CONTENTS RESEARCH STATEMENT Research Statement I Am a Designer and Researcher of Wearable Technology

Total Page:16

File Type:pdf, Size:1020Kb

CONTENTS RESEARCH STATEMENT Research Statement I Am a Designer and Researcher of Wearable Technology CONTENTS RESEARCH STATEMENT Research Statement I am a designer and researcher of wearable technology. If you had asked me 10 years ago what I wanted to do with my life and where I would be now, I would have told you that I wanted Professional Employment to be a fashion designer on the cusp of having an empire of style. Things have changed, but some of the reasons why I love fashion are still the reasons why I feel fulfilled researching Educational Background human centered computing. My undergraduate degree in Industrial Design at Georgia Tech and my Master of Arts in Fashion Design at Domus Academy in Milan gave me the utmost Experience Summary respect for the user/consumer. My gravitation towards wearable computing doesn’t necessarily stem from my background in fashion, however both come from a desire to help people express Publications themselves. I find that body-worn technology, like fashion, provides a unique and powerful opportunity to be a part of how people decide to represent themselves within society. Whenev- Industry Relationships er a person decides to wear something they are overtly or unintentionally assigning himself/her- and Grants self to a tribe, even if it’s a tribe against tribes. Everything you decide to wear says something about you. It was very satisfying for me as a fashion designer to have people decide to Synergistic Activities express themselves by wearing my designs. This satisfaction does not solely come from a place of ego because sometimes as a designer you are researching trends and predicting In The Press cultural shifts and designing outcomes (which sometimes you yourself as a designer might not gravitate towards). The world of wearable computing builds on these experiences and this is why I am so drawn to the subject and community. There are a couple of distinct reasons why I have enjoyed working in this area. First, the field uses teams of people with diverse and disparate backgrounds working together in order to bring true innovation. My unique background in fashion, textiles, product design, and engineering help me act as translator when working with multidisciplinary teams. I love bringing people together, especially people who normally wouldn’t work along side each other. My favorite moments in life are those when I witness people realize they are more alike than they thought, and that their differences are valuable if they work together. Second, wearable technologies are worn, thus there is still an element of self-expression, which cannot be divorced from the design process (though I believe that today it is often ignored). Third, unlike fashion there is a need for usability and interfacing with the technology, which is paramount for a rewarding user experience. My background and interests explain the community I have picked to work within, now I will explain my approach. Burrel and Morgan [1] would probably call me an Interpretist. I would love for there to be rules and laws about nature and society that I could count on (order, rather than radical change) and often I look for them with my research. In the search for these laws I feel like I still am subjective. I believe that it’s the individual’s experience (be it of technology or fashion) that matters most. How one views the world is the world, in a manor of speaking. Conductive thread textile based knife pleat interface RESEARCH STATEMENT References Cited My methodologies have come from both this interpretist lean and my education. The best way [1] G. Burell and G. Morgan, “Social Paradigms and Organisational Analysis.” 1980. to understand the way I work is to follow the arc of one of my research projects. The Electronic Textile Interface Swatch Book ESwatchBook started as a small usability study on “Gropable [2] N. Komor and S. Gilliland, “Is It Gropable?–Assessing the Impact of Mobility on Textile Textiles” [2]. The research question in this initial study was to find out if embroidered textile Interfaces,” … , 2009. ISWC’09. …, pp. 71–74, 2009. interfaces were easier to use while walking than flat interfaces, and if multi-touch or single touch worked best. Here I was interested in finding out information and proving to myself [3] S. Gilliland and N. Komor, “The Textile Interface Swatchbook: Creating graphical user inter- quantitatively something worked the way I assumed it would. We ran a number of users on the face-like widgets with conductive embroidery,” Wearable Comput. ( …, no. Figure 1, 2010. system and looked at the data recorded by the technology to find out how the difference in performance between each task. The next evolution of this work was to use what we had learned to create a set of fabric interfaces. So here I am taking the quantitative information and [4] C. Zeagler and S. Gilliland, “Textile Interfaces: Embroidered