Riemann-Stieltjes Integration

Total Page:16

File Type:pdf, Size:1020Kb

Riemann-Stieltjes Integration Chapter 7 Riemann-Stieltjes Integration Calculus provides us with tools to study nicely behaved phenomena using small discrete increments for information collection. The general idea is to (intelligently) connect information obtained from examination of a phenomenon over a lot of tiny discrete increments of some related quantity to “close in on” or approximate some- thing that behaves in a controlled (i.e., bounded, continuous, etc.) way. The “clos- ing in on” approach is useful only if we can get back to information concerning the phenomena that was originally under study. The bene¿t of this approach is most beautifully illustrated with the elementary theory of integral calculus over U.Iten- ables us to adapt some “limiting” formulas that relate quantities of physical interest to study more realistic situations involving the quantities. Consider three formulas that are encountered frequently in most standard phys- ical science and physics classes at the pre-college level: A l * d r tm d l. Use the space that is provided to indicate what you “know” about these formulas. Our use of these formulas is limited to situations where the quantities on the right are constant. The minute that we are given a shape that is not rectangular, a velocity that varies as a function of time, or a density that is determined by our position in (or on) an object, at ¿rst, we appear to be “out of luck.” However, when the quantities given are well enough behaved, we can obtain bounds on what we 275 276 CHAPTER 7. RIEMANN-STIELTJES INTEGRATION wish to study, by making certain assumptions and applying the known formulas incrementally. Note that except for the units, the formulas are indistinguishable. Consequently, illustrating the “closing in on" or approximating process with any one of them car- ries over to the others, though the physical interpretation (of course) varies. Let’s get this more down to earth! Suppose that you build a rocket launcher as part of a physics project. Your launcher ¿res rockets with an initial velocity of 25 ft/min, and, due to various forces, travels at a rate ) t given by )t 25 t2 ft/min where t is the time given in minutes. We want to know how far the rocket travels in the ¿rst three minutes after launch. The only formula that we have is d r t,but to use it, we need a constant rate of speed. We can make use of the formula to obtain bounds or estimates on the distance travelled. To do this, we can take increments in the time from 0 minutes to 3 minutes and “pick a relevant rate” to compute a bound on the distance travelled in each section of time. For example, over the entire three minutes, the velocity of the rocket is never more that 25 ftmin. What does this tell us about the product 25 ft/min 3min compared to the distance that we seek? How does the product 16 ft/min 3min relate to the distance that we seek? We can improve the estimates by taking smaller increments (subintervals of 0 minutes to 3 minutes) and choosing a different “estimating velocity” on each subin- terval. For example, using increments of 15 minutes and the maximum velocity that is achieved in each subinterval as the estimate for a constant rate through each 7.1. RIEMANN SUMS AND INTEGRABILITY 277 subinterval, yields an estimate of tt u u 9 573 25 ft/min 15min 25 ft/min 15 min ft. 4 8 Excursion 7.0.1 Find the estimate for the distance travelled taking increments of one minute (which is not small for the purposes of calculus) and using the minimum velocity achieved in each subinterval as the “estimating velocity.” ***Hopefully, you obtained 61 feet.*** Notice that none of the work done actually gave us the answer to the original problem. Using Calculus, we can develop the appropriate tools to solve the problem as an appropriate limit. This motivates the development of the very important and useful theory of integration. We start with some formal de¿nitions that enable us to carry the “closing in on process” to its logical conclusion. 