Study of the Feasibility of a “Rocket Launching Consultancy”
Total Page:16
File Type:pdf, Size:1020Kb
Study of the feasibility of a “Rocket launching Consultancy” through the analysis of the propulsion system’s requirements to reach LEO and MEO orbits with payloads up to 1,000 kg Author: Robert Arcaleanu Director: Borja Pedro Borràs Quintanal Co-Director: David Bermejo Plana Bachelor’s Thesis Bachelor’s degree in Aerospace Vehicle Engineering Escola Superior d’Enginyeries Industrial, Aeroespacial i Audiovisual de Terrassa Universitat Politècnica de Catalunya June, 30th 2020 Acknowledgement On the one hand, I would like to thank to my director and co-director, Borja Borràs and David Bermejo, who provided me the opportunity to develop a project related to what I like, rockets. It would not be possible without them, and I show them my sincere gratitude. On the other hand, I would like to express my gratitude to all my friends that have supported me during the last four years. Last but not least, I would like to thank to my parents, who always have been there for everything I needed. C Contents AcknowledgementC Contentsi List of Figuresv List of Tables vii Abstract xiii Aim xv Scope xvii Requirements xix Background xxi 1 Introduction1 1.1 Brief Rockets’ Historical Review.................... 2 1.2 Business Description and Feasibility Analysis............. 3 1.2.1 Potential Customer....................... 4 2 Market Research5 2.1 Buying a Launch Service........................ 5 2.2 Competitors............................... 6 2.2.1 NASA Launch Services Program................ 6 2.2.1.1 NASA Venture Class Launch Services....... 7 2.2.2 Spaceflight............................ 7 2.2.3 Precious Payload........................ 8 2.2.4 Loft Orbital........................... 9 i ii CONTENTS 2.2.5 EXOLAUNCH ......................... 9 2.2.6 D-Orbit ............................. 9 2.2.7 Other Launch Services Providers ............... 9 3 State of the art 11 3.1 Payload ................................. 11 3.1.1 Human Spacecraft ....................... 11 3.1.2 Cargo Spacecraft ........................ 12 3.1.3 Space Probes .......................... 13 3.1.4 Satellites............................. 13 3.2 Rocket Launch Sites .......................... 14 3.2.1 Geographic Considerations................... 15 3.2.1.1 Latitude........................ 15 3.2.1.2 Azimuth........................ 15 3.2.2 Active Launch Sites....................... 16 3.3 Operating Launch Vehicles....................... 17 3.3.1 Rocket Features Definition................... 18 3.3.2 Launch vehicles......................... 19 3.4 Orbits .................................. 21 3.4.1 Orbit Parameters........................ 21 3.4.2 Earth orbit classification.................... 22 4 Study of Propulsion System’s Requirements 25 4.1 Missions Parameters and Definition.................. 25 4.2 Study of the Possibility to Reach the Orbits ............. 30 4.2.1 Possibility to Reach the Polar Orbit.............. 32 4.2.2 Possibility to Reach the Sun-Synchronous Orbit . 33 4.2.3 Possibility to reach the Inclined Orbit............. 33 4.2.4 Possibility to Reach the Semi-Synchronous Orbit . 34 4.2.5 Possibility to Reach the Molniya Orbit............ 34 4.3 Propulsion System’s Parameters Calculation............. 35 4.3.1 Delta V Budget......................... 35 4.3.2 Rocket Equations........................ 39 4.3.3 Optimal Staging ........................ 41 4.3.3.1 Results and Algorithm Validation.......... 48 ii CONTENTS ESEIAAT 5 Results Analysis 51 5.1 Results Comparison........................... 51 5.1.1 Polar Orbit ........................... 52 5.1.2 Sun-Synchronous Orbit..................... 52 5.1.3 Inclined Orbit.......................... 53 5.1.4 Semi-Synchronous Orbit.................... 54 5.1.5 Molnyia Orbit.......................... 55 5.2 Feasibility Study ............................ 57 5.2.1 Other Services.......................... 58 6 Conclusions and Future Work 61 Environmental Impact 62 Budget 64 Planning 66 A Operating Launch Vehicles 73 A.1 Two Stage Launch Vehicles....................... 73 A.2 Three Stage Launch Vehicles...................... 75 A.3 Four Stage Launch Vehicles ...................... 76 A.4 Five Stage Launch Vehicles ...................... 77 B Possibility to Reach the Orbits 79 B.1 Polar Orbit ............................... 80 B.2 Sun-Synchronous Orbit......................... 81 B.3 Inclined Orbit.............................. 82 B.4 Semi-Synchronous Orbit ........................ 83 B.5 Molnyia Orbit.............................. 84 C Results of Optimal Staging 85 C.1 Polar Orbit ............................... 86 C.2 Sun-Synchronous Orbit......................... 87 C.3 Inclined Orbit.............................. 89 C.4 Semi-Synchronous Orbit ........................ 