Study of the Feasibility of a “Rocket Launching Consultancy”

Total Page:16

File Type:pdf, Size:1020Kb

Study of the Feasibility of a “Rocket Launching Consultancy” Study of the feasibility of a “Rocket launching Consultancy” through the analysis of the propulsion system’s requirements to reach LEO and MEO orbits with payloads up to 1,000 kg Author: Robert Arcaleanu Director: Borja Pedro Borràs Quintanal Co-Director: David Bermejo Plana Bachelor’s Thesis Bachelor’s degree in Aerospace Vehicle Engineering Escola Superior d’Enginyeries Industrial, Aeroespacial i Audiovisual de Terrassa Universitat Politècnica de Catalunya June, 30th 2020 Acknowledgement On the one hand, I would like to thank to my director and co-director, Borja Borràs and David Bermejo, who provided me the opportunity to develop a project related to what I like, rockets. It would not be possible without them, and I show them my sincere gratitude. On the other hand, I would like to express my gratitude to all my friends that have supported me during the last four years. Last but not least, I would like to thank to my parents, who always have been there for everything I needed. C Contents AcknowledgementC Contentsi List of Figuresv List of Tables vii Abstract xiii Aim xv Scope xvii Requirements xix Background xxi 1 Introduction1 1.1 Brief Rockets’ Historical Review.................... 2 1.2 Business Description and Feasibility Analysis............. 3 1.2.1 Potential Customer....................... 4 2 Market Research5 2.1 Buying a Launch Service........................ 5 2.2 Competitors............................... 6 2.2.1 NASA Launch Services Program................ 6 2.2.1.1 NASA Venture Class Launch Services....... 7 2.2.2 Spaceflight............................ 7 2.2.3 Precious Payload........................ 8 2.2.4 Loft Orbital........................... 9 i ii CONTENTS 2.2.5 EXOLAUNCH ......................... 9 2.2.6 D-Orbit ............................. 9 2.2.7 Other Launch Services Providers ............... 9 3 State of the art 11 3.1 Payload ................................. 11 3.1.1 Human Spacecraft ....................... 11 3.1.2 Cargo Spacecraft ........................ 12 3.1.3 Space Probes .......................... 13 3.1.4 Satellites............................. 13 3.2 Rocket Launch Sites .......................... 14 3.2.1 Geographic Considerations................... 15 3.2.1.1 Latitude........................ 15 3.2.1.2 Azimuth........................ 15 3.2.2 Active Launch Sites....................... 16 3.3 Operating Launch Vehicles....................... 17 3.3.1 Rocket Features Definition................... 18 3.3.2 Launch vehicles......................... 19 3.4 Orbits .................................. 21 3.4.1 Orbit Parameters........................ 21 3.4.2 Earth orbit classification.................... 22 4 Study of Propulsion System’s Requirements 25 4.1 Missions Parameters and Definition.................. 25 4.2 Study of the Possibility to Reach the Orbits ............. 30 4.2.1 Possibility to Reach the Polar Orbit.............. 32 4.2.2 Possibility to Reach the Sun-Synchronous Orbit . 33 4.2.3 Possibility to reach the Inclined Orbit............. 33 4.2.4 Possibility to Reach the Semi-Synchronous Orbit . 34 4.2.5 Possibility to Reach the Molniya Orbit............ 34 4.3 Propulsion System’s Parameters Calculation............. 35 4.3.1 Delta V Budget......................... 35 4.3.2 Rocket Equations........................ 39 4.3.3 Optimal Staging ........................ 41 4.3.3.1 Results and Algorithm Validation.......... 48 ii CONTENTS ESEIAAT 5 Results Analysis 51 5.1 Results Comparison........................... 51 5.1.1 Polar Orbit ........................... 52 5.1.2 Sun-Synchronous Orbit..................... 52 5.1.3 Inclined Orbit.......................... 