Conjugate Priors

Total Page:16

File Type:pdf, Size:1020Kb

Conjugate Priors Chapter 9 The exponential family: Conjugate priors Within the Bayesian framework the parameter θ is treated as a random quantity. This requires us to specify a prior distribution p(θ), from which we can obtain the posterior distribution p(θ x) via Bayes theorem: | p(x θ)p(θ) p(θ x)= | , (9.1) | p(x) where p(x θ) is the likelihood. | Most inferential conclusions obtained within the Bayesian framework are based in one way or another on averages computed under the posterior distribution, and thus for the Bayesian framework to be useful it is essential to be able to compute these integrals with some effective procedure. In particular, prediction of future data xnew is based on the predictive probability: p(x x)= p(x θ)p(θ x)dθ, (9.2) new | new | | Z which is an integral with respect to the posterior. (We have assumed that Xnew X θ). Note also that forming the posterior distribution itself involves computing an integral:⊥⊥ | to normalize the posterior we must compute p(x)= p(x θ)p(θ)dθ, (9.3) | Z which is an integral with respect to the prior. In this section we introduce the idea of a conjugate prior. The basic idea is as follows. Given a likelihood p(x θ), we choose a family of prior distributions such that integrals of the form Eq. (9.3) can| be obtained tractably (for every prior in the family). Moreover, we 1 2 CHAPTER 9. THE EXPONENTIAL FAMILY: CONJUGATE PRIORS choose this family such that prior-to-posterior updating yields a posterior that is also in the family. This means that integrals of the form Eq. (9.2) can also be obtained tractably for every posterior distribution in the family. In general these two goals are in conflict. For example, the goal of invariance of prior-to-posterior updating (i.e., asking that the posterior remains in the same family of distributions of the prior) can be acheived vacuously by defining the family of all probability distributions, but this would not yield tractable integrals. On the other extreme, we could aim to obtain tractable integrals by taking the family of prior distributions to be a single distribution of a simple form (e.g., a constant), but the posterior would not generally retain this form. In the setting of the exponential family this dilemma is readily resolved. For exponential families the likelihood is a simple standarized function of the parameter and we can define conjugate priors by mimicking the form of the likelihood. Multiplication of a likelihood and a prior that have the same exponential form yields a posterior that retains that form. Moreover, for the exponential families that are most useful in practice, these exponential forms are readily integrated. In the remainder of this section we present examples that illustrate conjugate priors for exponential family distributions. Conjugate priors thus have appealing computational properties and for this reason they are widely used in practice. Indeed, for the complex models of the kind that are of- ten constructed using the graphical model toolbox, computational considerations may be paramount, and there may be little choice but to use conjugate priors. On the other hand, there are also good reasons not to use conjugate priors and one should not be lulled into a sense of complacency when using conjugate priors. Before turning to a presentation of exam- ples, let us briefly discuss some of the philosophical issues. we will return to this discussion in Section ?? after we have obtained a better idea of some of the options. Recall from our earlier discussion in Section ?? the distinction between subjective Bayesian and objective Bayesian perspectives. The subjective Bayesian perspective takes the opti- mistic view that priors are an opportunity to express knowledge; in particular, a prior may be a posterior from a previous experiment. The objective Bayesian perspective takes the more pessimistic view that prior knowledge is often not available and that priors should be chosen to have as little impact on the analysis as possible, relative to the impact of the data. In this regard, it is important to note that conjugate priors involve making rel- atively strong assumptions. Indeed, in a sense to be made clear in Section ??, conjugate priors minimize the impact of the data on the posterior. From the subjective perspective, this can be viewed favorably—conjugate priors provide an opportunity to express knowledge in a relatively influential