7.1 Riemann Sums and Integrability De¿nition 7.1.1 Given a closed interval I [a b],apartition of I is any ¿nite strictly increasing sequence of points S x0 x1xn1 xn such that a x0 and b xn.Themesh of the partition x0 x1xn1 xn is de¿ned by b c mesh S max x j x j1 1n jnn dEach partitione of I, x0 x1xn1 xn , decomposes I into n subintervals I j x j1 x j ,j 1 2 n, such that I j D Ik x j if and only if k j 1 and is empty for k / jork/ j 1. Each such decomposition of I into subintervals is called a subdivision of I. Notation 7.1.2 Given a partition Sb c x0 x1xnb1 xn of anc interval I [a b], the two notations x j and ( I j will be used for x j x j1 , the length of the j th subinterval in the partition. The symbol or I will be used to denote an arbitrary subdivision of an interval I. 278 CHAPTER 7. RIEMANN-STIELTJES INTEGRATION If f is a function whose domain contains the closed interval I and f is bounded on the interval I , we know that f has both a least upper bound and a greatest lower bound on I as well as on each interval of any subdivision of I. De¿nition 7.1.3 Given a function f that is bounded and de¿nedontheintervald e I and a partition S x0 x1xn1 xn of I, let I j x j1 x j ,Mj sup f x and m j inf f x for j 1 2n. Then the upper Riemann sum of x+I x+I j j f with respect to the partition S, denoted by U S f ,isde¿ned by ;n U S f M j x j j1 and the lower Riemann sum of f with respect to the partition S, denoted by L S f ,isde¿ned by ;n L S f m j x j j1 b c where x j x j x j1 . Notation 7.1.4 With the subdivision notation the upper and lower Riemann sums for f are denoted by U f and L f , respectively. | } 1 1 3 Example 7.1.5 For f x 2x 1 in I [0 1] and S 0 1 , t u t 4 2u4 1 3 5 9 1 3 5 7 U S f 2 3 and L S f 1 2 . 4 2 2 4 4 2 2 4 0 , for x + TD [0 2] Example 7.1.6 For g x 1 , for x + TD [0 2] U I g 2 and L I g 0 for any subdivision of [0 2]. To build on the motivation that constructed some Riemann sums to estimate a distance travelled, we want to introduce the idea of re¿ning or adding points to partitions in an attempt to obtain better estimates. 7.1. RIEMANN SUMS AND INTEGRABILITY 279 De¿nition 7.1.7 For a partition Sk x0 x1 xk1 xk of an interval I [a b],letk denote to corresponding subdivision of [a b].IfSn and Sm are partitions of [a b] having n 1 and m 1 points, respectively, and Sn t Sm, then Sm is a re¿nement of Sn or m is a re¿nement of n. If the partitions Sn and Sm are independently chosen, then the partition Sn C Sm is a common re¿nement of Sn and Sm and the resulting Sn C Sm is called a common re¿nement of n and m. | } | } 1 3 1 1 1 5 3 Excursion 7.1.8 Let S 0 1 and S` 0 1 . 2 4 4 3 2 8 4 ` ` (a) If and are the subdivisions|v w v of I w v[0 1]w}that correspond S and S , 1 1 3 3 respectively, then 0 1 .Find`. 2 2 4 4 v w v w v w 1 1 3 3 (b) Set I 0 ,I ,andI 1 .Fork 1 2 3,letk be 1 2 2 2 4 3 4 ` the subdivision of Ik that consists of all the elements of that are contained in Ik.Find k for k 1 2 and 3. (c) For f x x2 and the notation established in parts (a) and (b), ¿nd each of the following. (i) m inf f x x+I 280 CHAPTER 7. RIEMANN-STIELTJES INTEGRATION (ii) m j inf f x for j 1 2 3 x+I j | } (iii) m` inf inf f x : J + j j x+J (iv) M sup f x x+I (v) M j sup f x for j 1 2 3 x+I j | } ` + (vi) M j sup sup f x : J j x+J ` ` (d) Note how the values m, m j ,mj ,M,Mj , and M j compare. What you ob- served is a special case of the general situation. Let S x0 a x1 xn1 xn b be a partition of an interval I [a b], be the corresponding subdivision of [a b] and S` denote a re¿nement of S with corresponding subdivision de- ` noted by .Fork 1 2 n, let k be the subdivision of Ik consisting ` of the elements of that are contained in Ik. Justify each of the following claims for any function that is de¿ned and bounded on I.
