and codomain the real numbers, F : op OX ! Set where F(U) = f f j f : U ! Rg, so the initial diagram can be seen as the following: / (?) FX / FU1 ×F(U1\U2) FU2 / F(U1 \U2) then the condition of the paragraph states that the map e : FX ! FU1 ×F(U1\U2) FU2 given by f 7! f jUi is the equalizer of the previous diagram.
    [Show full text]
  • Left Kan Extensions Preserving Finite Products
    Left Kan Extensions Preserving Finite Products Panagis Karazeris, Department of Mathematics, University of Patras, Patras, Greece Grigoris Protsonis, Department of Mathematics, University of Patras, Patras, Greece 1 Introduction In many situations in mathematics we want to know whether the left Kan extension LanjF of a functor F : C!E, along a functor j : C!D, where C is a small category and E is locally small and cocomplete, preserves the limits of various types Φ of diagrams. The answer to this general question is reducible to whether the left Kan extension LanyF of F , along the Yoneda embedding y : C! [Cop; Set] preserves those limits (see [12] x3). Such questions arise in the classical context of comparing the homotopy of simplicial sets to that of spaces but are also vital in comparing, more generally, homotopical notions on various combinatorial models (e.g simplicial, bisimplicial, cubical, globular, etc, sets) on the one hand, and various \realizations" of them as spaces, categories, higher categories, simplicial categories, relative categories etc, on the other (see [8], [4], [15], [2]). In the case where E = Set the answer is classical and well-known for the question of preservation of all finite limits (see [5], Chapter 6), the question of finite products (see [1]) as well as for the case of various types of finite connected limits (see [11]). The answer to such questions is also well-known in the case E is a Grothendieck topos, for the class of all finite limits or all finite connected limits (see [14], chapter 7 x 8 and [9]).
    [Show full text]
  • Free Models of T-Algebraic Theories Computed As Kan Extensions Paul-André Melliès, Nicolas Tabareau
    Free models of T-algebraic theories computed as Kan extensions Paul-André Melliès, Nicolas Tabareau To cite this version: Paul-André Melliès, Nicolas Tabareau. Free models of T-algebraic theories computed as Kan exten- sions. 2008. hal-00339331 HAL Id: hal-00339331 https://hal.archives-ouvertes.fr/hal-00339331 Preprint submitted on 17 Nov 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Free models of T -algebraic theories computed as Kan extensions Paul-André Melliès Nicolas Tabareau ∗ Abstract One fundamental aspect of Lawvere’s categorical semantics is that every algebraic theory (eg. of monoid, of Lie algebra) induces a free construction (eg. of free monoid, of free Lie algebra) computed as a Kan extension. Unfortunately, the principle fails when one shifts to linear variants of algebraic theories, like Adams and Mac Lane’s PROPs, and similar PROs and PROBs. Here, we introduce the notion of T -algebraic theory for a pseudomonad T — a mild generalization of equational doctrine — in order to describe these various kinds of “algebraic theories”. Then, we formulate two conditions (the first one combinatorial, the second one algebraic) which ensure that the free model of a T -algebraic theory exists and is computed as an Kan extension.
    [Show full text]
  • Double Homotopy (Co) Limits for Relative Categories
    Double Homotopy (Co)Limits for Relative Categories Kay Werndli Abstract. We answer the question to what extent homotopy (co)limits in categories with weak equivalences allow for a Fubini-type interchange law. The main obstacle is that we do not assume our categories with weak equivalences to come equipped with a calculus for homotopy (co)limits, such as a derivator. 0. Introduction In modern, categorical homotopy theory, there are a few different frameworks that formalise what exactly a “homotopy theory” should be. Maybe the two most widely used ones nowadays are Quillen’s model categories (see e.g. [8] or [13]) and (∞, 1)-categories. The latter again comes in different guises, the most popular one being quasicategories (see e.g. [16] or [17]), originally due to Boardmann and Vogt [3]. Both of these contexts provide enough structure to perform homotopy invariant analogues of the usual categorical limit and colimit constructions and more generally Kan extensions. An even more stripped-down notion of a “homotopy theory” (that arguably lies at the heart of model categories) is given by just working with categories that come equipped with a class of weak equivalences. These are sometimes called relative categories [2], though depending on the context, this might imply some restrictions on the class of weak equivalences. Even in this context, we can still say what a homotopy (co)limit is and do have tools to construct them, such as model approximations due to Chach´olski and Scherer [5] or more generally, left and right arXiv:1711.01995v1 [math.AT] 6 Nov 2017 deformation retracts as introduced in [9] and generalised in section 3 below.