way. From the objective perspective, however, conjugate priors are decidedly dangerous; objective priors aim to maximize the impact of the data on the posterior. The general point to be made is that one should take care with conjugate priors. The use of conjugate priors involves relatively strong assumptions and thus it is particularly important to do sensitivity analysis to assess how strongly the posterior is influenced by 3 the prior. If the answer is “not much,” then one can proceed with some confidence. If the answer is “a lot,” then one should either take great care to assess whether a domain expert is comfortable with these priors on subjective grounds or one should consider other kinds of priors (such as those discussed in Section ??) and/or gather more data so as to diminish the effect of the prior. 9.0.1 Bernoulli distribution and beta priors We have stated that conjugate priors can be obtained by mimicking the form of the likeli- hood. This is easily understood by considering examples. Let us begin with the Bernoulli distribution. Parameterizing the Bernoullli distribution using the mean parameter θ, the likelihood takes the following form: p(x θ)= θx(1 θ)1−x. (9.4) | − Under i.i.d. sampling, this expression retains the form of a product of powers of θ and 1 θ, with the exponents growing. This suggests that to obtain a conjugate prior for θ, we use− a distribution that is a product of powers of θ and 1 θ, with free parameters in the exponents: − p(θ τ) θτ1 (1 θ)τ2 . (9.5) | ∝ − This expression can be normalized if τ1 > 1 and τ2 > 1. The resulting distribution is known as the beta distribution, another example− of an exponential− family distribution. The beta distribution is traditionally parameterized using αi 1 instead of τi in the exponents (for a reason that will become clear below), yielding the− following standard form for the conjugate prior: − − p(θ α)= K(α)θα1 1(1 θ)α2 1. (9.6) | − where the normalization factor K(α) can be obtained analytically (see Exercise ??): −1 − − K(α) = θα1 1(1 θ)α2 1dθ (9.7) − Z Γ(α + α ) = 1 2 (9.8) Γ(α1)Γ(α2) as a ratio of gamma functions. If we multiply the beta density by the Bernoulli likelihood we obtain a beta density. T Consider in particular N i.i.d. Bernoulli observations, x =(x1,...,xN ) : N − − − p(θ x, α) θxn (1 θ)1 xn θα1 1(1 θ)α2 1 (9.9) | ∝ − − n=1 ! Y PN x +α −1 N−PN x +α −1 = θ n=1 n 1 (1 θ) n=1 n 2 . (9.10) − 4 CHAPTER 9. THE EXPONENTIAL FAMILY: CONJUGATE PRIORS N This is a beta density with updated values of the parameters. In particular, it is a Beta( n=1 xn+ α ,N N x + α ) distribution. 1 − n=1 n 2 P Note the simple nature of the prior-to-posterior updating procedure. For each observation P xn we simply add xn to the first parameter of the beta distribution and add 1 xn to the second parameter of the beta distribution. At each step we simply retain two− numbers as our representation of the posterior distribution. Note also that the form of the updating procedure provides an interpretation for the parameters α1 and α2. In particular, viewing the posterior as a prior from a previous experiment, we can view α1 and α2 as “effective counts”; α1 can be viewed as an effective number of prior observations of X = 1 and α2 can be interpreted as an effective number of prior observations of X = 0. (In general, however, the parameters are not restricted to integer values.) The fact that the normalization factor of the beta distribution has an analytic form allows us to compute various averages in closed form. Consider, in particular, the mean of a beta random variable: − − E[θ α] = θK(α)θα1 1(1 θ)α2 1dθ (9.11) | − Z − = K(α) θθα1 (1 θ)α2 1dθ (9.12) − Z Γ(α + α ) Γ(α + 1)Γ(α ) = 1 2 1 2 (9.13) Γ(α1)Γ(α2) Γ(α1 +1+ α2) α = 1 , (9.14) α1 + α2 using Γ(a +1) = aΓ(a) in the final line. A similar calculation yields the variance: α1α2 Var[θ α]= 2 . (9.15) | (α1 + α2 + 1)(α1 + α2) From these results we see that the relative values of α1 and α2 determine the mean, whereas the magnitude α1 + α2 determines the variance. That is, for a fixed value of the mean, the variance goes to zero as α1 + α2 goes to infinity. Applying these results to the posterior distribution in Eq. (9.10), we can compute the posterior mean: N x + α E[θ x, α]= n=1 n 1 . (9.16) | N + α + α P 1 2 and the posterior variance: ( N x + α )(N N x + α ) Var[θ x, α]= n=1 n 1 − n=1 n 2 . (9.17) | (N + α + α + 1)(N + α + α )2 P 1 2 P 1 2 5 These equations yield several significant pieces of information.