Jog-Wheel, Beaded Tilt Sensor, using it to inform the design process of an artifact for people to interact with, touch, feel, and Twisted Pair Ribbon, and Sound Sequins,” … (ISWC), 2012 16th …, pp. 76–85, 2012. wear. We then authored another paper about the design process of creating the fabric interfaces and how well they worked (repeatability of use within a lab setting) [3][4]. Finally [5] S. Greenberg and B. Buxton, “Usability evaluation considered harmful (some of the time),” after I work on the more lab based quantitative user study, design and function ability, I am Proceeding twentysixth Annu. CHI Conf. Hum. factors Comput. Syst. CHI 08, p. 111, 2008. interested in acceptability and perceived usefulness [5]. Our research team took the ESwatchBook and conducted a series of workshops organizing fashion designers and [6] C. Zeagler, S. Audy, and S. Pobiner, “The electronic textile interface workshop: Facilitating computer scientists onto teams to create projects after having discussions using the interdisciplinary collaboration,” … Soc. (ISTAS), …, pp. 60–63, 2013. ESwatchBook. Through observation, discussion, and surveys we tried to ascertain the experience and usefulness of having the ESwatchBook for a fashion/computer team trying to [7] C. Zeagler, S. Gilliland, S. Audy, and T. Starner, “Can I Wash It?: The Eect of Washing Conduc- work on a wearable technology project [6]. This more qualitative type of research has been the tive Materials Used in Making Textile Based Wearable Electronic Interfaces.,” in Proceedings of the most rewarding personally, if not the most fruitful in terms of academic papers. It is also the 17th annual international symposium on International symposium on wearable computers - ISWC hardest for me to write about. I believe in quantitative data, but I think it is easy to believe ’13, 2013, p. 143. numbers. I have found more difficult and challenging to write about qualitative data in a way I felt was as scientifically valid. After the past two years in human centered computing, and after [8] C. Zeagler, S. Gilliland, and L. Freil, “Going to the Dogs: Towards an Interactive Touchscreen taking the qualitative methods course, I now have new ways of organizing such data. I am Interface for Working Dogs,” pp. 497–507, 2014. excited about being able to use these new methods in my research. [9] H. Prota, J. Clawson, and S. Gilliland, “Don’t mind me touching my wrist: a case study of Moving forward I would have to say that the engineer in me is never going to give up on interacting with on-body technology in public,” Proc. 17th …, pp. 89–96, 2013. figuring out how and why things work. This means I will always be interested in knowing the parts and pieces of why something is useful, or how long it will work [7], or how to make it work better [8]. However I am starting to feel confident enough in the field of to become more interested in the experience of wearable technology [9] which inherently is more qualitative. If I had to draft a research plan for the next three years I would use this same arc. Does a technology work (user study), how can it be used in wearable technology (design and usability iterations), and how do people feel about the experience of using it (participatory design / qualitative technology probe). Meeting the Challenge: The Path Towards a Consumer Wearable Computer Wearable Computing Exhibition as shown in Berlin Professional Employment: Teaching / Research Research Scientist II, Interactive Media Technology Center / Program Manager, Wearable Computing Center, Georgia Tech (Atlanta, GA) 2014-present Research Scientist I, GVU Center / School of Industrial Design, Georgia Tech (Atlanta, GA) 2012-2014 Lecturer School of Industrial Design, Georgia Tech (Atlanta, GA) 2007-present Part Time Professor of Fashion Design, Savannah College of Art and Design (Atlanta, GA) 2008-2012 Professional Employment: Commercial Owner/Creative Director, Pecan Pie Couture (Atlanta GA) 2006-2013 Educational Background: Ph.D Prog Georgia Tech, Atlanta GA Human Centered Comp M.A. 2006 Domus Academy, Milan, Italy Fashion Design B.S. 2004 Georgia Tech, Atlanta GA Industrial Design Minor 2004 Georgia Tech, Atlanta GA Textile Manufacturing M.A. Projects: Cultural Diversity Inside Future Concept Lab Wear your Hybridization Antonio Berardi Video Killed the Radio Star Edit Meltn' Pot and Frankie Morello Pecan Pie Couture Spring 2006 Accessory Design Runes Daniela Puppa Metro Active Woman The Air is Free Nike and Victor Belaish Mens Wear Pulse Fields Antonio Manceielli and Mario Sorbo Master's Thesis Horizon Nike and Victor Belaish Experience Summary While teaching textiles and fashion design studio classes at Savannah College of Art & Design, Zeagler realized his true passion lies in bridging the gap between the disciplines of design and Human Centered Computing. A diverse background in fashion, industrial design and textiles drives his research on electronic textiles and on-body interfaces with the Contextual Computing Group of the GVU center of Georgia Tech.
