The Quark Gluon Plasma: Lattice Computations Put to Experimental Test
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The “Hot” Science of RHIC Status and Future
The “Hot” Science of RHIC Status and Future Berndt Mueller Brookhaven National Laboratory Associate Laboratory Director for Nuclear and Particle Physics BSA Board Meeting BNL, 29 March 2013 Friday, April 5, 13 RHIC: A Discovery Machine Polarized Jet Target (PHOBOS) 12:00 o’clock 10:00 o’clock (BRAHMS) 2:00 o’clock RHIC PHENIX 8:00 o’clock RF 4:00 o’clock STAR 6:00 o’clock LINAC EBIS NSRL Booster BLIP AGS Tandems Friday, April 5, 13 RHIC: A Discovery Machine Polarized Jet Target (PHOBOS) 12:00 o’clock 10:00 o’clock (BRAHMS) 2:00 o’clock RHIC PHENIX 8:00 o’clock RF 4:00 o’clock STAR 6:00 o’clock LINAC EBIS NSRL Booster BLIP AGS Tandems Pioneering Perfectly liquid quark-gluon plasma; Polarized proton collider Friday, April 5, 13 RHIC: A Discovery Machine Polarized Jet Target (PHOBOS) 12:00 o’clock 10:00 o’clock (BRAHMS) 2:00 o’clock RHIC PHENIX 8:00 o’clock RF 4:00 o’clock STAR 6:00 o’clock LINAC EBIS NSRL Booster BLIP Versatile AGS Wide range of: beam energies ion species polarizations Tandems Pioneering Perfectly liquid quark-gluon plasma; Polarized proton collider Friday, April 5, 13 RHIC: A Discovery Machine Polarized Jet Target (PHOBOS) 12:00 o’clock 10:00 o’clock (BRAHMS) 2:00 o’clock RHIC PHENIX 8:00 o’clock RF 4:00 o’clock STAR 6:00 o’clock LINAC EBIS NSRL Booster BLIP Versatile AGS Wide range of: beam energies ion species polarizations Tandems Pioneering Productive >300 refereed papers Perfectly liquid >30k citations quark-gluon plasma; >300 Ph.D.’s in 12 years Polarized proton collider productivity still increasing Friday, April 5, 13 Detector Collaborations 559 collaborators from 12 countries 540 collaborators from 12 countries 3 Friday, April 5, 13 RHIC explores the Phases of Nuclear Matter LHC: High energy collider at CERN with 13.8 - 27.5 ?mes higher Beam energy: PB+PB, p+PB, p+p collisions only. -
Plasma Physics and Pulsars
Plasma Physics and Pulsars On the evolution of compact o bjects and plasma physics in weak and strong gravitational and electromagnetic fields by Anouk Ehreiser supervised by Axel Jessner, Maria Massi and Li Kejia as part of an internship at the Max Planck Institute for Radioastronomy, Bonn March 2010 2 This composition was written as part of two internships at the Max Planck Institute for Radioastronomy in April 2009 at the Radiotelescope in Effelsberg and in February/March 2010 at the Institute in Bonn. I am very grateful for the support, expertise and patience of Axel Jessner, Maria Massi and Li Kejia, who supervised my internship and introduced me to the basic concepts and the current research in the field. Contents I. Life-cycle of stars 1. Formation and inner structure 2. Gravitational collapse and supernova 3. Star remnants II. Properties of Compact Objects 1. White Dwarfs 2. Neutron Stars 3. Black Holes 4. Hypothetical Quark Stars 5. Relativistic Effects III. Plasma Physics 1. Essentials 2. Single Particle Motion in a magnetic field 3. Interaction of plasma flows with magnetic fields – the aurora as an example IV. Pulsars 1. The Discovery of Pulsars 2. Basic Features of Pulsar Signals 3. Theoretical models for the Pulsar Magnetosphere and Emission Mechanism 4. Towards a Dynamical Model of Pulsar Electrodynamics References 3 Plasma Physics and Pulsars I. The life-cycle of stars 1. Formation and inner structure Stars are formed in molecular clouds in the interstellar medium, which consist mostly of molecular hydrogen (primordial elements made a few minutes after the beginning of the universe) and dust. -