Recommended publications
  • A Random Variable X with Pdf G(X) = Λα Γ(Α) X ≥ 0 Has Gamma
    DISTRIBUTIONS DERIVED FROM THE NORMAL DISTRIBUTION Definition: A random variable X with pdf λα g(x) = xα−1e−λx x ≥ 0 Γ(α) has gamma distribution with parameters α > 0 and λ > 0. The gamma function Γ(x), is defined as Z ∞ Γ(x) = ux−1e−udu. 0 Properties of the Gamma Function: (i) Γ(x + 1) = xΓ(x) (ii) Γ(n + 1) = n! √ (iii) Γ(1/2) = π. Remarks: 1. Notice that an exponential rv with parameter 1/θ = λ is a special case of a gamma rv. with parameters α = 1 and λ. 2. The sum of n independent identically distributed (iid) exponential rv, with parameter λ has a gamma distribution, with parameters n and λ. 3. The sum of n iid gamma rv with parameters α and λ has gamma distribution with parameters nα and λ. Definition: If Z is a standard normal rv, the distribution of U = Z2 called the chi-square distribution with 1 degree of freedom. 2 The density function of U ∼ χ1 is −1/2 x −x/2 fU (x) = √ e , x > 0. 2π 2 Remark: A χ1 random variable has the same density as a random variable with gamma distribution, with parameters α = 1/2 and λ = 1/2. Definition: If U1,U2,...,Uk are independent chi-square rv-s with 1 degree of freedom, the distribution of V = U1 + U2 + ... + Uk is called the chi-square distribution with k degrees of freedom. 2 Using Remark 3. and the above remark, a χk rv. follows gamma distribution with parameters 2 α = k/2 and λ = 1/2.
    [Show full text]
  • Connection Between Dirichlet Distributions and a Scale-Invariant Probabilistic Model Based on Leibniz-Like Pyramids
    Home Search Collections Journals About Contact us My IOPscience Connection between Dirichlet distributions and a scale-invariant probabilistic model based on Leibniz-like pyramids This content has been downloaded from IOPscience. Please scroll down to see the full text. View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 152.84.125.254 This content was downloaded on 22/12/2014 at 23:17 Please note that terms and conditions apply. Journal of Statistical Mechanics: Theory and Experiment Connection between Dirichlet distributions and a scale-invariant probabilistic model based on J. Stat. Mech. Leibniz-like pyramids A Rodr´ıguez1 and C Tsallis2,3 1 Departamento de Matem´atica Aplicada a la Ingenier´ıa Aeroespacial, Universidad Polit´ecnica de Madrid, Pza. Cardenal Cisneros s/n, 28040 Madrid, Spain 2 Centro Brasileiro de Pesquisas F´ısicas and Instituto Nacional de Ciˆencia e Tecnologia de Sistemas Complexos, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil (2014) P12027 3 Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA E-mail: [email protected] and [email protected] Received 4 November 2014 Accepted for publication 30 November 2014 Published 22 December 2014 Online at stacks.iop.org/JSTAT/2014/P12027 doi:10.1088/1742-5468/2014/12/P12027 Abstract. We show that the N limiting probability distributions of a recently introduced family of d→∞-dimensional scale-invariant probabilistic models based on Leibniz-like (d + 1)-dimensional hyperpyramids (Rodr´ıguez and Tsallis 2012 J. Math. Phys. 53 023302) are given by Dirichlet distributions for d = 1, 2, ...
