Collecting Provenance Via the Xen Hypervisor
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Industrial Control Via Application Containers: Migrating from Bare-Metal to IAAS
Industrial Control via Application Containers: Migrating from Bare-Metal to IAAS Florian Hofer, Student Member, IEEE Martin A. Sehr Antonio Iannopollo, Member, IEEE Faculty of Computer Science Corporate Technology EECS Department Free University of Bolzano-Bozen Siemens Corporation University of California Bolzano, Italy Berkeley, CA 94704, USA Berkeley, CA 94720, USA fl[email protected] [email protected] [email protected] Ines Ugalde Alberto Sangiovanni-Vincentelli, Fellow, IEEE Barbara Russo Corporate Technology EECS Department Faculty of Computer Science Siemens Corporation University of California Free University of Bolzano-Bozen Berkeley, CA 94704, USA Berkeley, CA 94720, USA Bolzano, Italy [email protected] [email protected] [email protected] Abstract—We explore the challenges and opportunities of control design full authority over the environment in which shifting industrial control software from dedicated hardware to its software will run, it is not straightforward to determine bare-metal servers or cloud computing platforms using off the under what conditions the software can be executed on cloud shelf technologies. In particular, we demonstrate that executing time-critical applications on cloud platforms is viable based on computing platforms due to resource virtualization. Yet, we a series of dedicated latency tests targeting relevant real-time believe that the principles of Industry 4.0 present a unique configurations. opportunity to explore complementing traditional automation Index Terms—Industrial Control Systems, Real-Time, IAAS, components with a novel control architecture [3]. Containers, Determinism We believe that modern virtualization techniques such as application containerization [3]–[5] are essential for adequate I. INTRODUCTION utilization of cloud computing resources in industrial con- Emerging technologies such as the Internet of Things and trol systems. -
Cloud Computing: a Taxonomy of Platform and Infrastructure-Level Offerings David Hilley College of Computing Georgia Institute of Technology
Cloud Computing: A Taxonomy of Platform and Infrastructure-level Offerings David Hilley College of Computing Georgia Institute of Technology April 2009 Cloud Computing: A Taxonomy of Platform and Infrastructure-level Offerings David Hilley 1 Introduction Cloud computing is a buzzword and umbrella term applied to several nascent trends in the turbulent landscape of information technology. Computing in the “cloud” alludes to ubiquitous and inexhaustible on-demand IT resources accessible through the Internet. Practically every new Internet-based service from Gmail [1] to Amazon Web Services [2] to Microsoft Online Services [3] to even Facebook [4] have been labeled “cloud” offerings, either officially or externally. Although cloud computing has garnered significant interest, factors such as unclear terminology, non-existent product “paper launches”, and opportunistic marketing have led to a significant lack of clarity surrounding discussions of cloud computing technology and products. The need for clarity is well-recognized within the industry [5] and by industry observers [6]. Perhaps more importantly, due to the relative infancy of the industry, currently-available product offerings are not standardized. Neither providers nor potential consumers really know what a “good” cloud computing product offering should look like and what classes of products are appropriate. Consequently, products are not easily comparable. The scope of various product offerings differ and overlap in complicated ways – for example, Ama- zon’s EC2 service [7] and Google’s App Engine [8] partially overlap in scope and applicability. EC2 is more flexible but also lower-level, while App Engine subsumes some functionality in Amazon Web Services suite of offerings [2] external to EC2. -
Xen on X86, 15 Years Later