Recommended publications
  • Riemann Sums Fundamental Theorem of Calculus Indefinite
    Riemann Sums Partition P = {x0, x1, . , xn} of an interval [a, b]. ck ∈ [xk−1, xk] Pn R(f, P, a, b) = k=1 f(ck)∆xk As the widths ∆xk of the subintervals approach 0, the Riemann Sums hopefully approach a limit, the integral of f from a to b, written R b a f(x) dx. Fundamental Theorem of Calculus Theorem 1 (FTC-Part I). If f is continuous on [a, b], then F (x) = R x 0 a f(t) dt is defined on [a, b] and F (x) = f(x). Theorem 2 (FTC-Part II). If f is continuous on [a, b] and F (x) = R R b b f(x) dx on [a, b], then a f(x) dx = F (x) a = F (b) − F (a). Indefinite Integrals Indefinite Integral: R f(x) dx = F (x) if and only if F 0(x) = f(x). In other words, the terms indefinite integral and antiderivative are synonymous. Every differentiation formula yields an integration formula. Substitution Rule For Indefinite Integrals: If u = g(x), then R f(g(x))g0(x) dx = R f(u) du. For Definite Integrals: R b 0 R g(b) If u = g(x), then a f(g(x))g (x) dx = g(a) f( u) du. Steps in Mechanically Applying the Substitution Rule Note: The variables do not have to be called x and u. (1) Choose a substitution u = g(x). du (2) Calculate = g0(x). dx du (3) Treat as if it were a fraction, a quotient of differentials, and dx du solve for dx, obtaining dx = .
    [Show full text]
  • The Definite Integrals of Cauchy and Riemann
    Ursinus College Digital Commons @ Ursinus College Transforming Instruction in Undergraduate Analysis Mathematics via Primary Historical Sources (TRIUMPHS) Summer 2017 The Definite Integrals of Cauchy and Riemann Dave Ruch [email protected] Follow this and additional works at: https://digitalcommons.ursinus.edu/triumphs_analysis Part of the Analysis Commons, Curriculum and Instruction Commons, Educational Methods Commons, Higher Education Commons, and the Science and Mathematics Education Commons Click here to let us know how access to this document benefits ou.y Recommended Citation Ruch, Dave, "The Definite Integrals of Cauchy and Riemann" (2017). Analysis. 11. https://digitalcommons.ursinus.edu/triumphs_analysis/11 This Course Materials is brought to you for free and open access by the Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) at Digital Commons @ Ursinus College. It has been accepted for inclusion in Analysis by an authorized administrator of Digital Commons @ Ursinus College. For more information, please contact [email protected]. The Definite Integrals of Cauchy and Riemann David Ruch∗ August 8, 2020 1 Introduction Rigorous attempts to define the definite integral began in earnest in the early 1800s. A major motivation at the time was the search for functions that could be expressed as Fourier series as follows: 1 a0 X f (x) = + (a cos (kw) + b sin (kw)) where the coefficients are: (1) 2 k k k=1 1 Z π 1 Z π 1 Z π a0 = f (t) dt; ak = f (t) cos (kt) dt ; bk = f (t) sin (kt) dt. 2π −π π −π π −π P k Expanding a function as an infinite series like this may remind you of Taylor series ckx from introductory calculus, except that the Fourier coefficients ak; bk are defined by definite integrals and sine and cosine functions are used instead of powers of x.