    [Show full text]
  • Stat 5101 Notes: Brand Name Distributions
    Stat 5101 Notes: Brand Name Distributions Charles J. Geyer February 14, 2003 1 Discrete Uniform Distribution Symbol DiscreteUniform(n). Type Discrete. Rationale Equally likely outcomes. Sample Space The interval 1, 2, ..., n of the integers. Probability Function 1 f(x) = , x = 1, 2, . , n n Moments n + 1 E(X) = 2 n2 − 1 var(X) = 12 2 Uniform Distribution Symbol Uniform(a, b). Type Continuous. Rationale Continuous analog of the discrete uniform distribution. Parameters Real numbers a and b with a < b. Sample Space The interval (a, b) of the real numbers. 1 Probability Density Function 1 f(x) = , a < x < b b − a Moments a + b E(X) = 2 (b − a)2 var(X) = 12 Relation to Other Distributions Beta(1, 1) = Uniform(0, 1). 3 Bernoulli Distribution Symbol Bernoulli(p). Type Discrete. Rationale Any zero-or-one-valued random variable. Parameter Real number 0 ≤ p ≤ 1. Sample Space The two-element set {0, 1}. Probability Function ( p, x = 1 f(x) = 1 − p, x = 0 Moments E(X) = p var(X) = p(1 − p) Addition Rule If X1, ..., Xk are i. i. d. Bernoulli(p) random variables, then X1 + ··· + Xk is a Binomial(k, p) random variable. Relation to Other Distributions Bernoulli(p) = Binomial(1, p). 4 Binomial Distribution Symbol Binomial(n, p). 2 Type Discrete. Rationale Sum of i. i. d. Bernoulli random variables. Parameters Real number 0 ≤ p ≤ 1. Integer n ≥ 1. Sample Space The interval 0, 1, ..., n of the integers. Probability Function n f(x) = px(1 − p)n−x, x = 0, 1, . , n x Moments E(X) = np var(X) = np(1 − p) Addition Rule If X1, ..., Xk are independent random variables, Xi being Binomial(ni, p) distributed, then X1 + ··· + Xk is a Binomial(n1 + ··· + nk, p) random variable.
    [Show full text]
  • Distribution of Mutual Information
    Distribution of Mutual Information Marcus Hutter IDSIA, Galleria 2, CH-6928 Manno-Lugano, Switzerland [email protected] http://www.idsia.ch/-marcus Abstract The mutual information of two random variables z and J with joint probabilities {7rij} is commonly used in learning Bayesian nets as well as in many other fields. The chances 7rij are usually estimated by the empirical sampling frequency nij In leading to a point es­ timate J(nij In) for the mutual information. To answer questions like "is J (nij In) consistent with zero?" or "what is the probability that the true mutual information is much larger than the point es­ timate?" one has to go beyond the point estimate. In the Bayesian framework one can answer these questions by utilizing a (second order) prior distribution p( 7r) comprising prior information about 7r. From the prior p(7r) one can compute the posterior p(7rln), from which the distribution p(Iln) of the mutual information can be cal­ culated. We derive reliable and quickly computable approximations for p(Iln). We concentrate on the mean, variance, skewness, and kurtosis, and non-informative priors. For the mean we also give an exact expression. Numerical issues and the range of validity are discussed. 1 Introduction The mutual information J (also called cross entropy) is a widely used information theoretic measure for the stochastic dependency of random variables [CT91, SooOO] . It is used, for instance, in learning Bayesian nets [Bun96, Hec98] , where stochasti­ cally dependent nodes shall be connected. The mutual information defined in (1) can be computed if the joint probabilities {7rij} of the two random variables z and J are known.
    [Show full text]
  • The Exponential Family 1 Definition
    The Exponential Family David M. Blei Columbia University November 9, 2016 The exponential family is a class of densities (Brown, 1986). It encompasses many familiar forms of likelihoods, such as the Gaussian, Poisson, multinomial, and Bernoulli. It also encompasses their conjugate priors, such as the Gamma, Dirichlet, and beta. 1 Definition A probability density in the exponential family has this form p.x / h.x/ exp >t.x/ a./ ; (1) j D f g where is the natural parameter; t.x/ are sufficient statistics; h.x/ is the “base measure;” a./ is the log normalizer. Examples of exponential family distributions include Gaussian, gamma, Poisson, Bernoulli, multinomial, Markov models. Examples of distributions that are not in this family include student-t, mixtures, and hidden Markov models. (We are considering these families as distributions of data. The latent variables are implicitly marginalized out.) The statistic t.x/ is called sufficient because the probability as a function of only depends on x through t.x/. The exponential family has fundamental connections to the world of graphical models (Wainwright and Jordan, 2008). For our purposes, we’ll use exponential 1 families as components in directed graphical models, e.g., in the mixtures of Gaussians. The log normalizer ensures that the density integrates to 1, Z a./ log h.x/ exp >t.x/ d.x/ (2) D f g This is the negative logarithm of the normalizing constant. The function h.x/ can be a source of confusion. One way to interpret h.x/ is the (unnormalized) distribution of x when 0. It might involve statistics of x that D are not in t.x/, i.e., that do not vary with the natural parameter.