Recommended publications
  • MAGIC Summoning: Towards Automatic Suggesting and Testing of Gestures with Low Probability of False Positives During Use
    JournalofMachineLearningResearch14(2013)209-242 Submitted 10/11; Revised 6/12; Published 1/13 MAGIC Summoning: Towards Automatic Suggesting and Testing of Gestures With Low Probability of False Positives During Use Daniel Kyu Hwa Kohlsdorf [email protected] Thad E. Starner [email protected] GVU & School of Interactive Computing Georgia Institute of Technology Atlanta, GA 30332 Editors: Isabelle Guyon and Vassilis Athitsos Abstract Gestures for interfaces should be short, pleasing, intuitive, and easily recognized by a computer. However, it is a challenge for interface designers to create gestures easily distinguishable from users’ normal movements. Our tool MAGIC Summoning addresses this problem. Given a specific platform and task, we gather a large database of unlabeled sensor data captured in the environments in which the system will be used (an “Everyday Gesture Library” or EGL). The EGL is quantized and indexed via multi-dimensional Symbolic Aggregate approXimation (SAX) to enable quick searching. MAGIC exploits the SAX representation of the EGL to suggest gestures with a low likelihood of false triggering. Suggested gestures are ordered according to brevity and simplicity, freeing the interface designer to focus on the user experience. Once a gesture is selected, MAGIC can output synthetic examples of the gesture to train a chosen classifier (for example, with a hidden Markov model). If the interface designer suggests his own gesture and provides several examples, MAGIC estimates how accurately that gesture can be recognized and estimates its false positive rate by comparing it against the natural movements in the EGL. We demonstrate MAGIC’s effectiveness in gesture selection and helpfulness in creating accurate gesture recognizers.
    [Show full text]
  • Prozessunterstützung Für Den Entwurf Von Wearable-Computing-Systemen
    Prozessunterstutzung¨ fur¨ den Entwurf von Wearable-Computing-Systemen Vom Fachbereich Informatik der Technischen Universit¨at Darmstadt genehmigte Dissertation zur Erlangung des akademischen Grades Dr. rer. nat. vorgelegt von Dipl.-Inform. Tobias Klug geboren in Frankfurt Tag der Einreichung: 15.4.2008 Tag der Disputation: 30.5.2008 Referenten: Prof. Dr. Max Muhlh¨ ¨auser, Darmstadt Prof. Dr.-Ing. Ralph Bruder, Darmstadt Darmstadt 2008 Darmst¨adter Dissertationen D17 i Danksagung Diese Dissertation ist weder Steffi Graf, noch Andr´eAgassi gewidmet. Dafur¨ je- doch den vielen Personen, die mich in den letzten dreieinhalb Jahren begleitet und unterstutzt¨ haben. An erster Stelle m¨ochte ich hier meinem Doktorvater Prof. Max Muhlh¨ ¨auser fur¨ die Anregungen und Diskussionen danken, die entscheidend zum Entstehen dieser Arbeit beigetragen haben. Außerdem m¨ochte ich meiner Freundin Nina Steinert und meinen Eltern danken, die meine Entscheidung zu promovieren unterstutzt¨ und mich die gesamte Zeit uber¨ begleitet haben. Sie haben mich immer wieder motiviert und auch bei der Korrektur des endgultigen¨ Textes tatkr¨aftige Unterstutzung¨ geleistet. Des weiteren m¨ochte ich Markus Roth, Hristo Indzhov und Svenja Kahn danken, die mit ihren Diplom- und Bachelorarbeiten entscheidend zur Entstehung dieser Arbeit beigetragen haben. Außerdem m¨ochte ich den vielen Kollegen an der Universit¨at und bei SAP Rese- arch fur¨ die freundliche und lockere Arbeitsatmosph¨are danken. Victoria Carlsson, Andreas Zinnen und Thomas Ziegert danke ich fur¨ die gute Zusammenarbeit und fruchtbaren Diskussionen im Rahmen des wearIT@work-Projektes und auch daruber¨ hinaus. Ich danke meinen Zimmerkollegen an der Universit¨at Melanie Hartmann und Fernando Lyardet, die sich immer wieder meine wilden Ideen anh¨oren und kommen- tieren mussten.