    [Show full text]
  • Quasicategories 1.1 Simplicial Sets
    Quasicategories 12 November 2018 1.1 Simplicial sets We denote by ∆ the category whose objects are the sets [n] = f0; 1; : : : ; ng for n ≥ 0 and whose morphisms are order-preserving functions [n] ! [m]. A simplicial set is a functor X : ∆op ! Set, where Set denotes the category of sets. A simplicial map f : X ! Y between simplicial sets is a natural transforma- op tion. The category of simplicial sets with simplicial maps is denoted by Set∆ or, more concisely, as sSet. For a simplicial set X, we normally write Xn instead of X[n], and call it the n set of n-simplices of X. There are injections δi :[n − 1] ! [n] forgetting i and n surjections σi :[n + 1] ! [n] repeating i for 0 ≤ i ≤ n that give rise to functions n n di : Xn −! Xn−1; si : Xn+1 −! Xn; called faces and degeneracies respectively. Since every order-preserving function [n] ! [m] is a composite of a surjection followed by an injection, the sets fXngn≥0 k ` together with the faces di and degeneracies sj determine uniquely a simplicial set X. Faces and degeneracies satisfy the simplicial identities: n−1 n n−1 n di ◦ dj = dj−1 ◦ di if i < j; 8 sn−1 ◦ dn if i < j; > j−1 i n+1 n < di ◦ sj = idXn if i = j or i = j + 1; :> n−1 n sj ◦ di−1 if i > j + 1; n+1 n n+1 n si ◦ sj = sj+1 ◦ si if i ≤ j: For n ≥ 0, the standard n-simplex is the simplicial set ∆[n] = ∆(−; [n]), that is, ∆[n]m = ∆([m]; [n]) for all m ≥ 0.
    [Show full text]
  • Kan Extensions Along Promonoidal Functors
    Theory and Applications of Categories, Vol. 1, No. 4, 1995, pp. 72{77. KAN EXTENSIONS ALONG PROMONOIDAL FUNCTORS BRIAN DAY AND ROSS STREET Transmitted by R. J. Wood ABSTRACT. Strong promonoidal functors are de¯ned. Left Kan extension (also called \existential quanti¯cation") along a strong promonoidal functor is shown to be a strong monoidal functor. A construction for the free monoidal category on a promonoidal category is provided. A Fourier-like transform of presheaves is de¯ned and shown to take convolution product to cartesian product. Let V be a complete, cocomplete, symmetric, closed, monoidal category. We intend that all categorical concepts throughout this paper should be V-enriched unless explicitly declared to be \ordinary". A reference for enriched category theory is [10], however, the reader unfamiliar with that theory can read this paper as written with V the category of sets and ­ for V as cartesian product; another special case is obtained by taking all categories and functors to be additive and V to be the category of abelian groups. The reader will need to be familiar with the notion of promonoidal category (used in [2], [6], [3], and [1]): such a category A is equipped with functors P : Aop­Aop­A¡!V, J : A¡!V, together with appropriate associativity and unit constraints subject to some axioms. Let C be a cocomplete monoidal category whose tensor product preserves colimits in each variable. If A is a small promonoidal category then the functor category [A, C] has the convolution monoidal structure given by Z A;A0 F ¤G = P (A; A0; ¡)­(FA­GA0) (see [7], Example 2.4).