    [Show full text]
  • Machine Learning Conjugate Priors and Monte Carlo Methods
    Hierarchical Bayes for Non-IID Data Conjugate Priors Monte Carlo Methods CPSC 540: Machine Learning Conjugate Priors and Monte Carlo Methods Mark Schmidt University of British Columbia Winter 2016 Hierarchical Bayes for Non-IID Data Conjugate Priors Monte Carlo Methods Admin Nothing exciting? We discussed empirical Bayes, where you optimize prior using marginal likelihood, Z argmax p(xjα; β) = argmax p(xjθ)p(θjα; β)dθ: α,β α,β θ Can be used to optimize λj, polynomial degree, RBF σi, polynomial vs. RBF, etc. We also considered hierarchical Bayes, where you put a prior on the prior, p(xjα; β)p(α; βjγ) p(α; βjx; γ) = : p(xjγ) But is the hyper-prior really needed? Hierarchical Bayes for Non-IID Data Conjugate Priors Monte Carlo Methods Last Time: Bayesian Statistics In Bayesian statistics we work with posterior over parameters, p(xjθ)p(θjα; β) p(θjx; α; β) = : p(xjα; β) We also considered hierarchical Bayes, where you put a prior on the prior, p(xjα; β)p(α; βjγ) p(α; βjx; γ) = : p(xjγ) But is the hyper-prior really needed? Hierarchical Bayes for Non-IID Data Conjugate Priors Monte Carlo Methods Last Time: Bayesian Statistics In Bayesian statistics we work with posterior over parameters, p(xjθ)p(θjα; β) p(θjx; α; β) = : p(xjα; β) We discussed empirical Bayes, where you optimize prior using marginal likelihood, Z argmax p(xjα; β) = argmax p(xjθ)p(θjα; β)dθ: α,β α,β θ Can be used to optimize λj, polynomial degree, RBF σi, polynomial vs.
    [Show full text]
  • A Skew Extension of the T-Distribution, with Applications
    J. R. Statist. Soc. B (2003) 65, Part 1, pp. 159–174 A skew extension of the t-distribution, with applications M. C. Jones The Open University, Milton Keynes, UK and M. J. Faddy University of Birmingham, UK [Received March 2000. Final revision July 2002] Summary. A tractable skew t-distribution on the real line is proposed.This includes as a special case the symmetric t-distribution, and otherwise provides skew extensions thereof.The distribu- tion is potentially useful both for modelling data and in robustness studies. Properties of the new distribution are presented. Likelihood inference for the parameters of this skew t-distribution is developed. Application is made to two data modelling examples. Keywords: Beta distribution; Likelihood inference; Robustness; Skewness; Student’s t-distribution 1. Introduction Student’s t-distribution occurs frequently in statistics. Its usual derivation and use is as the sam- pling distribution of certain test statistics under normality, but increasingly the t-distribution is being used in both frequentist and Bayesian statistics as a heavy-tailed alternative to the nor- mal distribution when robustness to possible outliers is a concern. See Lange et al. (1989) and Gelman et al. (1995) and references therein. It will often be useful to consider a further alternative to the normal or t-distribution which is both heavy tailed and skew. To this end, we propose a family of distributions which includes the symmetric t-distributions as special cases, and also includes extensions of the t-distribution, still taking values on the whole real line, with non-zero skewness. Let a>0 and b>0be parameters.