90 C.5 Molnyia Orbit.............................. 92 iii iv CONTENTS D Optimisation Script 95 Bibliography 99 Declaració d’Honor 103 iv List of Figures 2.1 Spaceflight Launch Vehicle Family[1].......... 8 3.1 Velocity at Earth’s Surface by Latitude [2] . 15 3.2 Potential Launch Azimuths from Omelek[3] ...... 17 3.3 Palmachim and Sohae Hypothetical Azimuths . 17 3.4 Serial Staging [4]..................... 18 3.5 Parallel Staging [4].................... 18 3.6 Orbital Elements [5] ................... 21 3.7 Earth Orbits Representation............... 23 4.1 Launch Vehicle Performance and Launch Mission. 26 4.2 Topocentric horizon coordinate system [6]. A is the azimuth........................... 30 4.3 Launch Azimuth[7].................... 30 4.4 Hohmann Transfer[6]................... 31 4.5 Launch Vehicle Boost Trajectory[8]........... 36 4.6 Typical Atlas V 521 Dynamic Pressure vs Time[9] . 36 1 2 4.7 First order approximation ( 2 ρv vs t).......... 36 4.8 Launch System Performance Losses[6] ......... 38 4.9 Definitions of Various Vehicle Masses[10] . 40 4.10 Chamber and Nozzle Representation [10] . 42 4.11 Altitude performance of RS 27 liquid propellant rocket engine used in early versions of the Delta launch vehi- cle [10]........................... 43 4.12 Lift-off Mass for a Two Stages Rocket to Reach 200 km Circular Orbit (i = 51:6o) with 1,000 kg of Payload 47 4.13 Optimal Staging with Graphical Method (Falcon 9) . 48 4.14 Optimal Staging with Graphical Method (Rockot) . 49 v vi LIST OF FIGURES 6.1 Gantt Diagram (1/2)................... 70 6.2 Gantt Diagram (2/2)................... 71 vi List of Tables 2.1 LSP Fleet for Launching Payloads into LEO or beyond [11]..... 7 3.1 Human Spacecraft Specifications.................... 12 3.2 Cargo Spacecraft Specifications [12].................. 12 3.3 Space Probes Features [13][14]..................... 13 3.4 Satellite Classification according to Mass [15]............. 14 3.5 Active Orbital Launch Sites [2][16] .................. 16 3.6 Launch vehicle’s sites.......................... 20 4.1 Difference between GLONASS, GPS and Galileo [17] . 29 4.2 Delta-V to Reach the Parking Orbit (Polar Orbit) ......... 32 4.3 Delta-V to Reach the Parking Orbit (Sun-Synchronous Orbit) . 33 4.4 Delta-V to Reach the Parking Orbit (Inclined Orbit) . 33 4.5 Delta-V to Reach the Parking Orbit (Semi-Synchronous Orbit) . 34 4.6 Delta-V to Reach the Parking Orbit (Molniya Orbit) ........ 34 4.7 Payload Fairing Dimensions ...................... 37 4.8 Space Shuttle Incremental Flight Velocity Breakdown[10] . 39 4.9 Advantages and Disadvantages of Chemical Propellants[6] . 41 4.10 Performance of Chemical Propellants[10]. *These are reference values. 42 4.11 First Stage Engines[18]......................... 44 4.12 Upper Stages Engines[19]........................ 44 4.13 Comparison between the Graphical Method and the Lagrange Mul- tiplier Method (Falcon 9)........................ 49 4.14 Comparison between the Graphical Method and the Lagrange Mul- tiplier Method (Rockot) ........................ 50 4.15 Comparison between Real Mass and Computed Mass (Minotaur-I) . 50 5.1 Optimal Launch Vehicles to Reach Polar Orbit according to the Mission ................................. 52 vii viii LIST OF TABLES 5.2 Optimal Launch Vehicles to Reach Sun-Synchronous Orbit accord- ing to the Mission............................ 52 5.3 Optimal Launch Vehicles to Reach Inclined Orbit according to the Mission ................................. 53 5.4 Optimal Launch Vehicles to Reach Semi-Synchronous Orbit accord- ing to the Mission............................ 54 5.5 Optimal Launch Vehicles to Reach Molnyia Orbit according to the Mission ................................. 55 5.6 Missions Classification ......................... 56 6.1 Rocket and Aviation Emissions[Metric T onnes] [20]........... 63 6.2 Software Licenses Budget........................ 65 6.3 Energy and Equipment Budget .................... 66 6.4 Total Budget .............................. 66 6.5 Bachelor’s Thesis Tasks......................... 68 6.6 Level of effort to develop each task .................. 69 A.1 Two Stage Launch Vehicles without Boosters Configuration [21] . 73 A.2 Two Stage Launch Vehicles with Boosters Configuration [21] . 73 A.3 Angara Launch Vehicle Family [21] .................. 74 A.4 Atlas V Launch Vehicle Family [21][9]................. 74 A.5 Delta IV Launch Vehicle Family [21][22] ............... 74 A.6 H-II Launch Vehicle Family [21][19].................. 74 A.7 Three Stage Launch Vehicles without Boosters Configuration [21] . 75 A.8 Three Stage Launch Vehicles with Boosters Configuration [21] . 75 A.9 Four Stage Launch Vehicles Without Booster Configuration [21] . 76 A.10 PSLV Launch Vehicle Family [21][23]................. 76 A.11 Five Stage Launch Vehicles without Booster Configuration