Gaussian Models (9/9/13) 1 Multivariate Normal Distribution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PSEUDO SCHUR COMPLEMENTS, PSEUDO PRINCIPAL PIVOT TRANSFORMS and THEIR INHERITANCE PROPERTIES∗ 1. Introduction. Let M ∈ R M×
Electronic Journal of Linear Algebra ISSN 1081-3810 A publication of the International Linear Algebra Society Volume 30, pp. 455-477, August 2015 ELA PSEUDO SCHUR COMPLEMENTS, PSEUDO PRINCIPAL PIVOT TRANSFORMS AND THEIR INHERITANCE PROPERTIES∗ K. BISHT† , G. RAVINDRAN‡, AND K.C. SIVAKUMAR§ Abstract. Extensions of the Schur complement and the principal pivot transform, where the usual inverses are replaced by the Moore-Penrose inverse, are revisited. These are called the pseudo Schur complement and the pseudo principal pivot transform, respectively. First, a generalization of the characterization of a block matrix to be an M-matrix is extended to the nonnegativity of the Moore-Penrose inverse. A comprehensive treatment of the fundamental properties of the extended notion of the principal pivot transform is presented. Inheritance properties with respect to certain matrix classes are derived, thereby generalizing some of the existing results. Finally, a thorough discussion on the preservation of left eigenspaces by the pseudo principal pivot transformation is presented. Key words. Principal pivot transform, Schur complement, Nonnegative Moore-Penrose inverse, P†-Matrix, R†-Matrix, Left eigenspace, Inheritance properties. AMS subject classifications. 15A09, 15A18, 15B48. 1. Introduction. Let M ∈ Rm×n be a block matrix partitioned as A B , C D where A ∈ Rk×k is nonsingular. Then the classical Schur complement of A in M denoted by M/A is given by D − CA−1B ∈ R(m−k)×(n−k). This notion has proved to be a fundamental idea in many applications like numerical analysis, statistics and operator inequalities, to name a few. We refer the reader to [27] for a comprehen- sive account of the Schur complement. -
1 One Parameter Exponential Families
1 One parameter exponential families The world of exponential families bridges the gap between the Gaussian family and general dis- tributions. Many properties of Gaussians carry through to exponential families in a fairly precise sense. • In the Gaussian world, there exact small sample distributional results (i.e. t, F , χ2). • In the exponential family world, there are approximate distributional results (i.e. deviance tests). • In the general setting, we can only appeal to asymptotics. A one-parameter exponential family, F is a one-parameter family of distributions of the form Pη(dx) = exp (η · t(x) − Λ(η)) P0(dx) for some probability measure P0. The parameter η is called the natural or canonical parameter and the function Λ is called the cumulant generating function, and is simply the normalization needed to make dPη fη(x) = (x) = exp (η · t(x) − Λ(η)) dP0 a proper probability density. The random variable t(X) is the sufficient statistic of the exponential family. Note that P0 does not have to be a distribution on R, but these are of course the simplest examples. 1.0.1 A first example: Gaussian with linear sufficient statistic Consider the standard normal distribution Z e−z2=2 P0(A) = p dz A 2π and let t(x) = x. Then, the exponential family is eη·x−x2=2 Pη(dx) / p 2π and we see that Λ(η) = η2=2: eta= np.linspace(-2,2,101) CGF= eta**2/2. plt.plot(eta, CGF) A= plt.gca() A.set_xlabel(r'$\eta$', size=20) A.set_ylabel(r'$\Lambda(\eta)$', size=20) f= plt.gcf() 1 Thus, the exponential family in this setting is the collection F = fN(η; 1) : η 2 Rg : d 1.0.2 Normal with quadratic sufficient statistic on R d As a second example, take P0 = N(0;Id×d), i.e. -
6: the Exponential Family and Generalized Linear Models