    [Show full text]
  • The Challenges of Wearable Computing: Part 2
    THE CHALLENGES OF WEARABLE COMPUTING: PART 2 WEARABLE COMPUTING PURSUES AN INTERFACE IDEAL OF A CONTINUOUSLY WORN, INTELLIGENT ASSISTANT THAT AUGMENTS MEMORY, INTELLECT, CREATIVITY, COMMUNICATION, AND PHYSICAL SENSES AND ABILITIES. MANY CHALLENGES AWAIT WEARABLE DESIGNERS. PART 2 BEGINS WITH THE CHALLENGES OF NETWORK RESOURCES AND PRIVACY CONCERNS. THIS SURVEY DESCRIBES THE POSSIBILITIES OFFERED BY WEARABLE SYSTEMS AND, IN DOING SO, DEMONSTRATES ATTRIBUTES UNIQUE TO THIS CLASS OF COMPUTING. Challenges throughput. Another serious issue is open The most immediately striking challenge standards to enable interoperability between in designing wearable computers is creating different services. For example, only one long- appropriate interfaces. However, the issues of range radio should be necessary to provide power use, heat dissipation, networking, and telephony, text messaging, Global Positioning privacy provide a necessary framework in System (GPS) correction signals, and so on. which to discuss interface. Part 1 of this arti- For wearable computers, networking cle covers the first two of these issues; Part 2 involves communication off body to the fixed begins with the networking discussion. network, on body among devices, and near Thad Starner body with objects near the user. Each of these Networking three network types requires different design Georgia Institute of As with any wireless mobile device, the decisions. Designers must also consider pos- amount of power and the type of services sible interference between the networks. Technology available can constrain networking. Wearable computers could conserve resources through Off-body communications. Wireless commu- improved coordination with the user inter- nication from mobile devices to fixed infra- face. For example, the speed at which a given structure is the most thoroughly researched of information packet is transferred can be bal- these issues.
    [Show full text]
  • THAD E. STARNER, Ph.D. Associate Professor of Computing Georgia Institute of Technology
    THAD E. STARNER, Ph.D. Associate Professor of Computing Georgia Institute of Technology Research Interest: Wearable/mobile computing interfaces and pattern recognition. Educational Background B.S. 1991 MIT, Cambridge MA Computer Science B.S. 1991 MIT, Cambridge MA Brain and Cognitive Science M.S. 1995 MIT Media Laboratory, Cambridge MA Media Arts and Sciences Ph.D. 1999 MIT Media Laboratory, Cambridge MA Media Arts and Sciences Professional Employment Associate Professor of Computing, Georgia Tech (Atlanta, GA), 2006-present Assistant Professor of Computing, Georgia Tech (Atlanta, GA), 1999-2006 Visiting Professor, ECE, Swiss Federal Inst. of Technology (ETH) (Zurich, Switzerland), 2002 Research Assistant, MIT Media Laboratory (Cambridge, MA), 1993-1999 Associate Scientist, Speech Systems Group, BBN (Cambridge, MA), 1992-1993 Experience Summary Thad Starner is a wearable computing pioneer, being the first person to advocate wearing a computer as an everyday personal assistant and having done so in his own life since 1993. He is a founder of the MIT Wearable Computing Project and the IEEE Technical Committee on Wearable Information Systems, which supervises the annual International Symposium on Wearable Computers. Professor Starner’s most recent work demonstrates a new speech interface paradigm where the user can control a mobile computer directly through his conversation with another party. Other recent work has shown that desktop typing speeds are achievable on small mobile keypads. Trained in computer vision, Professor Starner’s work on computer recognition of American Sign Language (ASL) is one of the most cited works on gesture recognition. Recent extensions of this work have shown the feasibility of an ASL tutor for deaf children and gesture interfaces appropriate for mobile devices.