    [Show full text]
  • Quantum Kan Extensions and Applications
    Quantum Kan Extensions and their Applications IARPA QCS PI Meeting z 16–17 July 2012 0 | i F ϕ ψ A B | i ǫ =⇒ X Lan (X ) F θ y Sets x 1 | i BakeÖ ÅÓÙÒØaiÒ Science Technology Service Dr.RalphL.Wojtowicz Dr.NosonS.Yanofsky Baker Mountain Research Corporation Department of Computer Yellow Spring, WV and Information Science Brooklyn College Contract: D11PC20232 Background Right Kan Extensions Left Kan Extensions Theory Plans Project Overview Goals: Implement and analyze classical Kan extensions algorithms Research and implement quantum algorithms for Kan extensions Research Kan liftings and homotopy Kan extensions and their applications to quantum computing Performance period: 26 September 2011 – 25 September 2012 Progress: Implemented Carmody-Walters classical Kan extensions algorithm Surveyed complexity of Todd-Coxeter coset enumeration algorithm Proved that hidden subgroups are examples of Kan extensions Found quantum algorithms for: (1) products, (2) pullbacks and (3) equalizers [(1) and (3) give all right Kan extensions] Found quantum algorithm for (1) coproducts and made progress on (2) coequalizers [(1) and (2) give all left Kan extensions] Implemented quantum algorithm for coproducts Report on Kan liftings in progress ÅÓÙÒØaiÒ BakeÖ Quantum Kan Extensions — 17 July 2012 1/34 Background Right Kan Extensions Left Kan Extensions Theory Plans Outline 1 Background Definitions Examples and Applications The Carmody-Walters Kan Extension Algorithm 2 Right Kan Extensions Products Pullbacks Equalizers 3 Left Kan Extensions Coproducts Coequalizers
    [Show full text]
  • Ends and Coends
    THIS IS THE (CO)END, MY ONLY (CO)FRIEND FOSCO LOREGIAN† Abstract. The present note is a recollection of the most striking and use- ful applications of co/end calculus. We put a considerable effort in making arguments and constructions rather explicit: after having given a series of preliminary definitions, we characterize co/ends as particular co/limits; then we derive a number of results directly from this characterization. The last sections discuss the most interesting examples where co/end calculus serves as a powerful abstract way to do explicit computations in diverse fields like Algebra, Algebraic Topology and Category Theory. The appendices serve to sketch a number of results in theories heavily relying on co/end calculus; the reader who dares to arrive at this point, being completely introduced to the mysteries of co/end fu, can regard basically every statement as a guided exercise. Contents Introduction. 1 1. Dinaturality, extranaturality, co/wedges. 3 2. Yoneda reduction, Kan extensions. 13 3. The nerve and realization paradigm. 16 4. Weighted limits 21 5. Profunctors. 27 6. Operads. 33 Appendix A. Promonoidal categories 39 Appendix B. Fourier transforms via coends. 40 References 41 Introduction. The purpose of this survey is to familiarize the reader with the so-called co/end calculus, gathering a series of examples of its application; the author would like to stress clearly, from the very beginning, that the material presented here makes arXiv:1501.02503v2 [math.CT] 9 Feb 2015 no claim of originality: indeed, we put a special care in acknowledging carefully, where possible, each of the many authors whose work was an indispensable source in compiling this note.
    [Show full text]
  • Category Theory and Diagrammatic Reasoning 3 Universal Properties, Limits and Colimits
    Category theory and diagrammatic reasoning 13th February 2019 Last updated: 7th February 2019 3 Universal properties, limits and colimits A division problem is a question of the following form: Given a and b, does there exist x such that a composed with x is equal to b? If it exists, is it unique? Such questions are ubiquitious in mathematics, from the solvability of systems of linear equations, to the existence of sections of fibre bundles. To make them precise, one needs additional information: • What types of objects are a and b? • Where can I look for x? • How do I compose a and x? Since category theory is, largely, a theory of composition, it also offers a unifying frame- work for the statement and classification of division problems. A fundamental notion in category theory is that of a universal property: roughly, a universal property of a states that for all b of a suitable form, certain division problems with a and b as parameters have a (possibly unique) solution. Let us start from universal properties of morphisms in a category. Consider the following division problem. Problem 1. Let F : Y ! X be a functor, x an object of X. Given a pair of morphisms F (y0) f 0 F (y) x , f does there exist a morphism g : y ! y0 in Y such that F (y0) F (g) f 0 F (y) x ? f If it exists, is it unique? 1 This has the form of a division problem where a and b are arbitrary morphisms in X (which need to have the same target), x is constrained to be in the image of a functor F , and composition is composition of morphisms.