53 5.1.4 Semi-Synchronous Orbit.................... 54 5.1.5 Molnyia Orbit.......................... 55 5.2 Feasibility Study ............................ 57 5.2.1 Other Services.......................... 58 6 Conclusions and Future Work 61 Environmental Impact 62 Budget 64 Planning 66 A Operating Launch Vehicles 73 A.1 Two Stage Launch Vehicles....................... 73 A.2 Three Stage Launch Vehicles...................... 75 A.3 Four Stage Launch Vehicles ...................... 76 A.4 Five Stage Launch Vehicles ...................... 77 B Possibility to Reach the Orbits 79 B.1 Polar Orbit ............................... 80 B.2 Sun-Synchronous Orbit......................... 81 B.3 Inclined Orbit.............................. 82 B.4 Semi-Synchronous Orbit ........................ 83 B.5 Molnyia Orbit.............................. 84 C Results of Optimal Staging 85 C.1 Polar Orbit ............................... 86 C.2 Sun-Synchronous Orbit......................... 87 C.3 Inclined Orbit.............................. 89 C.4 Semi-Synchronous Orbit ........................ 90 C.5 Molnyia Orbit.............................. 92 iii iv CONTENTS D Optimisation Script 95 Bibliography 99 Declaració d’Honor 103 iv List of Figures 2.1 Spaceflight Launch Vehicle Family[1].......... 8 3.1 Velocity at Earth’s Surface by Latitude [2] . 15 3.2 Potential Launch Azimuths from Omelek[3] ...... 17 3.3 Palmachim and Sohae Hypothetical Azimuths . 17 3.4 Serial Staging [4]..................... 18 3.5 Parallel Staging [4].................... 18 3.6 Orbital Elements [5] ................... 21 3.7 Earth Orbits Representation............... 23 4.1 Launch Vehicle Performance and Launch Mission. 26 4.2 Topocentric horizon coordinate system [6]. A is the azimuth........................... 30 4.3 Launch Azimuth[7].................... 30 4.4 Hohmann Transfer[6]................... 31 4.5 Launch Vehicle Boost Trajectory[8]........... 36 4.6 Typical Atlas V 521 Dynamic Pressure vs Time[9] . 36 1 2 4.7 First order approximation ( 2 ρv vs t).......... 36 4.8 Launch System Performance Losses[6] ......... 38 4.9 Definitions of Various Vehicle Masses[10] . 40 4.10 Chamber and Nozzle Representation [10] . 42 4.11 Altitude performance of RS 27 liquid propellant rocket engine used in early versions of the Delta launch vehi- cle [10]........................... 43 4.12 Lift-off Mass for a Two Stages Rocket to Reach 200 km Circular Orbit (i = 51:6o) with 1,000 kg of Payload 47 4.13 Optimal Staging with Graphical Method (Falcon 9) . 48 4.14 Optimal Staging with Graphical Method (Rockot) . 49 v vi LIST OF FIGURES 6.1 Gantt Diagram (1/2)................... 70 6.2 Gantt Diagram (2/2)................... 71 vi List of Tables 2.1 LSP Fleet for Launching Payloads into LEO or beyond [11]..... 7 3.1 Human Spacecraft Specifications.................... 12 3.2 Cargo Spacecraft Specifications [12].................. 12 3.3 Space Probes Features [13][14]..................... 13 3.4 Satellite Classification according to Mass [15]............. 14 3.5 Active Orbital Launch Sites [2][16] .................. 16 3.6 Launch vehicle’s sites.......................... 20 4.1 Difference between GLONASS, GPS and Galileo [17] . 29 4.2 Delta-V to Reach the Parking Orbit (Polar Orbit) ......... 32 4.3 Delta-V to Reach the Parking Orbit (Sun-Synchronous Orbit) . 33 4.4 Delta-V to Reach the Parking Orbit (Inclined Orbit) . 33 4.5 Delta-V to Reach the Parking Orbit (Semi-Synchronous Orbit) . 34 4.6 Delta-V to Reach the Parking Orbit (Molniya Orbit) ........ 34 4.7 Payload Fairing Dimensions ...................... 37 4.8 Space Shuttle Incremental Flight Velocity Breakdown[10] . 39 4.9 Advantages and Disadvantages of Chemical Propellants[6] . 41 4.10 Performance of Chemical Propellants[10]. *These are reference values. 