    [Show full text]
  • On the Approximation of Riemann-Liouville Integral by Fractional Nabla H-Sum and Applications L Khitri-Kazi-Tani, H Dib
    On the approximation of Riemann-Liouville integral by fractional nabla h-sum and applications L Khitri-Kazi-Tani, H Dib To cite this version: L Khitri-Kazi-Tani, H Dib. On the approximation of Riemann-Liouville integral by fractional nabla h-sum and applications. 2016. hal-01315314 HAL Id: hal-01315314 https://hal.archives-ouvertes.fr/hal-01315314 Preprint submitted on 12 May 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On the approximation of Riemann-Liouville integral by fractional nabla h-sum and applications L. Khitri-Kazi-Tani∗ H. Dib y Abstract First of all, in this paper, we prove the convergence of the nabla h- sum to the Riemann-Liouville integral in the space of continuous functions and in some weighted spaces of continuous functions. The connection with time scales convergence is discussed. Secondly, the efficiency of this approximation is shown through some Cauchy fractional problems with singularity at the initial value. The fractional Brusselator system is solved as a practical case. Keywords. Riemann-Liouville integral, nabla h-sum, fractional derivatives, fractional differential equation, time scales convergence MSC (2010). 26A33, 34A08, 34K28, 34N05 1 Introduction The numerous applications of fractional calculus in the mathematical modeling of physical, engineering, economic and chemical phenomena have contributed to the rapidly growing of this theory [12, 19, 21, 18], despite the discrepancy on definitions of the fractional operators leading to nonequivalent results [6].
    [Show full text]
  • Using the TI-89 to Find Riemann Sums
    Using the TI-89 to find Riemann sums Z b If function f is continuous on interval [a, b], f(x) dx exists and can be approximated a using either of the Riemann sums n n X X f(xi)∆x or f(xi−1)∆x i=1 i=1 (b−a) where ∆x = n and n is the number of subintervals chosen. The first of these Riemann sums evaluates function f at the right endpoint of each subinterval; the second evaluates at the left endpoint of each subinterval. n X P To evaluate f(xi) using the TI-89, go to F3 Calc and select 4: ( sum i=1 The command line should then be completed in the following form: P (f(xi), i, 1, n) The actual Riemann sum is then determined by multiplying this ans by ∆x (or incorpo- rating this multiplication into the same command line.) [Warning: Be sure to set the MODE as APPROXIMATE in this case. Otherwise, the calculator will spend an inordinate amount of time attempting to express each term of the summation in exact symbolic form.] Z 4 √ Example: To approximate 1 + x3 dx using Riemann sums with n = 100 subinter- 2 b−a 2 i vals, note first that ∆x = n = 100 = .02. Also xi = 2 + i∆x = 2 + 50 . So the right endpoint approximation will be found by entering √ P( (2 + (1 + i/50)∧3), i, 1, 100) × .02 which gives 10.7421. This is an overestimate, since the function is increasing on the given interval. To find the left endpoint approximation, replace i by (i − 1) in the square root part of the command.
    [Show full text]
  • Fractional Calculus
    Generalised Fractional Calculus Penelope Drastik Supervised by Marianito Rodrigo September 2018 Outline 1. Integration 2. Fractional Calculus 3. My Research Riemann sum: P tagged partition, f :[a; b] ! R n X S(f ; P) = f (ti )(xi − xi−1) i=1 The Riemann sum Partition of [a; b]: Non-overlapping intervals which cover [a; b] a = x0 < x1 < ··· < xi−1 < xi < ··· xn = b Tagged partition of [a; b]: Intervals in partition paired with tag points n P = f([xi−1; xi ]; ti )gi=1 The Riemann sum Partition of [a; b]: Non-overlapping intervals which cover [a; b] a = x0 < x1 < ··· < xi−1 < xi < ··· xn = b Tagged partition of [a; b]: Intervals in partition paired with tag points n P = f([xi−1; xi ]; ti )gi=1 Riemann sum: P tagged partition, f :[a; b] ! R n X S(f ; P) = f (ti )(xi − xi−1) i=1 The Riemann integral R b a f (x)dx = A means that: For all " > 0, there exists δ" > 0 such that if a tagged partition P satisfies 0 < xi − xi−1 < δ" for i = 1;:::; n then jS(f ; P) − Aj < " The Generalised Riemann integral R b a f (x)dx = A means that: For all " > 0, there exists a strictly positive function δ" :[a; b] ! R+ such that if a tagged partition P satisfies ti 2 [xi−1; xi ] ⊆ [ti − δ(ti ); ti + δ(ti )] for i = 1;:::; n then jS(f ; P) − Aj < " Riemann-Stieltjes integral: R b a f (x)dα(x) = A means that: For all " > 0, there exists δ" > 0 such that if a tagged partition P satisfies 0 < xi − xi−1 < δ" for i = 1;:::; n then jS(f ; P; α) − Aj < " The Riemann-Stieltjes integral Riemann-Stieltjes sum of f : Integrator α : I ! R, partition P n X S(f ; P; α) = f (ti )[α(xi