From High-Energy Heavy-Ion Collisions to Quark Matter Episode I : Let the Force Be with You
From High-Energy Heavy-Ion Collisions to Quark Matter Episode I : Let the force be with you Carlos Lourenço, CERN CERN, August, 2007 1/41 The fundamental forces and the building blocks of Nature Gravity • one “charge” (mass) • force decreases with distance m1 m2 Electromagnetism (QED) Atom • two “charges” (+/-) • force decreases with distance + - + + 2/41 Atomic nuclei and the strong “nuclear” force The nuclei are composed of: quark • protons (positive electric charge) • neutrons (no electric charge) They do not blow up thanks to the neutron “strong nuclear force” • overcomes electrical repulsion • determines nuclear reactions • results from the more fundamental colour force (QCD) → acts on the colour charge of quarks (and gluons!) → it is the least well understood force in Nature proton 3/41 Confinement: a crucial feature of QCD We can extract an electron from an atom by providing energy electron nucleus neutral atom But we cannot get free quarks out of hadrons: “colour” confinement ! quark-antiquark pair created from vacuum quark Strong colour field “white” π0 “white” proton 2 EnergyE grows = mc with separation! (confined quarks) (confined quarks) “white” proton 4/41 Quarks, Gluons and the Strong Interaction A proton is a composite object No one has ever seen a free quark; made of quarks... QCD is a “confining gauge theory” and gluons V(r) kr “Confining” r 4 α − s 3 r “Coulomb” 5/41 A very very long time ago... quarks and gluons were “free”. As the universe cooled down, they got confined into hadrons and have remained imprisoned ever -
Hydrodynamic Models for Heavy-Ion Collisions, and Beyond
Symposium on Fundamental Issues in Fundamental Issues in Elementary Matter (2000) 000–000 Elementary Matter Bad Honnef, Germany September 25–29, 2000 Hydrodynamic Models for Heavy-Ion Collisions, and beyond A. Dumitru1,a, J. Brachmann2, E.S. Fraga3, W. Greiner2, A.D. Jackson4, J.T. Lenaghan4, O. Scavenius4, H. St¨ocker2 1 Physics Dept., Columbia Univ., 538 W. 120th Street, New York, NY 10027, USA 2 Institut f¨ur Theor. Physik, J.W. Goethe Univ., Robert-Mayer Str. 10, 60054 Frankfurt, Germany 3 Brookhaven National Laboratory, Upton, NY 11973, USA 4 The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark Abstract. A generic property of a first-order phase transition in equilibrium,andin the limit of large entropy per unit of conserved charge, is the smallness of the isentropic speed of sound in the “mixed phase”. A specific prediction is that this should lead to a non-isotropic momentum distribution of nucleons in the reaction plane (for energies ∼ 40A GeV in our model calculation). On the other hand, we show that from present effective theories for low-energy QCD one does not expect the thermal transition rate between various states of the effective potential to be much larger than the expansion rate, questioning the applicability of the idealized Maxwell/Gibbs construction. Ex- perimental data could soon provide essential information on the dynamicsof the phase transition. 1. Introduction arXiv:nucl-th/0010107 v1 31 Oct 2000 Heavy-ion collisions at high energy are devoted mainly to the study of strongly interact- ing matter at high temperature and density. In particular, a major focus is the search for observables related to restoration of chiral symmetry and deconfinement, as predicted by lattice QCD to occur at high temperature, and in thermodynamical equilibrium [ 1]. -
Surprises from the Search for Quark-Gluon Plasma?* When Was Quark-Gluon Plasma Seen?