42 4.11 First Stage Engines[18]......................... 44 4.12 Upper Stages Engines[19]........................ 44 4.13 Comparison between the Graphical Method and the Lagrange Mul- tiplier Method (Falcon 9)........................ 49 4.14 Comparison between the Graphical Method and the Lagrange Mul- tiplier Method (Rockot) ........................ 50 4.15 Comparison between Real Mass and Computed Mass (Minotaur-I) . 50 5.1 Optimal Launch Vehicles to Reach Polar Orbit according to the Mission ................................. 52 vii viii LIST OF TABLES 5.2 Optimal Launch Vehicles to Reach Sun-Synchronous Orbit accord- ing to the Mission............................ 52 5.3 Optimal Launch Vehicles to Reach Inclined Orbit according to the Mission ................................. 53 5.4 Optimal Launch Vehicles to Reach Semi-Synchronous Orbit accord- ing to the Mission............................ 54 5.5 Optimal Launch Vehicles to Reach Molnyia Orbit according to the Mission ................................. 55 5.6 Missions Classification ......................... 56 6.1 Rocket and Aviation Emissions[Metric T onnes] [20]........... 63 6.2 Software Licenses Budget........................ 65 6.3 Energy and Equipment Budget .................... 66 6.4 Total Budget .............................. 66 6.5 Bachelor’s Thesis Tasks......................... 68 6.6 Level of effort to develop each task .................. 69 A.1 Two Stage Launch Vehicles without Boosters Configuration [21] . 73 A.2 Two Stage Launch Vehicles with Boosters Configuration [21] . 73 A.3 Angara Launch Vehicle Family [21] .................. 74 A.4 Atlas V Launch Vehicle Family [21][9]................. 74 A.5 Delta IV Launch Vehicle Family [21][22] ............... 74 A.6 H-II Launch Vehicle Family [21][19].................. 74 A.7 Three Stage Launch Vehicles without Boosters Configuration [21] . 75 A.8 Three Stage Launch Vehicles with Boosters Configuration [21] . 75 A.9 Four Stage Launch Vehicles Without Booster Configuration [21] . 76 A.10 PSLV Launch Vehicle Family [21][23]................. 76 A.11 Five Stage Launch Vehicles without Booster Configuration
Recommended publications
  • Launch and Deployment Analysis for a Small, MEO, Technology Demonstration Satellite
    46th AIAA Aerospace Sciences Meeting and Exhibit AIAA 2008-1131 7 – 10 January 20006, Reno, Nevada Launch and Deployment Analysis for a Small, MEO, Technology Demonstration Satellite Stephen A. Whitmore* and Tyson K. Smith† Utah State University, Logan, UT, 84322-4130 A trade study investigating the economics, mass budget, and concept of operations for delivery of a small technology-demonstration satellite to a medium-altitude earth orbit is presented. The mission requires payload deployment at a 19,000 km orbit altitude and an inclination of 55o. Because the payload is a technology demonstrator and not part of an operational mission, launch and deployment costs are a paramount consideration. The payload includes classified technologies; consequently a USA licensed launch system is mandated. A preliminary trade analysis is performed where all available options for FAA-licensed US launch systems are considered. The preliminary trade study selects the Orbital Sciences Minotaur V launch vehicle, derived from the decommissioned Peacekeeper missile system, as the most favorable option for payload delivery. To meet mission objectives the Minotaur V configuration is modified, replacing the baseline 5th stage ATK-37FM motor with the significantly smaller ATK Star 27. The proposed design change enables payload delivery to the required orbit without using a 6th stage kick motor. End-to-end mass budgets are calculated, and a concept of operations is presented. Monte-Carlo simulations are used to characterize the expected accuracy of the final orbit.