10-708: Probabilistic Graphical Models 10-708, Spring 2014 6: The Exponential Family and Generalized Linear Models Lecturer: Eric P. Xing Scribes: Alnur Ali (lecture slides 1-23), Yipei Wang (slides 24-37) 1 The exponential family A distribution over a random variable X is in the exponential family if you can write it as P (X = x; η) = h(x) exp ηT T(x) − A(η) : Here, η is the vector of natural parameters, T is the vector of sufficient statistics, and A is the log partition function1 1.1 Examples Here are some examples of distributions that are in the exponential family. 1.1.1 Multivariate Gaussian Let X be 2 Rp. Then we have: 1 1 P (x; µ; Σ) = exp − (x − µ)T Σ−1(x − µ) (2π)p=2jΣj1=2 2 1 1 = exp − (tr xT Σ−1x + µT Σ−1µ − 2µT Σ−1x + ln jΣj) (2π)p=2 2 0 1 1 B 1 −1 T T −1 1 T −1 1 C = exp B− tr Σ xx +µ Σ x − µ Σ µ − ln jΣj)C ; (2π)p=2 @ 2 | {z } 2 2 A | {z } vec(Σ−1)T vec(xxT ) | {z } h(x) A(η) where vec(·) is the vectorization operator. 1 R T It's called this, since in order for P to normalize, we need exp(A(η)) to equal x h(x) exp(η T(x)) ) A(η) = R T ln x h(x) exp(η T(x)) , which is the log of the usual normalizer, which is the partition function. -
STAT 802: Multivariate Analysis Course Outline
STAT 802: Multivariate Analysis Course outline: Multivariate Distributions. • The Multivariate Normal Distribution. • The 1 sample problem. • Paired comparisons. • Repeated measures: 1 sample. • One way MANOVA. • Two way MANOVA. • Profile Analysis. • 1 Multivariate Multiple Regression. • Discriminant Analysis. • Clustering. • Principal Components. • Factor analysis. • Canonical Correlations. • 2 Basic structure of typical multivariate data set: Case by variables: data in matrix. Each row is a case, each column is a variable. Example: Fisher's iris data: 5 rows of 150 by 5 matrix: Case Sepal Sepal Petal Petal # Variety Length Width Length Width 1 Setosa 5.1 3.5 1.4 0.2 2 Setosa 4.9 3.0 1.4 0.2 . 51 Versicolor 7.0 3.2 4.7 1.4 . 3 Usual model: rows of data matrix are indepen- dent random variables. Vector valued random variable: function X : p T Ω R such that, writing X = (X ; : : : ; Xp) , 7! 1 P (X x ; : : : ; Xp xp) 1 ≤ 1 ≤ defined for any const's (x1; : : : ; xp). Cumulative Distribution Function (CDF) p of X: function FX on R defined by F (x ; : : : ; xp) = P (X x ; : : : ; Xp xp) : X 1 1 ≤ 1 ≤ 4 Defn: Distribution of rv X is absolutely con- tinuous if there is a function f such that P (X A) = f(x)dx (1) 2 ZA for any (Borel) set A. This is a p dimensional integral in general. Equivalently F (x1; : : : ; xp) = x1 xp f(y ; : : : ; yp) dyp; : : : ; dy : · · · 1 1 Z−∞ Z−∞ Defn: Any f satisfying (1) is a density of X. For most x F is differentiable at x and @pF (x) = f(x) : @x @xp 1 · · · 5 Building Multivariate Models Basic tactic: specify density of T X = (X1; : : : ; Xp) : Tools: marginal densities, conditional densi- ties, independence, transformation. -
Notes on the Schur Complement
University of Pennsylvania ScholarlyCommons Departmental Papers (CIS) Department of Computer & Information Science 12-10-2010 Notes on the Schur Complement Jean H. Gallier University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/cis_papers Part of the Computer Sciences Commons Recommended Citation Jean H. Gallier, "Notes on the Schur Complement", . December 2010. Gallier, J., Notes on the Schur Complement This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_papers/601 For more information, please contact [email protected]. Notes on the Schur Complement Disciplines Computer Sciences Comments Gallier, J., Notes on the Schur Complement This working paper is available at ScholarlyCommons: https://repository.upenn.edu/cis_papers/601 The Schur Complement and Symmetric Positive Semidefinite (and Definite) Matrices Jean Gallier December 10, 2010 1 Schur Complements In this note, we provide some details and proofs of some results from Appendix A.5 (especially Section A.5.5) of Convex Optimization by Boyd and Vandenberghe [1]. Let M be an n × n matrix written a as 2 × 2 block matrix AB M = ; CD where A is a p × p matrix and D is a q × q matrix, with n = p + q (so, B is a p × q matrix and C is a q × p matrix). We can try to solve the linear system AB x c = ; CD y d that is Ax + By = c Cx + Dy = d; by mimicking Gaussian elimination, that is, assuming that D is invertible, we first solve for y getting y = D−1(d − Cx) and after substituting this expression for y in the first equation, we get Ax + B(D−1(d − Cx)) = c; that is, (A − BD−1C)x = c − BD−1d: 1 If the matrix A − BD−1C is invertible, then we obtain the solution to our system x = (A − BD−1C)−1(c − BD−1d) y = D−1(d − C(A − BD−1C)−1(c − BD−1d)): The matrix, A − BD−1C, is called the Schur Complement of D in M. -