    [Show full text]
  • 1.1 Limits: an Informal View 4.1 Areas and Sums
    Chapter 4 Integrals from Calculus: Concepts & Computation by David Betounes and Mylan Redfern | 2016 Copyright | 9781524917692 Property of Kendall Hunt Publishing 4.1 Areas and Sums 257 4 Integrals Calculus Concepts & Computation 1.1 Limits: An Informal View 4.1 Areas and Sums > with(code_ch4,circle,parabola);with(code_ch1sec1); [circle, parabola] [polygonlimit, secantlimit] This chapter begins our study of the integral calculus, which is the counter-part to the differential calculus you learned in Chapters 1–3. The topic of integrals, otherwise known as antiderivatives, was introduced in Section 3.7, and you should The General Area Problem read that discussion before continuing here. A major application of antiderivatives, or integrals, is the measurement of areas of planar regions D. In fact, a principal motive behind the invention of the integral calculus was to solve the area problem. See Figure 4.1.1. D Before we learn how to measure areas of such general regions D, it is best to think about the areas of simple regions, and, indeed, reflect on the very notion of what is meant by “area.” This we discuss here. Then, in the next two sections, Sections 4.2 and 4.3 , we look at the details of measuring areas of regions “beneath the graphs of continuous functions.” Then in Section 5.1 we tackle the task of finding area of more complicated regions, such as the region D in Figure 4.4.1. We have intuitive notions about what is meant by the area of a region. It is a positive Find the area Figure 4.1.1: number A which somehow measures the “largeness” of the region and enables us of the region D bounded by a to compare regions with different shapes.
    [Show full text]
  • Evaluation of Engineering & Mathematics Majors' Riemann
    Paper ID #14461 Evaluation of Engineering & Mathematics Majors’ Riemann Integral Defini- tion Knowledge by Using APOS Theory Dr. Emre Tokgoz, Quinnipiac University Emre Tokgoz is currently an Assistant Professor of Industrial Engineering at Quinnipiac University. He completed a Ph.D. in Mathematics and a Ph.D. in Industrial and Systems Engineering at the University of Oklahoma. His pedagogical research interest includes technology and calculus education of STEM majors. He worked on an IRB approved pedagogical study to observe undergraduate and graduate mathe- matics and engineering students’ calculus and technology knowledge in 2011. His other research interests include nonlinear optimization, financial engineering, facility allocation problem, vehicle routing prob- lem, solar energy systems, machine learning, system design, network analysis, inventory systems, and Riemannian geometry. c American Society for Engineering Education, 2016 Evaluation of Engineering & Mathematics Majors' Riemann Integral Definition Knowledge by Using APOS Theory In this study senior undergraduate and graduate mathematics and engineering students’ conceptual knowledge of Riemann’s definite integral definition is observed by using APOS (Action-Process- Object-Schema) theory. Seventeen participants of this study were either enrolled or recently completed (i.e. 1 week after the course completion) a Numerical Methods or Analysis course at a large Midwest university during a particular semester in the United States. Each participant was asked to complete a questionnaire consisting of calculus concept questions and interviewed for further investigation of the written responses to the questionnaire. The research question is designed to understand students’ ability to apply Riemann’s limit-sum definition to calculate the definite integral of a specific function. Qualitative (participants’ interview responses) and quantitative (statistics used after applying APOS theory) results are presented in this work by using the written questionnaire and video recorded interview responses.