    [Show full text]
  • China's Space Robotic Arm Programs
    SITC Bulletin Analysis October 2013 China’s Space Robotic Arm Programs Kevin POLLPETER Deputy Director, Study of Innovation and Technology in China Project UC Institute on Global Conflict and Cooperation On July 20, 2013, China launched three satellites on a Long March 4C launch vehicle, ostensibly to test space debris observation and space robotic arm technologies. The three satellites, Chuangxin-3, Shiyan-7, and Shijian-15, drew the attention of satellite tracking enthusiasts when two of them began conducting orbital maneuvers with each other and an additional satellite that had been launched in 2005. The maneuvers began on August 1 and involved one satellite acting as the target and another satellite, most likely equipped with a robotic arm, grappling the target satellite. Exactly which two of the three satellites were involved in the maneuvers is unknown. Based on data from the U.S. Strategic Command’s Space-Track.org website, however, the largest satellite of the three, possibly the Shijian-15, fired its thrusters to move to the smallest of the three satel- lites, possibly the Chuangxin-3, which remained in a set orbit.1 The third satellite, possibly the Shiyan-7, does not appear to be involved in the test. These maneuvers continued until August 17 and resulted in the largest satellite closing in on and then away from the smallest satellite. On August 18, the largest satellite changed orbits and closed in on a completely separate satellite, the Shijian-7, that had been launched in 2005. These maneuvers have caused concern that the tests go beyond the stated objectives and are actually a cover for testing on-orbit anti-satellite (ASAT) technologies.
    [Show full text]
  • Nachbrenner 2021
    NACHBRENNER 2021 21.05.2021-10 Wissenswertes aus dem Bereich Militärluftfahrt und Luftkriegsführung Quelle: Ländercode: Schlüsselinformationen: Datum: Artikelname: 1 Inhaltsverzeichnis • 02 Sicherheitspolitik Schweiz und Air2030 • 07 Luft und Marineluftstreitkräfte sowie strategische und weitere luftgestützte Einsatzmittel • 16 Hubschrauber und Kipprotor-Flugzeuge • 18 Unbemannte Luftfahrzeuge (UAV) und Robotik • 21 Bewaffnung und weitere Nutzlasten • 23 Air Power • 39 Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance • 40 Cyber- und Electromagnetic Warfare • 42 Boden- und seegestützte Luftverteidigungssysteme • 44 Boden- und seegestützte Einsatzkräfte, Strategische Kampfmittel und Space Forces • 45 Geo- und Sicherheitspolitik, militärische Übungen • 48 Analysen, Studien, Reports, Fact Sheets, Infographics, Podcasts und Videos Sicherheitspolitik Schweiz und Air2030 www.proschweiz.ch Pro Schweiz Inhalt «Das Magazin für eine Das Land des Eigensinns 2 optimistische und Sicherheitspolitik – Wo stehen wir heute? 4 selbstsichere Schweiz» - Sicherheit gibt es nicht umsonst - Die Sichtweise zweier Luftwaffenoffizierinnen 10 Ausgabe Nr. 3 autonomiesuisse will Erfolgsmodell Schweiz sichern 16 Die Schweiz muss weder kuschen noch sich verstecken 18 Impressum 20 admin.ch Ernennung eines Der Bundesrat hat an seiner Sitzung vom 19. Mai 2021 Oberst i Gst Peter Bruns per 1. Juli 2021 zum 19.05.2021 Höheren Stabsoffiziers Kommandanten der Luftwaffenausbildungs- und Trainingsbrigade, unter gleichzeitiger Beförderung zum der Armee – Brigadier, ernannt. Er folgt auf Brigadier Peter Soller, den der Bundesrat am 12. März 2021 zum Kommandanten Br Peter Bruns Lehrverband Fliegerabwehr 33 ernannt hat. (Vollständige Medienmitteilung abrufbar unter: 2 https://www.admin.ch/gov/de/start/dokumentation/medienmitteilungen.msg-id-83579.html) latribune.fr Rafale, F-35, Eurofighter The Swiss Federal Council is expected to announce the choice of its future fighter aircraft by the end of June.