    [Show full text]
  • Kan Extensions and the Calculus of Modules for $\Infty $-Categories
    Kan extensions and the calculus of modules for ∞-categories EMILY RIEHL DOMINIC VERITY Various models of (∞, 1)-categories, including quasi-categories, complete Segal spaces, Segal categories, and naturally marked simplicial sets can be considered as the objects of an ∞-cosmos. In a generic ∞-cosmos, whose objects we call ∞-categories, we introduce modules (also called profunctors or correspondences) between ∞-categories, incarnated as as spans of suitably-defined fibrations with groupoidal fibers. As the name suggests, a module from A to B is an ∞-category equipped with a left action of A and a right action of B, in a suitable sense. Applying the fibrational form of the Yoneda lemma, we develop a general calculus of modules,provingthattheynaturallyassemble intoa multicategory-like structure called a virtual equipment, which is known to be a robust setting in which to develop formal category theory. Using the calculus of modules, it is straightforward to define andstudy pointwise Kan extensions,which we relate, in thecaseofcartesian closed ∞-cosmoi, to limits and colimits of diagrams valued in an ∞-category, as introduced in previous work. 18G55, 55U35, 55U40; 18A05, 18D20, 18G30, 55U10 arXiv:1507.01460v3 [math.CT] 13 Jun 2016 2 Riehl and Verity 1 Introduction Previous work [12, 15, 13, 14] shows that the basic theory of (∞, 1)-categories — categories that are weakly enriched over ∞-groupoids, i.e., topological spaces — can be developed “model independently,” at least if one is content to work with one of the better-behaved models: namely, quasi-categories, complete Segal spaces, Segal categories, or naturally marked simplicial sets. More specifically, we show that a large portion of the category theory of quasi-categories—one model of (∞, 1)-categories that has been studied extensively by Joyal, Lurie, and others—can be re-developed from the abstract perspective of the homotopy 2-category of the ∞-cosmos of quasi- categories.
    [Show full text]
  • Using Rewriting Systems to Compute Left Kan Extensions and Induced Actions of Categories
    J. Symbolic Computation (2000) 29, 5{31 doi: 10.1006/jsco.1999.0294 Available online at http://www.idealibrary.com on Using Rewriting Systems to Compute Left Kan Extensions and Induced Actions of Categories RONALD BROWNyz AND ANNE HEYWORTHx{ School of Mathematics, University of Wales, Bangor, Gwynedd LL57 1UT, UK The aim is to apply string-rewriting methods to compute left Kan extensions, or, equiva- lently, induced actions of monoids, categories, groups or groupoids. This allows rewriting methods to be applied to a greater range of situations and examples than before. The data for the rewriting is called a Kan extension presentation. The paper has its origins in earlier work by Carmody and Walters who gave an algorithm for computing left Kan extensions based on extending the Todd{Coxeter procedure, an algorithm only applica- ble when the induced action is finite. The current work, in contrast, gives information even when the induced action is infinite. c 2000 Academic Press 1. Introduction This paper extends the usual string-rewriting procedures for words w in a free monoid to terms x w where x is an element of a set and w is a word. Two kinds of rewriting are involvedj here. The first is the familiar x ulv x urv given by a relation (l; r). The second derives from a given action of certainj words! j on elements, so allowing rewriting x F (a)v x a v (a kind of tensor product rule). Further, the elements x and x a are allowedj to! belong· j to different sets. · The natural setting for this rewriting is a presentation of the form kan Γ ∆ RelB X F where: h j j j j i Γ, ∆ are (directed) graphs; • X :Γ Sets and F :Γ P ∆ are graph morphisms to the category of sets and • the free! category on ∆, respectively;! and RelB is a set of relations on the free category P ∆.
    [Show full text]
  • Introduction
    Pr´e-Publica¸c~oesdo Departamento de Matem´atica Universidade de Coimbra Preprint Number 19{19 DESCENT DATA AND ABSOLUTE KAN EXTENSIONS FERNANDO LUCATELLI NUNES Abstract: The fundamental construction underlying descent theory, the lax de- scent category, comes with a functor that forgets the descent data. We prove that, in any 2-category A with lax descent objects, the forgetful morphisms create all absolute Kan extensions. As a consequence of this result, we get a monadicity theo- rem which says that a right adjoint functor is monadic if and only if it is, up to the composition with an equivalence, a functor that forgets descent data. In particular, within the classical context of descent theory, we show that, in a fibred category, the forgetful functor between the category of internal actions of a precategory a and the category of internal actions of the underlying discrete precategory is monadic if and only if it has a left adjoint. This proves that one of the implications of the cele- brated B´enabou-Roubaud theorem does not depend on the so called Beck-Chevalley condition. Namely, we show that, in a fibred category with pullbacks, whenever an effective descent morphism induces a right adjoint functor, the functor is monadic. Keywords: effective descent morphisms, internal actions, indexed categories, cre- ation of absolute Kan extensions, Beck's monadicity theorem, B´enabou-Roubaud theorem, descent theory, monadicity theorem. Math. Subject Classification (2010): 18D05, 18C15, 18A22, 18A30, 18A40, 18F99, 11R32, 13B05. Introduction The (lax) descent objects [44, 46, 33, 36], the 2-dimensional limits underly- ing descent theory [18, 19, 23, 46, 34], play an important role in 2-dimensional universal algebra [27, 6, 30, 32].
    [Show full text]