    [Show full text]
  • A Discrete Method to Solve Fractional Optimal Control Problems
    A Discrete Method to Solve Fractional Optimal Control Problems∗ Ricardo Almeida Delfim F. M. Torres [email protected] [email protected] Center for Research and Development in Mathematics and Applications (CIDMA) Department of Mathematics, University of Aveiro, 3810–193 Aveiro, Portugal Abstract We present a method to solve fractional optimal control problems, where the dynamic depends on integer and Caputo fractional derivatives. Our approach consists to approximate the initial fractional order problem with a new one that involves integer derivatives only. The latter problem is then discretized, by application of finite differences, and solved numerically. We illustrate the effectiveness of the procedure with an example. Mathematics Subject Classification 2010: 26A33, 49M25. Keywords: fractional calculus, fractional optimal control, direct methods. 1 Introduction The fractional calculus deals with differentiation and integration of arbitrary (noninteger) order [15]. It has received an increasing interest due to the fact that fractional operators are defined by natural phenomena [3]. A particularly interesting, and very active, research area is that of the fractional optimal control, where the dynamic control system involves not only integer order derivatives but fractional operators as well [9, 14]. Such fractional problems are difficult to solve and numerical methods are often applied, which have proven to be efficient and reliable [1, 4, 5, 8, 13]. Typically, using an approximation for the fractional operators, the fractional optimal control problem is rewritten arXiv:1403.5060v2 [math.OC] 23 Oct 2016 into a new one, that depends on integer derivatives only [2, 12]. Then, using necessary optimality conditions, the problem is reduced to a system of ordinary differential equations and, by finding its solution, one approximates the solution to the original fractional problem [12].
    [Show full text]
  • The Generalized Riemann Integral Robert M
    AMS / MAA THE CARUS MATHEMATICAL MONOGRAPHS VOL AMS / MAA THE CARUS MATHEMATICAL MONOGRAPHS VOL 20 20 The Generalized Riemann Integral Robert M. McLeod The Generalized Riemann Integral The Generalized The Generalized Riemann Integral is addressed to persons who already have an acquaintance with integrals they wish to extend and to the teachers of generations of students to come. The organization of the Riemann Integral work will make it possible for the rst group to extract the principal results without struggling through technical details which they may nd formidable or extraneous to their purposes. The technical level starts low at the opening of each chapter. Thus, readers may follow Robert M. McLeod each chapter as far as they wish and then skip to the beginning of the next. To readers who do wish to see all the details of the arguments, they are given. The generalized Riemann integral can be used to bring the full power of the integral within the reach of many who, up to now, haven't gotten a glimpse of such results as monotone and dominated conver- gence theorems. As its name hints, the generalized Riemann integral is de ned in terms of Riemann sums. The path from the de nition to theorems exhibiting the full power of the integral is direct and short. AMS / MAA PRESS 4-color Process 290 pages spine: 9/16" finish size: 5.5" X 8.5" 50 lb stock 10.1090/car/020 THE GENERALIZED RIEMANN INTEGRAL By ROBERT M. McLEOD THE CARUS MATHEMATICAL MONOGRAPHS Published by THE MATHEMATICAL ASSOCIATION OF AMERICA Committee on Publications E.
    [Show full text]
  • Theta Functions and Weighted Theta Functions of Euclidean Lattices, with Some Applications
    Theta functions and weighted theta functions of Euclidean lattices, with some applications Noam D. Elkies1 March, 2009 0. Introduction and overview [...] 1. Lattices in Rn: basic terminology, notations, and examples By “Euclidean space” of dimension n we mean a real vector space of dimension n, equipped with a positive-definite inner product , . We usually call such a space “Rn” even when there is no distinguished choiceh· of·i coordinates. A lattice in Rn is a discrete co-compact subgroup L Rn, that is, a discrete sub- ⊂ group such that the quotient Rn/L is compact (and thus necessarily homeomorphic with the n-torus (R/Z)n). As an abstract group L is thus isomorphic with the free abelian group Zn of rank n. Therefore L is determined by the images, call them v ,...,v , of the standard generators of Zn under a group isomorphism Zn ∼ L. 1 n → We say the vi generate, or are generators of, L: each vector in L can be written as n a v for some unique integers a ,...,a . Vectors v ,...,v Rn generate i=1 i i 1 n 1 n ∈ a lattice if and only if they constitute an R-linear basis for Rn, and then L is the ZP-span of this basis. For instance, the Z-span of the standard orthonormal basis n n e1,...,en of R is the lattice Z . This more concrete definition is better suited for explicit computation, but less canonical because most lattices have no canonical choice of generators even up to isometries of Rn.