Lecture 2 — September 24 2.1 Recap 2.2 Exponential Families
STATS 300A: Theory of Statistics Fall 2015 Lecture 2 | September 24 Lecturer: Lester Mackey Scribe: Stephen Bates and Andy Tsao 2.1 Recap Last time, we set out on a quest to develop optimal inference procedures and, along the way, encountered an important pair of assertions: not all data is relevant, and irrelevant data can only increase risk and hence impair performance. This led us to introduce a notion of lossless data compression (sufficiency): T is sufficient for P with X ∼ Pθ 2 P if X j T (X) is independent of θ. How far can we take this idea? At what point does compression impair performance? These are questions of optimal data reduction. While we will develop general answers to these questions in this lecture and the next, we can often say much more in the context of specific modeling choices. With this in mind, let's consider an especially important class of models known as the exponential family models. 2.2 Exponential Families Definition 1. The model fPθ : θ 2 Ωg forms an s-dimensional exponential family if each Pθ has density of the form: s ! X p(x; θ) = exp ηi(θ)Ti(x) − B(θ) h(x) i=1 • ηi(θ) 2 R are called the natural parameters. • Ti(x) 2 R are its sufficient statistics, which follows from NFFC. • B(θ) is the log-partition function because it is the logarithm of a normalization factor: s ! ! Z X B(θ) = log exp ηi(θ)Ti(x) h(x)dµ(x) 2 R i=1 • h(x) 2 R: base measure. -
The Schur Complement and H-Matrix Theory
UNIVERSITY OF NOVI SAD FACULTY OF TECHNICAL SCIENCES Maja Nedović THE SCHUR COMPLEMENT AND H-MATRIX THEORY DOCTORAL DISSERTATION Novi Sad, 2016 УНИВЕРЗИТЕТ У НОВОМ САДУ ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА 21000 НОВИ САД, Трг Доситеја Обрадовића 6 КЉУЧНА ДОКУМЕНТАЦИЈСКА ИНФОРМАЦИЈА Accession number, ANO: Identification number, INO: Document type, DT: Monographic publication Type of record, TR: Textual printed material Contents code, CC: PhD thesis Author, AU: Maja Nedović Mentor, MN: Professor Ljiljana Cvetković, PhD Title, TI: The Schur complement and H-matrix theory Language of text, LT: English Language of abstract, LA: Serbian, English Country of publication, CP: Republic of Serbia Locality of publication, LP: Province of Vojvodina Publication year, PY: 2016 Publisher, PB: Author’s reprint Publication place, PP: Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6 Physical description, PD: 6/161/85/1/0/12/0 (chapters/pages/ref./tables/pictures/graphs/appendixes) Scientific field, SF: Applied Mathematics Scientific discipline, SD: Numerical Mathematics Subject/Key words, S/KW: H-matrices, Schur complement, Eigenvalue localization, Maximum norm bounds for the inverse matrix, Closure of matrix classes UC Holding data, HD: Library of the Faculty of Technical Sciences, Trg Dositeja Obradovića 6, Novi Sad Note, N: Abstract, AB: This thesis studies subclasses of the class of H-matrices and their applications, with emphasis on the investigation of the Schur complement properties. The contributions of the thesis are new nonsingularity results, bounds for the maximum norm of the inverse matrix, closure properties of some matrix classes under taking Schur complements, as well as results on localization and separation of the eigenvalues of the Schur complement based on the entries of the original matrix. -
Mx (T) = 2$/2) T'w# (&&J Terp