Xen on x86, 15 years later Recent development, future direction QEMU Deprivileging PVShim Panopticon Large guests (288 vcpus) NVDIMM PVH Guests PVCalls VM Introspection / Memaccess PV IOMMU ACPI Memory Hotplug PVH dom0 Posted Interrupts KConfig Sub-page protection Hypervisor Multiplexing Talk approach • Highlight some key features • Recently finished • In progress • Cool Idea: Should be possible, nobody committed to working on it yet • Highlight how these work together to create interesting theme • PVH (with PVH dom0) • KConfig • … to disable PV • PVshim • Windows in PVH PVH: Finally here • Full PVH DomU support in Xen 4.10, Linux 4.15 • First backwards-compatibility hack • Experimental PVH Dom0 support in Xen 4.11 PVH: What is it? • Next-generation paravirtualization mode • Takes advantage of hardware virtualization support • No need for emulated BIOS or emulated devices • Lower performance overhead than PV • Lower memory overhead than HVM • More secure than either PV or HVM mode • PVH (with PVH dom0) • KConfig • … to disable PV • PVshim • Windows in PVH KConfig • KConfig for Xen allows… • Users to produce smaller / more secure binaries • Makes it easier to merge experimental functionality • KConfig option to disable PV entirely • PVH • KConfig • … to disable PV • PVshim • Windows in PVH PVShim • Some older kernels can only run in PV mode • Expect to run in ring 1, ask a hypervisor PV-only kernel (ring 1) to perform privileged actions “Shim” Hypervisor (ring 0) • “Shim”: A build of Xen designed to allow an unmodified PV guest to run in PVH mode -
Secure Service Provisioning in a Public Cloud
Mälardalen University Press Licentiate Theses No. 157 SECURE SERVICE PROVISIONING IN A PUBLIC CLOUD Mudassar Aslam 2012 School of Innovation, Design and Engineering Copyright © Mudassar Aslam, 2012 ISBN 978-91-7485-081-9 ISSN 1651-9256 Printed by Mälardalen University, Västerås, Sweden Populärvetenskaplig sammanfattning Utvecklingen av molntekniker möjliggör utnyttjande av IT-resurser över Internet, och kan innebära många fördelar för såväl företag som privat- personer. Dock innebär denna nya modell för användandet av resurser att säkerhetsfrågor uppstår, frågor som inte existerat i traditionell resur- shantering på datorer. I avhandlingen fokuserar vi på säkerhetsfrågor som rör en användare av molntjänster (t.ex. en organisation, myndighet etc.), när användaren vill leasa molntjänster i form av Virtuella maskiner (VM) från en publik leverantör av Infrastructure-as-a-Service (IaaS). Det finns många säkerhetsområden i molnsystem: att hålla data hemliga, att resurserna är korrekta, att servicen är den utlovade, att säkerheten kan kontrolleras, etc. I denna avhandling fokuserar vi på säkerhetsproblem som resulterar i att tillit saknas mellan aktörerna i molnsystem, och som därmed hindrar säkerhetskänsliga användare från att använda molntjänster. Från en behovsanalys ur säkerhetsperspektiv föreslår vi lösningar som möjliggör tillit i publika IaaS-moln. Våra lösningar rör i huvudsak säker livscykelhantering av virtuella maskiner, inklusive mekanismer för säker start och säker migrering av virtuella maskiner. Lösningarna säkerställer att användarens VM alltid är skyddad i molnet genom att den endast tillåts exekveras på pål- itliga (trusted) plattformar. Detta sker genom att använda tekniker för s.k. trusted computing (pålitlig datoranvändning), vilket innebär att användaren på distans kan kontrollera om plattformen är tillförlitlig eller inte. -
Xen to KVM Migration Guide
SUSE Linux Enterprise Server 12 SP4 Xen to KVM Migration Guide SUSE Linux Enterprise Server 12 SP4 As the KVM virtualization solution is becoming more and more popular among server administrators, many of them need a path to migrate their existing Xen based environments to KVM. As of now, there are no mature tools to automatically convert Xen VMs to KVM. There is, however, a technical solution that helps convert Xen virtual machines to KVM. The following information and procedures help you to perform such a migration. Publication Date: September 24, 2021 Contents 1 Migration to KVM Using virt-v2v 2 2 Xen to KVM Manual Migration 9 3 For More Information 18 4 Documentation Updates 18 5 Legal Notice 18 6 GNU Free Documentation License 18 1 SLES 12 SP4 Important: Migration Procedure Not Supported The migration procedure described in this document is not fully supported by SUSE. We provide it as a guidance only. 1 Migration to KVM Using virt-v2v This section contains information to help you import virtual machines from foreign hypervisors (such as Xen) to KVM managed by libvirt . Tip: Microsoft Windows Guests This section is focused on converting Linux guests. Converting Microsoft Windows guests using virt-v2v is the same as converting Linux guests, except in regards to handling the Virtual Machine Driver Pack (VMDP). Additional details on converting Windows guests with the VMDP can be found in the separate Virtual Machine Driver Pack documentation at https://www.suse.com/documentation/sle-vmdp-22/ . 1.1 Introduction to virt-v2v virt-v2v is a command line tool to convert VM Guests from a foreign hypervisor to run on KVM managed by libvirt . -