    [Show full text]
  • Google Glass
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 02 Issue: 01 | Mar-2015 www.irjet.net p-ISSN: 2395-0072 ADVANCE TECHNOLOGY- GOOGLE GLASS Pooja S. Mankar Computer science & engineering, J.D.I.E.T ---------------------------------------------------------------------***---------------------------------------------------------------------- ABSTRACT- Most of the people who have seen the the Project Glass research and development project,[2] with glasses, but may not allowed speaking publicly; a major the mission of producing a mass-market ubiquitous computer. The frames do not currently have fitted lenses, feature of the glasses was the location information. Google is on the process of considering sunglass retailers Google will be able to capture images to its computers partnership such as Ray-Ban or Warby Parker, wish to open and augmented reality information returns to the person retail shop to try on the device for users. People who wear wearing them through the camera already built-in on the prescription glasses cannot use explorer edition, but Google glasses. For moment, if a person looking at a landmark has confirmed that Glass will be compatible with frames and then he could see historical and detailed information. lenses [3] according to the wearer's prescription and possibly attachable to normal prescription glasses. Google X Also comments about it that their friend’s left. If it’s facial Lab developed this Glass, which has experience with other recognition software becomes moderate and accurate futuristic technologies such as driverless cars. enough, the glasses could remind a wearer and also tells us when and how he met the foggy familiar person standing in front of him at a function or party.
    [Show full text]
  • Google Glass: Project Glass
    International Journal of Application or Innovation in Engineering & Management (IJAIEM) Web Site: www.ijaiem.org Email: [email protected] Volume 3, Issue 10, October 2014 ISSN 2319 - 4847 GOOGLE GLASS: PROJECT GLASS Namrata S. Pathkar1, Neha S. Joshi2 1Department of Computer Science,Gangamai College of Engineering 2 Department of Computer Engineering,Gangamai College of Engineering ABSTRACT Google glass is the futuristic gadgets which lead us to interaction with world through android operating system. Wearable computer in the optical head mounted display (OHMD) has been developing by Google. It can have both the two features virtual reality and augmented reality. It is useful technology for hand free and works on natural language with voice command it use all kinds of user including handicapped or disabled. It consists of 4G technology, android system, eye tap, smart clothing, and wearable computing is this technology used in Google glass. The wearable computing consists of the vision to realize the functionality of android mobiles. Keywords: Android system, Augmented reality, Eye tap, Virtual reality, Wearable computer, 4G technology. 1. INTRODUCTION Google glass is defined as “the program to develop optical head mounted device having wearable computer” [3]. Google is declared the Google glass in April 2012 to use the wearable technology of head mounted display. The Google working to developed in Google glass device on the Google X laboratory. Google has started selling Google glass in US 15 April 2013 for limited period [3][5]. Nepal government is adopted the Google glass in June 2014 for use tracking the location also uses for wild animals and herbs pictures capture to the international park or other parks [5].
    [Show full text]
  • Order Picking Supported by Mobile Computing
    ORDER PICKING SUPPORTED BY MOBILE COMPUTING A Thesis Presented to The Academic Faculty by Hannes Baumann In Partial Fulfillment of the Requirements for the Degree Doctor of Engineering in the Fachbereich 03 Mathematik und Informatik University of Bremen January 2013 ii ORDER PICKING SUPPORTED BY MOBILE COMPUTING Approved by: Michael Lawo, Advisor Fachbereich 03 Mathematik und Informatik University of Bremen Thad Starner GVU Center and School of Interactive Computing Georgia Institute of Technology iv To my son Tom v vi ACKNOWLEDGEMENTS Working on my doctoral thesis was a great and challenging experience and without the help of many kind people I would not have been able to finish. Here I would like to express my thanks to the people that have been most important to me during this period. First of all I want to thank my two supervisors Prof. Michael Lawo and Dr. Thad Starner. Both supported me a lot, and I could always count on them. I could not imagine a better team of supervisors. If I had anything that needed clarification, I could always knock on the office door of Prof. Michael Lawo to get immediate help or the required funds to buy some hardware for the studies. With his positive attitude he motivated me and he also made sure that I kept on course to finish my doctoral thesis. Thad Starner helped me a great deal with his huge knowledge and experience in the wearable computing field. He gave me lots of advice and feedback for preparing the studies and he always helped me with writing and improving the papers (even if that required staying awake all night).