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Applied Mathematics Letters PERGAMON Applied Mathematics Letters 16 (2003) 643-646 www.elsevier.com/locate/aml Multivariate Skew-Symmetric Distributions A. K. GUPTA Department of Mathematics and Statistics Bowling Green State University Bowling Green, OH 43403, U.S.A. [email protected] F.-C. CHANG Department of Applied Mathematics National Sun Yat-sen University Kaohsiung, Taiwan 804, R.O.C. [email protected] (Received November 2001; revised and accepted October 200.2) Abstract-In this paper, a class of multivariateskew distributions has been explored. Then its properties are derived. The relationship between the multivariate skew normal and the Wishart distribution is also studied. @ 2003 Elsevier Science Ltd. All rights reserved. Keywords-Skew normal distribution, Wishart distribution, Moment generating function, Mo- ments. Skewness. 1. INTRODUCTION The multivariate skew normal distribution has been studied by Gupta and Kollo [I] and Azzalini and Dalla Valle [2], and its applications are given in [3]. This class of distributions includes the normal distribution and has some properties like the normal and yet is skew. It is useful in studying robustness. Following Gupta and Kollo [l], the random vector X (p x 1) is said to have a multivariate skew normal distribution if it is continuous and its density function (p.d.f.) is given by fx(z) = 24&; W(a’z), x E Rp, (1.1) where C > 0, Q E RP, and 4,(x, C) is the p-dimensional normal density with zero mean vector and covariance matrix C, and a(.) is the standard normal distribution function (c.d.f.). -
Bayesian Inference Via Approximation of Log-Likelihood for Priors in Exponential Family
1 Bayesian Inference via Approximation of Log-likelihood for Priors in Exponential Family Tohid Ardeshiri, Umut Orguner, and Fredrik Gustafsson Abstract—In this paper, a Bayesian inference technique based x x x ··· x on Taylor series approximation of the logarithm of the likelihood 1 2 3 T function is presented. The proposed approximation is devised for the case, where the prior distribution belongs to the exponential family of distributions. The logarithm of the likelihood function is linearized with respect to the sufficient statistic of the prior distribution in exponential family such that the posterior obtains y1 y2 y3 yT the same exponential family form as the prior. Similarities between the proposed method and the extended Kalman filter for nonlinear filtering are illustrated. Furthermore, an extended Figure 1: A probabilistic graphical model for stochastic dy- target measurement update for target models where the target namical system with latent state xk and measurements yk. extent is represented by a random matrix having an inverse Wishart distribution is derived. The approximate update covers the important case where the spread of measurement is due to the target extent as well as the measurement noise in the sensor. (HMMs) whose probabilistic graphical model is presented in Fig. 1. In such filtering problems, the posterior to the last Index Terms—Approximate Bayesian inference, exponential processed measurement is in the same form as the prior family, Bayesian graphical models, extended Kalman filter, ex- distribution before the measurement update. Thus, the same tended target tracking, group target tracking, random matrices, inference algorithm can be used in a recursive manner. -
Interpolation of the Wishart and Non Central Wishart Distributions
Interpolation of the Wishart and non central Wishart distributions Gérard Letac∗ Angers, June 2016 ∗Laboratoire de Statistique et Probabilités, Université Paul Sabatier, 31062 Toulouse, France 1 Contents I Introduction 3 II Wishart distributions in the classical sense 3 III Wishart distributions on symmetric cones 5 IV Wishart distributions as natural exponential families 10 V Properties of the Wishart distributions 12 VI The one dimensional non central χ2 distributions and their interpola- tion 16 VII The classical non central Wishart distribution. 17 VIIIThe non central Wishart exists only if p is in the Gindikin set 17 IX The rank problem for the non central Wishart and the Mayerhofer conjecture. 19 X Reduction of the problem: the measures m(2p; k; d) 19 XI Computation of m(1; 2; 2) 23 XII Computation of the measure m(d − 1; d; d) 28 XII.1 Zonal functions . 28 XII.2 Three properties of zonal functions . 30 XII.3 The calculation of m(d − 1; d; d) ....................... 32 XII.4 Example: m(2; 3; 3) .............................. 34 XIIIConvolution lemmas in the cone Pd 35 XIVm(d − 2; d − 1; d) and m(d − 2; d; d) do not exist for d ≥ 3 37 XV References 38 2 I Introduction The aim of these notes is to present with the most natural generality the Wishart and non central Wishart distributions on symmetric real matrices, on Hermitian matrices and sometimes on a symmetric cone. While the classical χ2 square distributions are familiar to the statisticians, they quickly learn that these χ2 laws as parameterized by n their degree of freedom, can be interpolated by the gamma distributions with a continuous shape parameter. -