    [Show full text]
  • RIEMANN-STIELTJES INTEGRALS. Given Bounded Functions
    RIEMANN-STIELTJES INTEGRALS. Given bounded functions f; g :[a; b] ! R and a partition P = fx0 = a; x1; : : : ; xn = bg of [a; b], and a `tagging' tk 2 [xk−1; xk], form the Riemann- Stieltjes sum for the tagged partition P ∗: n ∗ X Sg(f; P ) = f(tk)[g(xk) − g(xk−1)]: k=1 If the limit of these sums (as the mesh jjP jj ! 0) exists, we set: Z b ∗ fdg = lim Sg(f; P ): a jjP jj!0 R b Theorem 1. If f 2 C[a; b] and g 2 BV [a; b], a fdg exists. Proof. If is enough to assume g is increasing (why?) Given a partition P , form the Darboux-type sums: n n − X + X Sg (f; P ) = (inf f)[g(xk)−g(xk−1)];Sg (f; P ) = (sup f)[g(xk)−g(xk−1)]; Ik k=1 k=1 Ik where Ik = [xk−1; xk]. Clearly for any `tagging' ftkg, we have: − ∗ + ∗ Sg (f; P ) ≤ Sg(f; P ) ≤ Sg (f; P ): Given > 0, from uniform continuity of f we may find δ > 0 so that the oscillation oscIk f (sup minus inf) is smaller than , over each interval of − a partition with mesh less than δ. Let I = supP Sg (f; P ) (sup over all partitions). We have: ∗ + − X jSg(f; P )−Ij ≤ Sg (f; P )−Sg (f; P ) ≤ (oscIk f)[g(xk)−g(xk−1)] ≤ (g(b)−g(a): k R b − + This shows a fdg exists, and equals supP Sg (f; P ) (or infP Sg (f; P )), if g is increasing.
    [Show full text]
  • Master's Project COMPUTATIONAL METHODS for the RIEMANN
    Master's Project COMPUTATIONAL METHODS FOR THE RIEMANN ZETA FUNCTION under the guidance of Prof. Frank Massey Department of Mathematics and Statistics The University of Michigan − Dearborn Matthew Kehoe [email protected] In partial fulfillment of the requirements for the degree of MASTER of SCIENCE in Applied and Computational Mathematics December 19, 2015 Acknowledgments I would like to thank my supervisor, Dr. Massey, for his help and support while completing the project. I would also like to thank all of the professors at the University of Michigan − Dearborn who continually teach mathematics. Many authors, including Andrew Odlyzko, Glen Pugh, Ken Takusagawa, Harold Edwards, and Aleksandar Ivic assisted me by writing articles and books about the Riemann zeta function. I am also grateful to the online communities of Stack Overflow and Mathematics Stack Exchange. Both of these communities assisted me in my studies and are helpful for all students. i Abstract The purpose of this project is to explore different computational methods for the Riemann zeta function. Modern analysis shows that a variety of different methods have been used to compute values for the zeta function and its zeroes. I am looking to develop multiple programs that will find non-trivial zeroes and specific function values. All computer implementations have been done inside the Java programming language. One could easily transfer the programs written inside the appendix to their preferred programming language. My main motivation for writing these programs is because I am interested in learning more about the mathematics behind the zeta function and its zeroes. The zeta function is an extremely important part of mathematics and is formally denoted by ζ(s).
    [Show full text]