Delivery Services Model of Cloud Computing: a Perspective Overview
International Journal of Innovative Computing, Information and Control ICIC International c 2012 ISSN 1349-4198 Volume 8, Number 8, August 2012 pp. 5873{5884 DELIVERY SERVICES MODEL OF CLOUD COMPUTING: A PERSPECTIVE OVERVIEW Feng-Tse Lin and Chieh-Hung Huang Department of Applied Mathematics Chinese Culture University No. 55, Hwa-Kang Road, Yang-Min-Shan, Taipei 111, Taiwan [email protected] Received March 2011; revised August 2011 Abstract. Cloud computing is a consequence of economic, commercial, cultural and technological conditions that have combined to cause a disruptive shift in the IT industry towards a service-based economy. It is a style of computing where massively scalable IT- enabled capabilities are provided as a service over the network and give rise to the \As a Service" business. The evolution of Cloud computing can handle massive data as per on demand service. Supporting this transition is a range of technologies from cluster- ing to virtualization. This study presents an expanded delivery services model of Cloud computing for enterprise and business. The characteristics and the challenges of Cloud computing are analyzed and discussed. The offerings from some Cloud service providers are also outlined. Keywords: Cloud computing, Virtualization, Cloud infrastructure, Cloud services, Everything-as-a-Service 1. Introduction. In the IBM technical white paper of Cloud computing, the concept of Cloud computing has developed from earlier ideas such as grid and utility computing, and aims to provide a completely Internet-driven, dynamic and scalable service-oriented IT environment, which can be accessed from anywhere using any web-capable device [6]. With the Cloud computing technology, user's computer no longer has to do all the heavy computing process or data storage. -
L4 – Virtualization and Beyond
L4 – Virtualization and Beyond Hermann Härtig!," Michael Roitzsch! Adam Lackorzynski" Björn Döbel" Alexander Böttcher! #!Department of Computer Science# "GWT-TUD GmbH # Technische Universität Dresden# 01187 Dresden, Germany # 01062 Dresden, Germany {haertig,mroi,adam,doebel,boettcher}@os.inf.tu-dresden.de Abstract Mac OS X environment, using full hardware After being introduced by IBM in the 1960s, acceleration by the GPU. Virtual machines are virtualization has experienced a renaissance in used to test potentially malicious software recent years. It has become a major industry trend without risking the host environment and they in the server context and is also popular on help developers in debugging crashes with back- consumer desktops. In addition to the well-known in-time execution. benefits of server consolidation and legacy In the server world, virtual machines are used to preservation, virtualization is now considered in consolidate multiple services previously located embedded systems. In this paper, we want to look on dedicated machines. Running them within beyond the term to evaluate advantages and virtual machines on one physical server eases downsides of various virtualization approaches. management and helps saving power by We show how virtualization can be increasing utilization. In server farms, migration complemented or even superseded by modern of virtual machines between servers is used to operating system paradigms. Using L4 as the balance load with the potential of shutting down basis for virtualization and as an advanced completely unloaded servers or adding more to microkernel provides a best-of-both-worlds increase capacity. Lastly, virtual machines also combination. Microkernels can contribute proven isolate different customers who can purchase real-time capabilities and small trusted computing virtual shares of a physical server in a data center. -
Hands on Virtualization Using XEN