    [Show full text]
  • On a Problem Connected with Beta and Gamma Distributions by R
    ON A PROBLEM CONNECTED WITH BETA AND GAMMA DISTRIBUTIONS BY R. G. LAHA(i) 1. Introduction. The random variable X is said to have a Gamma distribution G(x;0,a)if du for x > 0, (1.1) P(X = x) = G(x;0,a) = JoT(a)" 0 for x ^ 0, where 0 > 0, a > 0. Let X and Y be two independently and identically distributed random variables each having a Gamma distribution of the form (1.1). Then it is well known [1, pp. 243-244], that the random variable W = X¡iX + Y) has a Beta distribution Biw ; a, a) given by 0 for w = 0, (1.2) PiW^w) = Biw;x,x)=\ ) u"-1il-u)'-1du for0<w<l, Ío T(a)r(a) 1 for w > 1. Now we can state the converse problem as follows : Let X and Y be two independently and identically distributed random variables having a common distribution function Fix). Suppose that W = Xj{X + Y) has a Beta distribution of the form (1.2). Then the question is whether £(x) is necessarily a Gamma distribution of the form (1.1). This problem was posed by Mauldon in [9]. He also showed that the converse problem is not true in general and constructed an example of a non-Gamma distribution with this property using the solution of an integral equation which was studied by Goodspeed in [2]. In the present paper we carry out a systematic investigation of this problem. In §2, we derive some general properties possessed by this class of distribution laws Fix).
    [Show full text]
  • 1 One Parameter Exponential Families
    1 One parameter exponential families The world of exponential families bridges the gap between the Gaussian family and general dis- tributions. Many properties of Gaussians carry through to exponential families in a fairly precise sense. • In the Gaussian world, there exact small sample distributional results (i.e. t, F , χ2). • In the exponential family world, there are approximate distributional results (i.e. deviance tests). • In the general setting, we can only appeal to asymptotics. A one-parameter exponential family, F is a one-parameter family of distributions of the form Pη(dx) = exp (η · t(x) − Λ(η)) P0(dx) for some probability measure P0. The parameter η is called the natural or canonical parameter and the function Λ is called the cumulant generating function, and is simply the normalization needed to make dPη fη(x) = (x) = exp (η · t(x) − Λ(η)) dP0 a proper probability density. The random variable t(X) is the sufficient statistic of the exponential family. Note that P0 does not have to be a distribution on R, but these are of course the simplest examples. 1.0.1 A first example: Gaussian with linear sufficient statistic Consider the standard normal distribution Z e−z2=2 P0(A) = p dz A 2π and let t(x) = x. Then, the exponential family is eη·x−x2=2 Pη(dx) / p 2π and we see that Λ(η) = η2=2: eta= np.linspace(-2,2,101) CGF= eta**2/2. plt.plot(eta, CGF) A= plt.gca() A.set_xlabel(r'$\eta$', size=20) A.set_ylabel(r'$\Lambda(\eta)$', size=20) f= plt.gcf() 1 Thus, the exponential family in this setting is the collection F = fN(η; 1) : η 2 Rg : d 1.0.2 Normal with quadratic sufficient statistic on R d As a second example, take P0 = N(0;Id×d), i.e.
    [Show full text]
  • Lecture 24: Dirichlet Distribution and Dirichlet Process
    Stat260: Bayesian Modeling and Inference Lecture Date: April 28, 2010 Lecture 24: Dirichlet distribution and Dirichlet Process Lecturer: Michael I. Jordan Scribe: Vivek Ramamurthy 1 Introduction In the last couple of lectures, in our study of Bayesian nonparametric approaches, we considered the Chinese Restaurant Process, Bayesian mixture models, stick breaking, and the Dirichlet process. Today, we will try to gain some insight into the connection between the Dirichlet process and the Dirichlet distribution. 2 The Dirichlet distribution and P´olya urn First, we note an important relation between the Dirichlet distribution and the Gamma distribution, which is used to generate random vectors which are Dirichlet distributed. If, for i ∈ {1, 2, · · · , K}, Zi ∼ Gamma(αi, β) independently, then K K S = Zi ∼ Gamma αi, β i=1 i=1 ! X X and V = (V1, · · · ,VK ) = (Z1/S, · · · ,ZK /S) ∼ Dir(α1, · · · , αK ) Now, consider the following P´olya urn model. Suppose that • Xi - color of the ith draw • X - space of colors (discrete) • α(k) - number of balls of color k initially in urn. We then have that α(k) + j<i δXj (k) p(Xi = k|X1, · · · , Xi−1) = α(XP) + i − 1 where δXj (k) = 1 if Xj = k and 0 otherwise, and α(X ) = k α(k). It may then be shown that P n α(x1) α(xi) + j<i δXj (xi) p(X1 = x1, X2 = x2, · · · , X = x ) = n n α(X ) α(X ) + i − 1 i=2 P Y α(1)[α(1) + 1] · · · [α(1) + m1 − 1]α(2)[α(2) + 1] · · · [α(2) + m2 − 1] · · · α(C)[α(C) + 1] · · · [α(C) + m − 1] = C α(X )[α(X ) + 1] · · · [α(X ) + n − 1] n where 1, 2, · · · , C are the distinct colors that appear in x1, · · · ,xn and mk = i=1 1{Xi = k}.