    [Show full text]
  • New Software for Google Glass Provides Captions for Hard-Of-Hearing Users 2 October 2014
    New software for Google Glass provides captions for hard-of-hearing users 2 October 2014 I need and get back into the conversation." Foley's colleague, Professor Thad Starner, leads the Contextual Computing Group working on the project. He says using a smartphone with Glass has several benefits as compared to using Glass by itself. "Glass has its own microphone, but it's designed for the wearer," said Starner, who is also a technical lead for Glass. "The mobile phone puts a microphone directly next to the speaker's mouth, reducing background noise and helping to eliminate errors." Starner says the phone-to-Glass system is helpful because speakers are more likely to construct their Captioning on Glass allows a person to speak into a sentences more clearly, avoiding "uhs" and "ums." phone. The text is then displayed on Glass. Credit: However, if captioning errors are sent to Glass, the Georgia Tech smartphone software also allows the speaker to edit the mistakes, sending the changes to the person wearing the device. A team of Georgia Institute of Technology researchers has created speech-to-text software "The smartphone uses the Android transcription for Google Glass that helps hard-of-hearing users API to convert the audio to text," said Jay with everyday conversations. A hard-of-hearing Zuerndorfer, the Georgia Tech Computer Science person wears Glass while a second person speaks graduate student who developed the software. "The directly into a smartphone. The speech is text is then streamed to Glass in real time." converted to text, sent to Glass and displayed on its heads-up display.
    [Show full text]
  • Software Security > Wearable Computing > Gaming Software
    > Software Security > Wearable Computing > Gaming Software > Robotics and Analytics JUNE 2018 www.computer.org IEEE COMPUTER SOCIETY: Be at the Center of It All IEEE Computer Society membership puts you at the heart of the technology profession—and helps you grow with it. Here are 10 reasons why you need to belong. A robust jobs board, Training that plus videos, articles sharpens your edge and presentations to in Cisco, IT security, help you land that next MS Enterprise, Oracle opportunity. and more. Scholarships awarded to computer science Certifi cations and engineering student and exam preparation members each year. that set you apart. Opportunities to Industry intelligence, get involved through including Computer, myCS, speaking, publishing and Computing Now, and volunteering opportunities. myComputer. Deep discounts Over 200 annual on magazines, journals, conferences and technical conferences, symposia events held worldwide. and workshops. Access to 300-plus chapters hundreds of and more than 30 books, 13 technical technical committees magazines and keep you 20 research journals. connected. IEEE Computer Society—keeping you ahead of the game. Get involved today. www.computer.org/membership IEEE COMPUTER SOCIETY computer.org • +1 714 821 8380 STAFF Editor Managers, Editorial Content Meghan O’Dell Brian Brannon, Carrie Clark Contributing Staff Publisher Christine Anthony, Lori Cameron, Cathy Martin, Chris Nelson, Robin Baldwin Dennis Taylor, Rebecca Torres, Bonnie Wylie Director, Products and Services Production & Design Evan Butterfield Carmen Flores-Garvey Senior Advertising Coordinator Debbie Sims Circulation: ComputingEdge (ISSN 2469-7087) is published monthly by the IEEE Computer Society. IEEE Headquarters, Three Park Avenue, 17th Floor, New York, NY 10016-5997; IEEE Computer Society Publications Office, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720; voice +1 714 821 8380; fax +1 714 821 4010; IEEE Computer Society Headquarters, 2001 L Street NW, Suite 700, Washington, DC 20036.
    [Show full text]
  • Thad Starner
    Thad Starner Professor College of Computing School of Interactive Computing Georgia Institute of Technology Atlanta, GA 30332-0280, USA Printed: March 3, 2019 Complete C.V. Page 1 of 98 Table of Contents EDUCATIONAL BACKGROUND 3 EMPLOYMENT HISTORY 3 CURRENT FIELDS OF INTEREST 4 I. TEACHING 4 A. Courses Taught . 4 B. Curriculum Development . 7 C. Individual Student Guidance . 8 D. Teaching Honors and Awards . 40 II. RESEARCH AND CREATIVE SCHOLARSHIP 41 A. Thesis . 41 B. Published Journal Papers (refereed) . 41 C. Published Books, Parts of Books, and Edited Volumes . 43 C.1. Books . 43 C.2. Chapters in Books . 43 C.3. Edited Volumes . 44 D. Conference Presentations . 45 D.1. Invited Keynote and Distinguished Lecture Addresses . 45 D.2. Conference Presentations with Proceedings (refereed and highly competitive) . 47 D.3. Conference Presentations with Proceedings (refereed) . 55 D.4. Conference Presentations with Proceedings (non-refereed) . 60 D.5. Conference Presentations without Proceedings (abstract refereed) . 61 D.6. Conference tutorials . 62 D.7. Popular Press Essays . 63 D.8. Software and Hardware . 63 D.9. Published Papers (non-refereed) . 64 D.10. Technical Reports (not submitted elsewhere) . 65 D.11. Videos, Demonstrations, and Exhibits . 66 E. Research Proposals and Grants (Principal Investigator) . 68 F. Research Proposals and Grants (Contributor) . 76 G. Research Honors and Awards . 78 III.SERVICE 81 A. Professional Activities . 81 A.1. Memberships and Activities in Professional Societies . 81 A.2. Conference Committee Activities . 82 B. On-Campus Georgia Tech Committees . 83 C. Special Assignments at Georgia Tech . 83 D. External Member of Ph.D. Examining Committees .