Surprises from the search for quark-gluon plasma?* When was quark-gluon plasma seen? Richard M. Weiner Laboratoire de Physique Théorique, Univ. Paris-Sud, Orsay and Physics Department, University of Marburg The historical context of the recent results from high energy heavy ion reactions devoted to the search of quark-gluon plasma (QGP) is reviewed, with emphasis on the surprises encountered. The evidence for QGP from heavy ion reactions is compared with that available from particle reactions. Keywords: Quark-Gluon plasma in particle and nuclear reactions, hydrodynamics, equation of state, confinement, superfluidity. 1. Evidence for QGP in the Pre-SPS Era Particle Physics 1.1 The mystery of the large number of degrees of freedom 1.2 The equation of state 1.2.1 Energy dependence of the multiplicity 1.2.2 Single inclusive distributions Rapidity and transverse momentum distributions Large transverse momenta 1.2.3 Multiplicity distributions 1.3 Global equilibrium: the universality of the hadronization process 1.3.1 Inclusive distributions 1.3.2 Particle ratios -------------------------------------------------------------------------------------- *) Invited Review 1 Heavy ion reactions A dependence of multiplicity Traces of QGP in low energy heavy ion reactions? 2. Evidence for QGP in the SPS-RHIC Era 2.1 Implications of observations at SPS for RHIC 2.1.1 Role of the Equation of State in the solutions of the equations of hydrodynamics 2.1.2 Longitudinal versus transverse expansion 2.1.3 Role of resonances in Bose-Einstein interferometry; the Rout/Rside ratio 2.2 Surprises from RHIC? 2.2.1 HBT puzzle? 2.2.2 Strongly interacting quark-gluon plasma? Superfluidity and chiral symmetry Confinement and asymptotic freedom Outlook * * * In February 2000 spokespersons from the experiments on CERN’s Heavy Ion programme presented “compelling evidence for the existence of a new state of matter in which quarks, instead of being bound up into more complex particles such as protons and neutrons, are liberated to roam freely…”1. -
Lattice Investigations of the QCD Phase Diagram
Lattice investigations of the QCD phase diagram Dissertation ERSI IV TÄ N T U · · W E U P H P C E S I R T G A R L E B · 1· 972 by Jana Gunther¨ Major: Physics Matriculation number: 821980 Supervisor: Prof. Dr. Z. Fodor Hand in date: 15. December 2016 Die Dissertation kann wie folgt zitiert werden: urn:nbn:de:hbz:468-20170213-111605-3 [http://nbn-resolving.de/urn/resolver.pl?urn=urn%3Anbn%3Ade%3Ahbz%3A468-20170213-111605-3] Lattice investigations of the QCD phase diagram Acknowledgement Acknowledgement I want to thank my advisor Prof. Dr. Z. Fodor for the opportunity to work on such fascinating topics. Also I want to thank Szabolcs Borsanyi for his support and the discussions during the last years, as well as for the comments on this thesis. In addition I want to thank the whole Wuppertal group for the friendly working atmosphere. I also thank all my co-authors for the joint work in the various projects. Special thanks I want to say to Lukas Varnhorst and my family for their support throughout my whole studies. I gratefully acknowledge the Gauss Centre for Supercomputing (GCS) for providing computing time for a GCS Large-Scale Project on the GCS share of the supercomputer JUQUEEN [1] at Julich¨ Supercomputing Centre (JSC). GCS is the alliance of the three national supercomputing centres HLRS (Universit¨at Stuttgart), JSC (Forschungszentrum Julich),¨ and LRZ (Bayerische Akademie der Wissenschaften), funded by the German Federal Ministry of Education and Research (BMBF) and the German State Ministries for Research of Baden-Wurttemberg¨ (MWK), Bayern (StMWFK) and Nordrhein-Westfalen (MIWF). -
STATUS of the THEORY of QCD PLASMA BL1L—3 52 94 Joseph I, Kapusta Physics Department Brookhaven National Laboratory Upton, New York 11973
BNL-35294 STATUS OF THE THEORY OF QCD PLASMA BL1L—3 52 94 Joseph I, Kapusta Physics Department Brookhaven National Laboratory Upton, New York 11973 DISCLAIMER This report was prepared as an account of work sponsored hy an agency of the United States Government Neither the United States Government nor any agency thereof, nor any of thair employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- mendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. *Pennanent address: School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 The submitted manuscript has been authored under contract DE-AC02-76CH00016 with the U.S. Department of Energy. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. DJSTR/BUTION OF 7H/S OOCWMENr IS UNLIMITED STATUS OF THE THEORY OF QCD PLASMA Joseph I. Kapusta Physics Department Brookhaven National Laboratory Upton, New York 11973 ABSTRACT There is mounting evidence, based on many theoretical approaches, that color is deconfined and chiral symmetry is restored at temperatures greater Chan about 200 MeV. -