    [Show full text]
  • Download Paper
    Ever Wonder What’s in Molniya? We Do. John T. McGraw J. T. McGraw and Associates, LLC and University of New Mexico Peter C. Zimmer J. T. McGraw and Associates, LLC Mark R. Ackermann J. T. McGraw and Associates, LLC ABSTRACT Molniya orbits are high inclination, high eccentricity orbits which provide the utility of long apogee dwell time over northern continents, with the additional benefit of obviating the largest orbital perturbation introduced by the Earth’s nonspherical (oblate) gravitational potential. We review the few earlier surveys of the Molniya domain and evaluate results from a new, large area unbiased survey of the northern Molniya domain. We detect 120 Molniya objects in a three hour survey of ~ 1300 square degrees of the sky to a limiting magnitude of about 16.5. Future Molniya surveys will discover a significant number of objects, including debris, and monitoring these objects might provide useful data with respect to orbital perturbations including solar radiation and Earth atmosphere drag effects. 1. SPECIALIZED ORBITS Earth Orbital Space (EOS) supports many versions of specialized satellite orbits defined by a combination of satellite mission and orbital dynamics. Surely the most well-known family of specialized orbits is the geostationary orbits proposed by science fiction author Arthur C. Clarke in 1945 [1] that lie sensibly in the plane of Earth’s equator, with orbital period that matches the Earth’s rotation period. Satellites in these orbits, and the closely related geosynchronous orbits, appear from Earth to remain constantly overhead, allowing continuous communication with the majority of the hemisphere below. Constellations of three geostationary satellites equally spaced in orbit (~ 120° separation) can maintain near-global communication and terrestrial surveillance.
    [Show full text]
  • United States Air Force Counterproliferation Center CPC Outreach
    Issue No. 1072, 27 August 2013 Articles & Other Documents: Featured Article: China Launches Three ASAT Satellites 1. Iran’s Ambassador to IAEA to Leave Post 2. Doctors Cite Deaths, Injuries from Toxin Attack in Syria as Obama, Allies Ponder Lethal Action 3. Saudi Arabia to Build 16 N. Reactors by 2030 4. Ayatollah Khamenei Renews Call for Nuclear-Free Middle East, Raps Israel 5. Assad Says Chemical Weapons Claims ‘Insult to Common Sense’ 6. Crossing Red Line on Syria will have Severe Consequences, Iran Warns U.S. 7. Iran Adds to Atom Capacity, Holds Down Stockpile Growth - Diplomats 8. Kerry Says Syrian Use of Chemical Weapons ‘Undeniable;’ U.N. Investigates 9. China's Point Man on N.K. Nukes Visits Pyongyang 10. China Launches Three ASAT Satellites 11. Second Test-Firing of Agni-V Missile Next Month 12. India all set to Lease a Second Nuclear Submarine from Russia 13. Russia to Unveil New Air Defense System at MAKS-2013 14. Missile Inspectors Visit Sites 15. Security Forces Chief Removed: Malmstrom's Lynch Relieved of Command 16. Laser Fusion Experiment Yield Record Energy 17. The END of Strategic Stability in the Asia-Pacific? 18. US Nuclear Weapons Poised for Catastrophe 19. India's Nuclear Blunder 20. Editorial: Syrian showdown 21. Obama’s Most Dangerous WMD Precedent in Syria 1. Welcome to the CPC Outreach Journal. As part of USAF Counterproliferation Center’s mission to counter weapons of mass destruction through education and research, we’re providing our government and civilian community a source for timely counterproliferation information. This information includes articles, papers and other documents addressing issues pertinent to US military response options for dealing with chemical, biological, radiological, and nuclear (CBRN) threats and countermeasures.