    [Show full text]
  • Human-Computer Interfaces for Wearable Computers
    Human-Computer Interfaces for Wearable Computers A Systematic Approach to Development and Evaluation Hendrik Witt Dissertation zur Erlangung des Doktorgrades der Ingenieurwissenschaften Vorgelegt im Fachbereich 3 (Mathematik und Informatik) der Universit¨at Bremen Gutachter: 1. Prof. Dr. Otthein Herzog Universit¨at Bremen (Deutschland), Lehrstuhl fur¨ Kunstliche¨ Intelligenz 2. Prof. Dr. Thad E. Starner Georgia Institute of Technology (USA), Director of Contextual Computing Group Datum des Promotionskolloquiums: 10.12.2007 This research has been partly funded by the European Commission through IST project wearIT@work: Empowering the Mobile Worker by Wearable Computing (No. IP 004216-2004). Preface First of all, I would like to express my sincerest gratitude and thanks to my adviser, Prof. Dr. Otthein Herzog, who provided me with the opportunity to carry out my research. His constant support and the fruitful discussions we had throughout the years have strengthened me as a researcher. I am also very grateful for the extent of freedom he gave me for conducting my research and the financial funding he supplied me with to travel to various international conferences all around the world. Secondly, my gratitude goes to my research committee, Prof. Dr. Thad E. Starner, Prof. Dr. Andreas Breiter, and Prof. Dr. Michael Lawo, for their time, support, and encouragement. I am very proud of winning Thad E. Starner, one of the pioneers of wear- able computing, for my research committee. His enthusiasm about wearable computers and his great experience in that field have motivated and helped me a lot in making my research more concise. Also, I am very thankful to Andreas Breiter and Michael Lawo for their continuous feedback and tips in revising my papers and suggesting ways to tackle problems.
    [Show full text]
  • Tongueboard: an Oral Interface for Subtle Input
    TongueBoard: An Oral Interface for Subtle Input Richard Li, Jason Wu, Thad Starner Google Research & Machine Intelligence Mountain View, CA, USA {lichard,jsonwu,thadstarner}@google.com ABSTRACT 1 INTRODUCTION We present TongueBoard, a retainer form-factor device for Conversational technologies, such as Google Assistant, Siri, recognizing non-vocalized speech. TongueBoard enables ab- and Alexa, facilitate natural and expressive interaction with solute position tracking of the tongue by placing capacitive online services, connected Internet-of-Things (IoT) devices, touch sensors on the roof of the mouth. We collect a dataset and mobile computer interaction. While these conversational of 21 common words from four user study participants (two interfaces are popular due to their ease of use, they often native American English speakers and two non-native speak- rely on speech transcription technology that are ineffective ers with severe hearing loss). We train a classifier that is able in noisy environments, are often socially unacceptable, and to recognize the words with 91.01% accuracy for the native present privacy concerns of the microphone inadvertently speakers and 77.76% accuracy for the non-native speakers in capturing nearby conversations or having nearby listeners a user dependent, offline setting. The native English speak- hearing the user’s commands. ers then participate in a user study involving operating a We present TongueBoard, an oral interface for subtle ges- calculator application with 15 non-vocalized words and two ture interaction and control using silent speech. Tongue- tongue gestures at a desktop and with a mobile phone while Board is a retainer form-factor device that tracks the move- walking.
    [Show full text]