VirtualizationWorkshop09 < GridkaSchool09 < TWiki http://www-ekp.physik.uni-karlsruhe.de/~twiki/bin/view/GridkaSchool... Hands On Virtualization using XEN Hands On Virtualization using XEN General Setup The Machine Hardware Host Preparation (Standard UBUNTU XEN Host) Installation of the XEN Packages Modification of the Bootloader GRUB Reboot the Host System Explore Your New XEN dom0 Hardware Host Virtual Machine Preparation Start Your Virtual Machine Working with the Virtual Machines Network Setup on the Host System Start/Stop the Virtual Machines Change the Memory Allocated to the VM High Availability Shared Network Storage Solution Host Preparation Phase Configure the DRBD Device Startup the DRBD Device Setup the Filesystem on the Device Test the DRBD Raid Device Migration of the VMs Advanced tutorial (if you have time left): libvirt usage with XEN Installation of libvirt and tools VM libvirt configuration virsh usage libvirt GUI example "virt-manager" Additional Information General Setup The Machine Hardware The host systems are running Ubuntu 9.04 (Jaunty Jackalope). The following procedures will be possible on most common linux distributions with specific changes to the software installation steps. For Ubuntu we will use the Advanced Packaging Tool ( apt ) similar to Debian . RedHat or SuSE are using rpm or some GUI (Graphical User Interface) installation tool. Each workshop group has access to two hardware hosts: hostname gks- <1/2>-X .fzk.de gks- <1/2>-Y .fzk.de Replace <1/2> and X and Y with the numbers given on the workshop handout. Host Preparation (Standard UBUNTU XEN Host) 1 von 15 16.12.2009 15:13 VirtualizationWorkshop09 < GridkaSchool09 < TWiki http://www-ekp.physik.uni-karlsruhe.de/~twiki/bin/view/GridkaSchool.. -
Lars Kurth Community Manger, Xen Project Chairman, Xen Project Advisory Board Director, Open Source, Citrix Lars Kurth
Lars Kurth Community Manger, Xen Project Chairman, Xen Project Advisory Board Director, Open Source, Citrix lars_kurth Was a contributor to various projects Worked in parallel computing, tools, mobile and now virtualization Long history in change projects Community guy at Symbian Foundation Learned how NOT to do stuff Community guy for the Xen Project Working for Citrix Accountable to Xen Project Advisory Board Chairman of Xen Project Advisory Board 250000 200000 150000 More than 1 Projects Million Today 100000 Projected 50000 0 2006 2008 2010 2012 2014 Source: The 2013 Future of Open Source Survey Results Late 90’s Today Individuals & Hobbyist's Still about Individuals But, a majority are employees Companies have a huge stake Features How many users you have How many vendors back you How you are seen in the press … Different Management Disciplines can help you succeed Neutrality / Perception Support Infrastructure Expertise / Mentoring Vendor Network … BUT: You still need to do all the right things Case Study An Open Source Hypervisor > 10M Users Powering some of the biggest Clouds in Production Amazon Web Services, Rackspace Public Cloud, Terremark, … Several sub-projects Xen Hypervisor (including Xen on ARM), XAPI management tools, Mirage OS Linux Foundation Collaborative Project Sponsored by Amazon Web Services, AMD, Bromium, Calxeda, CA Technologies, Cisco, Citrix, Google, Intel, NetApp, Oracle, Samsung and Verizon 10 years old Four Key Issues Symptoms Consequences for Xen Fixes that were applied Effect this had (there may be others) -
Flexiscale Next Generation Data Centre Management
FlexiScale Next Generation Data Centre Management Gihan Munasinghe Paul Anderson Xcalibre Communications, School of Informatics, Livingston, UK University of Edinburgh, UK [email protected] [email protected] Abstract— Data centres and server farms are rapidly becoming ing”1. Conventionally, this still involves dedicated hardware a key infrastructure component for businesses of all sizes. – as the load increases, more dedicated machines would be However, matching the available resources to the changing level allocated (from a pool of idle machines) and some mechanism of demand is a major challenge. used to “load-balance” between them. FlexiScale is a data centre architecture which is designed to deliver a guaranteed QoS level for the exported services. It does Whilst this approach is a scalable solution, it suffers from a this by autonomically reconfiguring the infrastructure to cater for number of problems. There is still a considerable inefficiency fluctuations in the