    [Show full text]
  • Review of Nasa's Acquisition of Commercial Launch Services
    FEBRUARY 17, 2011 AUDIT REPORT OFFICE OF AUDITS REVIEW OF NASA’S ACQUISITION OF COMMERCIAL LAUNCH SERVICES OFFICE OF INSPECTOR GENERAL National Aeronautics and Space Administration REPORT NO. IG-11-012 (ASSIGNMENT NO. A-09-011-00) Final report released by: Paul K. Martin Inspector General Acronyms COTS Commercial Orbital Transportation Services CRS Commercial Resupply Services DOD Department of Defense EELV Evolved Expendable Launch Vehicle ELV Expendable Launch Vehicle ESMD Exploration Systems Mission Directorate GAO Government Accountability Office GLAST Gamma-ray Large Area Space Telescope IBEX Interstellar Boundary Explorer ICBM Intercontinental Ballistic Missile ICESat-II Ice, Cloud, and Land Elevation Satellite IDIQ Indefinite-Delivery, Indefinite-Quantity ISS International Space Station LADEE Lunar Atmosphere and Dust Environment Explorer LCROSS Lunar Crater Observation and Sensing Satellite LRO Lunar Reconnaissance Orbiter LSP Launch Services Program NLS NASA Launch Services OCO Orbiting Carbon Observatory OIG Office of Inspector General PPBE Planning, Programming, Budgeting, and Execution SMAP Soil Moisture Active Passive SMD Science Mission Directorate SOMD Space Operations Mission Directorate ULA United Launch Alliance REPORT NO. IG-11-012 FEBRUARY 17, 2011 OVERVIEW REVIEW OF NASA’S ACQUISITION OF COMMERCIAL LAUNCH SERVICES The Issue Commercial U.S. launch services providers compete domestically and internationally for contracts to carry satellites and other payloads into orbit using unmanned, single-use vehicles known as expendable launch vehicles (ELVs). However, since the late 1990s the global commercial launch market has generally declined following the downturn in the telecommunications services industry, which was the primary customer of the commercial space industry. Given this trend, U.S. launch services providers struggling to remain economically viable have been bolstered by the Commercial Space Act of 1998 (Public Law 105-303), which requires NASA and other Federal agencies to plan missions and procure space transportation services from U.S.
    [Show full text]
  • India's Largest Online Test Series
    Current Affairs Capsule I May 2018 India’s Largest Online Test Series 1 Current Affairs Capsule I May 2018 Table of Contents Awards & Honours ............................................................................................................................................ 3 Days & Events ................................................................................................................................................... 4 International Affairs .......................................................................................................................................... 6 National Affairs ............................................................................................................................................... 10 India & World ................................................................................................................................................. 16 Personalities in News ...................................................................................................................................... 20 Environment ................................................................................................................................................... 26 Government Policies & Schemes ..................................................................................................................... 28 Art & Culture .................................................................................................................................................
    [Show full text]
  • BAB II PENINGKATAN KAPABILITAS MILITER CHINA BAB II Akan
    BAB II PENINGKATAN KAPABILITAS MILITER CHINA BAB II akan memberikan uraian penulis tentang peningkatan kapabilitas militer China dan ancaman bagi Jepang. Kapabilitas militer China tidak bisa diuraikan tanpa adanya proses-proses seperti Lompatan Jauh ke Depan, Revolusi Kebudayaan dan Reformasi Ekonomi. Keberhasilan reformasi ekonomi membuat GDP China semakin meningkat sehingga membuatnya mempunyai anggaran yang cukup untuk meningkatkan kapabilitas militernya. 2.1 Kebangkitan Ekonomi dan Sosial China RRC (Republik Rakyat China) pertama kali diproklamasikan oleh Mao Zedong pada 1 Oktober 1949 di lapangan Tiananmen. Pada masa pemerintahannya Mao menggunakan praktek Lompatan Jauh ke Depan dan Revolusi Kebudayaan. Praktek Lompatan Jauh ke Depan dilakukan Mao untuk meniru model pembangunan Uni Soviet agar terbentuk masyarakat yang terkonstruktur, tumbuhnya birokrasi dalam pemerintahan, organisasi militer profesional.1 Praktek Lompatan Jauh ke Depan dan Revolusi Kebudayaan yang dilakukan oleh Mao tersebut mengalami kegagalan. Kegagalan tersebut kemudian membuat China melakukan reformasi ekonomi yang dilakukan oleh Deng Xiaoping. Reformasi yang dilakukan oleh Deng membuat perekonomian China 1Mao Zedong 1893-19, diakses pada http://www.bbc.co.uk/history/historic_figures/mao_zedong.shtml (10/09/2016. 00:07 WIB) 21 meningkat dan juga China lebih terbuka dalam melakukan kerjasama dengan negara lain.2 2.1.1 Lompatan Jauh ke Depan Lompatan Jauh ke Depan (The Great Leap Forward) terjadi pada tahun 1958 merupakan kampanye yang bertujuan untuk membangkitkan ekonomi China melalui industrialisasi secara besar-besaran dibidang industri baja sebagai prioritas utama. Secara prinsip, Mao ingin meningkatkan produksi baja, industri ringan, dan konstruksi secara besar-besaran serta pengerahan tenaga rakyat secara besar-besaran. Rakyat disatukan menjadi komune dan disalurkan untuk bekerja di pabrik-pabrik pemerintahan.