    [Show full text]
  • The Exciting Guide to Probability Distributions – Part 2
    The Exciting Guide To Probability Distributions – Part 2 Jamie Frost – v1.1 Contents Part 2 A revisit of the multinomial distribution The Dirichlet Distribution The Beta Distribution Conjugate Priors The Gamma Distribution We saw in the last part that the multinomial distribution was over counts of outcomes, given the probability of each outcome and the total number of outcomes. xi f(x1, ... , xk | n, p1, ... , pk)= [n! / ∏xi!] ∏pi The count of The probability of each outcome. each outcome. That’s all smashing, but suppose we wanted to know the reverse, i.e. the probability that the distribution underlying our random variable has outcome probabilities of p1, ... , pk, given that we observed each outcome x1, ... , xk times. In other words, we are considering all the possible probability distributions (p1, ... , pk) that could have generated these counts, rather than all the possible counts given a fixed distribution. Initial attempt at a probability mass function: Just swap the domain and the parameters: The RHS is exactly the same. xi f(p1, ... , pk | n, x1, ... , xk )= [n! / ∏xi!] ∏pi Notational convention is that we define the support as a vector x, so let’s relabel p as x, and the counts x as α... αi f(x1, ... , xk | n, α1, ... , αk )= [n! / ∏ αi!] ∏xi We can define n just as the sum of the counts: αi f(x1, ... , xk | α1, ... , αk )= [(∑αi)! / ∏ αi!] ∏xi But wait, we’re not quite there yet. We know that probabilities have to sum to 1, so we need to restrict the domain we can draw from: s.t.
    [Show full text]
  • A Form of Multivariate Gamma Distribution
    Ann. Inst. Statist. Math. Vol. 44, No. 1, 97-106 (1992) A FORM OF MULTIVARIATE GAMMA DISTRIBUTION A. M. MATHAI 1 AND P. G. MOSCHOPOULOS2 1 Department of Mathematics and Statistics, McOill University, Montreal, Canada H3A 2K6 2Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968-0514, U.S.A. (Received July 30, 1990; revised February 14, 1991) Abstract. Let V,, i = 1,...,k, be independent gamma random variables with shape ai, scale /3, and location parameter %, and consider the partial sums Z1 = V1, Z2 = 171 + V2, . • •, Zk = 171 +. • • + Vk. When the scale parameters are all equal, each partial sum is again distributed as gamma, and hence the joint distribution of the partial sums may be called a multivariate gamma. This distribution, whose marginals are positively correlated has several interesting properties and has potential applications in stochastic processes and reliability. In this paper we study this distribution as a multivariate extension of the three-parameter gamma and give several properties that relate to ratios and conditional distributions of partial sums. The general density, as well as special cases are considered. Key words and phrases: Multivariate gamma model, cumulative sums, mo- ments, cumulants, multiple correlation, exact density, conditional density. 1. Introduction The three-parameter gamma with the density (x _ V)~_I exp (x-7) (1.1) f(x; a, /3, 7) = ~ , x>'7, c~>O, /3>0 stands central in the multivariate gamma distribution of this paper. Multivariate extensions of gamma distributions such that all the marginals are again gamma are the most common in the literature.
    [Show full text]