Singular Inverse Wishart Distribution with Application to Portfolio Theory
Working Papers in Statistics No 2015:2 Department of Statistics School of Economics and Management Lund University Singular Inverse Wishart Distribution with Application to Portfolio Theory TARAS BODNAR, STOCKHOLM UNIVERSITY STEPAN MAZUR, LUND UNIVERSITY KRZYSZTOF PODGÓRSKI, LUND UNIVERSITY Singular Inverse Wishart Distribution with Application to Portfolio Theory Taras Bodnara, Stepan Mazurb and Krzysztof Podgorski´ b; 1 a Department of Mathematics, Stockholm University, Roslagsv¨agen101, SE-10691 Stockholm, Sweden bDepartment of Statistics, Lund University, Tycho Brahe 1, SE-22007 Lund, Sweden Abstract The inverse of the standard estimate of covariance matrix is frequently used in the portfolio theory to estimate the optimal portfolio weights. For this problem, the distribution of the linear transformation of the inverse is needed. We obtain this distribution in the case when the sample size is smaller than the dimension, the underlying covariance matrix is singular, and the vectors of returns are inde- pendent and normally distributed. For the result, the distribution of the inverse of covariance estimate is needed and it is derived and referred to as the singular inverse Wishart distribution. We use these results to provide an explicit stochastic representation of an estimate of the mean-variance portfolio weights as well as to derive its characteristic function and the moments of higher order. ASM Classification: 62H10, 62H12, 91G10 Keywords: singular Wishart distribution, mean-variance portfolio, sample estimate of pre- cision matrix, Moore-Penrose inverse 1Corresponding author. E-mail address: [email protected]. The authors appreciate the financial support of the Swedish Research Council Grant Dnr: 2013-5180 and Riksbankens Jubileumsfond Grant Dnr: P13-1024:1 1 1 Introduction Analyzing multivariate data having fewer observations than their dimension is an impor- tant problem in the multivariate data analysis. -
Exponential Families and Theoretical Inference
EXPONENTIAL FAMILIES AND THEORETICAL INFERENCE Bent Jørgensen Rodrigo Labouriau August, 2012 ii Contents Preface vii Preface to the Portuguese edition ix 1 Exponential families 1 1.1 Definitions . 1 1.2 Analytical properties of the Laplace transform . 11 1.3 Estimation in regular exponential families . 14 1.4 Marginal and conditional distributions . 17 1.5 Parametrizations . 20 1.6 The multivariate normal distribution . 22 1.7 Asymptotic theory . 23 1.7.1 Estimation . 25 1.7.2 Hypothesis testing . 30 1.8 Problems . 36 2 Sufficiency and ancillarity 47 2.1 Sufficiency . 47 2.1.1 Three lemmas . 48 2.1.2 Definitions . 49 2.1.3 The case of equivalent measures . 50 2.1.4 The general case . 53 2.1.5 Completeness . 56 2.1.6 A result on separable σ-algebras . 59 2.1.7 Sufficiency of the likelihood function . 60 2.1.8 Sufficiency and exponential families . 62 2.2 Ancillarity . 63 2.2.1 Definitions . 63 2.2.2 Basu's Theorem . 65 2.3 First-order ancillarity . 67 2.3.1 Examples . 67 2.3.2 Main results . 69 iii iv CONTENTS 2.4 Problems . 71 3 Inferential separation 77 3.1 Introduction . 77 3.1.1 S-ancillarity . 81 3.1.2 The nonformation principle . 83 3.1.3 Discussion . 86 3.2 S-nonformation . 91 3.2.1 Definition . 91 3.2.2 S-nonformation in exponential families . 96 3.3 G-nonformation . 99 3.3.1 Transformation models . 99 3.3.2 Definition of G-nonformation . 103 3.3.3 Cox's proportional risks model .