Lecture 24. Degenerate Fermi Gas (Ch
Lecture 24. Degenerate Fermi Gas (Ch. 7) We will consider the gas of fermions in the degenerate regime, where the density n exceeds by far the quantum density nQ, or, in terms of energies, where the Fermi energy exceeds by far the temperature. We have seen that for such a gas μ is positive, and we’ll confine our attention to the limit in which μ is close to its T=0 value, the Fermi energy EF. ~ kBT μ/EF 1 1 kBT/EF occupancy T=0 (with respect to E ) F The most important degenerate Fermi gas is 1 the electron gas in metals and in white dwarf nε()(),, T= f ε T = stars. Another case is the neutron star, whose ε⎛ − μ⎞ exp⎜ ⎟ +1 density is so high that the neutron gas is ⎝kB T⎠ degenerate. Degenerate Fermi Gas in Metals empty states ε We consider the mobile electrons in the conduction EF conduction band which can participate in the charge transport. The band energy is measured from the bottom of the conduction 0 band. When the metal atoms are brought together, valence their outer electrons break away and can move freely band through the solid. In good metals with the concentration ~ 1 electron/ion, the density of electrons in the electron states electron states conduction band n ~ 1 electron per (0.2 nm)3 ~ 1029 in an isolated in metal electrons/m3 . atom The electrons are prevented from escaping from the metal by the net Coulomb attraction to the positive ions; the energy required for an electron to escape (the work function) is typically a few eV. -
Condensation of Bosons with Several Degrees of Freedom Condensación De Bosones Con Varios Grados De Libertad
Condensation of bosons with several degrees of freedom Condensación de bosones con varios grados de libertad Trabajo presentado por Rafael Delgado López1 para optar al título de Máster en Física Fundamental bajo la dirección del Dr. Pedro Bargueño de Retes2 y del Prof. Fernando Sols Lucia3 Universidad Complutense de Madrid Junio de 2013 Calificación obtenida: 10 (MH) 1 [email protected], Dep. Física Teórica I, Universidad Complutense de Madrid 2 [email protected], Dep. Física de Materiales, Universidad Complutense de Madrid 3 [email protected], Dep. Física de Materiales, Universidad Complutense de Madrid Abstract The condensation of the spinless ideal charged Bose gas in the presence of a magnetic field is revisited as a first step to tackle the more complex case of a molecular condensate, where several degrees of freedom have to be taken into account. In the charged bose gas, the conventional approach is extended to include the macroscopic occupation of excited kinetic states lying in the lowest Landau level, which plays an essential role in the case of large magnetic fields. In that limit, signatures of two diffuse phase transitions (crossovers) appear in the specific heat. In particular, at temperatures lower than the cyclotron frequency, the system behaves as an effectively one-dimensional free boson system, with the specific heat equal to (1/2) NkB and a gradual condensation at lower temperatures. In the molecular case, which is currently in progress, we have studied the condensation of rotational levels in a two–dimensional trap within the Bogoliubov approximation, showing that multi–step condensation also occurs. -
Exploring Fundamental Physics with Neutron Stars
EXPLORING FUNDAMENTAL PHYSICS WITH NEUTRON STARS PIERRE M. PIZZOCHERO Dipartimento di Fisica, Università degli Studi di Milano, and Istituto Nazionale di Fisica Nucleare, sezione di Milano, Via Celoria 16, 20133 Milano, Italy ABSTRACT In this lecture, we give a First introduction to neutron stars, based on Fundamental physical principles. AFter outlining their outstanding macroscopic properties, as obtained From observations, we inFer the extreme conditions oF matter in their interiors. We then describe two crucial physical phenomena which characterize compact stars, namely the gravitational stability of strongly degenerate matter and the neutronization of nuclear matter with increasing density, and explain how the Formation and properties of