    [Show full text]
  • Positioning: Drift Orbit and Station Acquisition
    Orbits Supplement GEOSTATIONARY ORBIT PERTURBATIONS INFLUENCE OF ASPHERICITY OF THE EARTH: The gravitational potential of the Earth is no longer µ/r, but varies with longitude. A tangential acceleration is created, depending on the longitudinal location of the satellite, with four points of stable equilibrium: two stable equilibrium points (L 75° E, 105° W) two unstable equilibrium points ( 15° W, 162° E) This tangential acceleration causes a drift of the satellite longitude. Longitudinal drift d'/dt in terms of the longitude about a point of stable equilibrium expresses as: (d/dt)2 - k cos 2 = constant Orbits Supplement GEO PERTURBATIONS (CONT'D) INFLUENCE OF EARTH ASPHERICITY VARIATION IN THE LONGITUDINAL ACCELERATION OF A GEOSTATIONARY SATELLITE: Orbits Supplement GEO PERTURBATIONS (CONT'D) INFLUENCE OF SUN & MOON ATTRACTION Gravitational attraction by the sun and moon causes the satellite orbital inclination to change with time. The evolution of the inclination vector is mainly a combination of variations: period 13.66 days with 0.0035° amplitude period 182.65 days with 0.023° amplitude long term drift The long term drift is given by: -4 dix/dt = H = (-3.6 sin M) 10 ° /day -4 diy/dt = K = (23.4 +.2.7 cos M) 10 °/day where M is the moon ascending node longitude: M = 12.111 -0.052954 T (T: days from 1/1/1950) 2 2 2 2 cos d = H / (H + K ); i/t = (H + K ) Depending on time within the 18 year period of M d varies from 81.1° to 98.9° i/t varies from 0.75°/year to 0.95°/year Orbits Supplement GEO PERTURBATIONS (CONT'D) INFLUENCE OF SUN RADIATION PRESSURE Due to sun radiation pressure, eccentricity arises: EFFECT OF NON-ZERO ECCENTRICITY L = difference between longitude of geostationary satellite and geosynchronous satellite (24 hour period orbit with e0) With non-zero eccentricity the satellite track undergoes a periodic motion about the subsatellite point at perigee.
    [Show full text]
  • SPACE NEWS Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page BEF Mags INTERNATIONAL
    Contents | Zoom in | Zoom out For navigation instructions please click here Search Issue | Next Page SPACEAPRIL 19, 2010 NEWSAN IMAGINOVA CORP. NEWSPAPER INTERNATIONAL www.spacenews.com VOLUME 21 ISSUE 16 $4.95 ($7.50 Non-U.S.) PROFILE/22> GARY President’s Revised NASA Plan PAYTON Makes Room for Reworked Orion DEPUTY UNDERSECRETARY FOR SPACE PROGRAMS U.S. AIR FORCE AMY KLAMPER, COLORADO SPRINGS, Colo. .S. President Barack Obama’s revised space plan keeps Lockheed Martin working on a Ulifeboat version of a NASA crew capsule pre- INSIDE THIS ISSUE viously slated for cancellation, potentially positioning the craft to fly astronauts to the interna- tional space station and possibly beyond Earth orbit SATELLITE COMMUNICATIONS on technology demonstration jaunts the president envisions happening in the early 2020s. Firms Complain about Intelsat Practices Between pledging to choose a heavy-lift rocket Four companies that purchase satellite capacity from Intelsat are accusing the large fleet design by 2015 and directing NASA and Denver- operator of anti-competitive practices. See story, page 5 based Lockheed Martin Space Systems to produce a stripped-down version of the Orion crew capsule that would launch unmanned to the space station by Report Spotlights Closed Markets around 2013 to carry astronauts home in an emer- The office of the U.S. Trade Representative has singled out China, India and Mexico for not meet- gency, the White House hopes to address some of the ing commitments to open their domestic satellite services markets. See story, page 13 chief complaints about the plan it unveiled in Feb- ruary to abandon Orion along with the rest of NASA’s Moon-bound Constellation program.