demand. FlexiScale is based on virtualisation in allocating dedicated servers – at any one time, a large technology which provides location- and hardware-transparent percentage of the machines may be running at a very low services. It currently uses Virtual Iron [2] as the management load average. It can also take a significant time to load and platform, and a XEN-based virtualisation platform [5]. In this paper, we describe our experiences and difficulties in reconfigure additional servers which means that there is quite a implementing the FlexiScale architecture. Phase I is currently in high latency in responding to requests for increased resources. production - this provides a scalable, fault tolerant hardware The use of “virtual machines” is becoming a popular architecture. -
Design of the Next-Generation Securedrop Workstation Freedom of the Press Foundation
1 Design of the Next-Generation SecureDrop Workstation Freedom of the Press Foundation I. INTRODUCTION Whistleblowers expose wrongdoing, illegality, abuse, misconduct, waste, and/or threats to public health or safety. Whistleblowing has been critical for some of the most important stories in the history of investigative journalism, e.g. the Pentagon Papers, the Panama Papers, and the Snowden disclosures. From the Government Accountability Project’s Whistleblower Guide (1): The power of whistleblowers to hold institutions and leaders accountable very often depends on the critical work of journalists, who verify whistleblowers’ disclosures and then bring them to the public. The partnership between whistleblowers and journalists is essential to a functioning democracy. In the United States, shield laws and reporter’s privilege exists to protect the right of a journalist to not reveal the identity of a source. However, under both the Obama and Trump administrations, governments have attempted to identify journalistic sources via court orders to third parties holding journalist’s records. Under the Obama administration, the Associated Press had its telephone records acquired in order to identify a source (2). Under the Trump Administration, New York Times journalist Ali Watkins had her phone and email records acquired by court order (3). If source—journalist communications are mediated by third parties that can be subject to subpoena, source identities can be revealed without a journalist being aware due to a gag that is often associated with such court orders. Sources can face a range of reprisals. These could be personal reprisals such as reputational or relationship damage, or for employees that reveal wrongdoing, loss of employment and career opportunities. -
Paravirtualizing Linux in a Real-Time Hypervisor
Paravirtualizing Linux in a real-time hypervisor Vincent Legout and Matthieu Lemerre CEA, LIST, Embedded Real Time Systems Laboratory Point courrier 172, F-91191 Gif-sur-Yvette, FRANCE {vincent.legout,matthieu.lemerre}@cea.fr ABSTRACT applications written for a fully-featured operating system This paper describes a new hypervisor built to run Linux in a such as Linux. The Anaxagoros design prevent non real- virtual machine. This hypervisor is built inside Anaxagoros, time tasks to interfere with real-time tasks, thus providing a real-time microkernel designed to execute safely hard real- the security foundation to build a hypervisor to run existing time and non real-time tasks. This allows the execution of non real-time applications. This allows current applications hard real-time tasks in parallel with Linux virtual machines to run on Anaxagoros systems without any porting effort, without interfering with the execution of the real-time tasks. opening the access to a wide range of applications. We implemented this hypervisor and compared perfor- Furthermore, modern computers are powerful enough to mances with other virtualization techniques. Our hypervisor use virtualization, even embedded processors. Virtualiza- does not yet provide high performance but gives correct re- tion has become a trendy topic of computer science, with sults and we believe the design is solid enough to guarantee its advantages like scalability or security. Thus we believe solid performances with its future implementation. that building a real-time system with guaranteed real-time performances and dense non real-time tasks is an important topic for the future of real-time systems.