neutron stars are a direct consequence oF the extreme compression of matter under strong gravity. Finally, we describe how multi-wavelength observations of diFFerent external macroscopic Features (e.g. maximum mass, surface temperature, pulsar glitches) can give invaluable inFormation about the exotic internal microscopic scenario: super-dense, isospin-asymmetric, superFluid, bulk hadronic matter (probably deconFined in the most central regions) which can be Found nowhere else in the Universe. Indeed, neutrons stars represent a unique probe to study the properties of the low-temperature, high-density sector of the QCD phase diagram. Moreover, binary systems of compact stars allow to make extremely precise measurements of the properties of curved space-time in the strong Field regime, as well as being efFicient sources oF gravitational waves. I – INTRODUCTION Neutron stars are probably the most exotic objects in the Universe: indeed, they present extreme and quite unique properties both in their macrophysics, controlled by the long-range gravitational and electromagnetic interactions, and in their microphysics, controlled by the short-range weak and strong nuclear interactions. -
Neutron(Stars(( Degenerate(Compact(Objects(
Neutron(Stars(( Accre.ng(Compact(Objects6(( see(Chapters(13(and(14(in(Longair((( Degenerate(Compact(Objects( • The(determina.on(of(the( internal(structures(of(white( dwarfs(and(neutron(stars( depends(upon(detailed( knowledge(of(the(equa.on(of( state(of(the(degenerate( electron(and(neutron(gases( Degneracy(and(All(That6(Longair(pg(395(sec(13.2.1%( • In(white&dwarfs,(internal(pressure(support(is(provided(by(electron( degeneracy(pressure(and(their(masses(are(roughly(the(mass(of(the( Sun(or(less( • the(density(at(which(degeneracy(occurs(in(the(non6rela.vis.c(limit(is( propor.onal(to(T&3/2( • This(is(a(quantum(effect:(Heisenberg(uncertainty(says(that δpδx>h/2π# • Thus(when(things(are(squeezed(together(and(δx(gets(smaller((the( momentum,(p,(increases,(par.cles(move(faster(and(thus(have(more( pressure( • (Consider(a(box6(with(a(number(density,n,(of(par.cles(are(hiSng(the( wall;the(number(of(par.cles(hiSng(the(wall(per(unit(.me(and(area(is( 1/2nv(( • the(momentum(per(unit(.me(and(unit(area((Pressure)(transferred(to( the(wall(is(2nvp;(P~nvp=(n/m)p2((m(is(mass(of(par.cle)( Degeneracy6(con.nued( • The(average(distance(between(par.cles(is(the(cube(root(of(the( number(density(and(if(the(momentum(is(calculated(from(the( Uncertainty(principle(p~h/(2πδx)~hn1/3# • and(thus(P=h2n5/3/m6(if(we(define(ma[er(density(as(ρ=[n/m](then( • (P~(ρ5/3(%independent%of%temperature%% • Dimensional(analysis(gives(the(central(pressure(as%P~GM2/r4( • If(we(equate(these(we(get(r~M61/3(e.q%a%degenerate%star%gets%smaller% as%it%gets%more%massive%% • At(higher(densi.es(the(material(gets('rela.vis.c'(e.g.(the(veloci.es( -
Strangeness and the Quark-Gluon Plasma: Thirty Years of Discovery∗
Vol. 43 (2012) ACTA PHYSICA POLONICA B No 4 STRANGENESS AND THE QUARK-GLUON PLASMA: THIRTY YEARS OF DISCOVERY∗ Berndt Müller Department of Physics, Duke University, Durham, NC 27708, USA (Received December 27, 2011) I review the role of strange quarks as probes of hot QCD matter. DOI:10.5506/APhysPolB.43.761 PACS numbers: 12.38.Mh, 25.75.Nq, 25.75.Dw 1. The quark-gluon plasma: a strange state of matter Strange quarks play a crucial role in shaping the phase diagram of QCD matter (see Fig.1): • The mass ms of the strange quark controls the nature of the chiral and deconfinement transition in baryon symmetric QCD matter [1]. As a consequence, ms also influences the position of the critical point in the QCD phase diagram, if one exists. • The mass of the strange quark has an important effect on the stability limit of neutron stars and on the possible existence of a quark core in collapsed stars [2]. • Strange quarks enable the formation of a color–flavor locked, color superconducting quark matter phase at high baryon chemical potential and low temperature by facilitating the symmetry breaking SU(3)F × SU(3)C ! SU(3)F +C [3]. Strange quarks are also excellent probes of the structure of QCD matter because: • they are hard to produce at temperatures below Tc since their effective mass is much larger than Tc when chiral symmetry is broken, but easy to produce at temperatures above Tc since the current mass of the strange quark ms ≈ 100 MeV < Tc; ∗ Presented at the Conference “Strangeness in Quark Matter 2011”, Kraków, Poland, September 18–24, 2011.