    [Show full text]
  • JCT Develops Solutions to Environmental Problems P.O.BOX 16031, JERUSALEM 91160 ISRAEL 91160 JERUSALEM 16031, P.O.BOX
    NISSAN 5768 / APRIL 2008, VOL. 13 Green and Clean JCT Develops Solutions to Environmental Problems P.O.BOX 16031, JERUSALEM 91160 ISRAEL 91160 JERUSALEM 16031, P.O.BOX NISSAN 5768 / APRIL 2008, VOL. 13 Green and Clean JCT Develops Solutions to Environmental Problems P.O.BOX 16031, JERUSALEM 91160 ISRAEL 91160 JERUSALEM 16031, P.O.BOX COMMENTARY JERUSALEM COLLEGE OF TECHNOLOGY PRESIDENT Shalom! opportunity to receive an excellent education Prof. Joseph S. Bodenheimer allowing them to become highly-skilled, ROSH HAYESHIVA Rabbi Z. N. Goldberg Of the many things sought after professionals. More important ROSH BEIT HAMIDRASH we are proud at JCT, for our students is the opportunity available Rabbi Natan Bar Chaim nothing is more RECTOR at the College to receive an education Prof. Joseph M. Steiner prized than our focusing on Jewish values. It is this DIRECTOR-GENERAL students. In every education towards values that has always Dr. Shimon Weiss VICE PRESIDENT FOR DEVELOPMENT issue of “Perspective” been the hallmark of JCT and it is this AND EXTERNAL AFFAIRS we profile one of our students as a way of commitment to Jewish ethical values that Reuven Surkis showing who they are and of sharing their forms the foundation from which Israeli accomplishments with you. society will grow and flourish - and our EDITORS Our student body of 2,500 is a students and graduates take pride in being Rosalind Elbaum, Debbie Ross, Penina Pfeuffer microcosm of Israeli society: 21% are Olim committed to this process. DESIGN & PRODUCTION (immigrants) from the former Soviet Union, As we approach the Pesach holiday, the Studio Fisher Ethiopia, South America, North America, 60th anniversary of the State of Israel and JCT Perspective invites the submission of arti- Europe, Australia and South Africa, whilst the 40th anniversary of JCT, let us reaffirm cles and press releases from the public.
    [Show full text]
  • Espinsights the Global Space Activity Monitor
    ESPInsights The Global Space Activity Monitor Issue 1 January–April 2019 CONTENTS SPACE POLICY AND PROGRAMMES .................................................................................... 1 Focus .................................................................................................................... 1 Europe ................................................................................................................... 4 11TH European Space Policy Conference ......................................................................... 4 EU programmatic roadmap: towards a comprehensive Regulation of the European Space Programme 4 EDA GOVSATCOM GSC demo project ............................................................................. 5 Programme Advancements: Copernicus, Galileo, ExoMars ................................................... 5 European Space Agency: partnerships continue to flourish................................................... 6 Renewed support for European space SMEs and training ..................................................... 7 UK Space Agency leverages COMPASS project for international cooperation .............................. 7 France multiplies international cooperation .................................................................... 7 Italy’s PRISMA pride ................................................................................................ 8 Establishment of the Portuguese Space Agency: Data is King ................................................ 8 Belgium and Luxembourg
    [Show full text]