GLOSSARY of SOLAR-TERRESTRIAL TERMS a a Index
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modelling Quasi-Periodic Pulsations in Solar and Stellar Flares
Space Sci Rev (2018) 214:45 https://doi.org/10.1007/s11214-018-0478-5 Modelling Quasi-Periodic Pulsations in Solar and Stellar Flares J.A. McLaughlin1 · V. M . N a k a r i a ko v 2,3,4 · M. Dominique5 · P. Jelínek6 · S. Takasao7 Received: 19 May 2017 / Accepted: 24 January 2018 / Published online: 6 February 2018 © The Author(s) 2018. This article is published with open access at Springerlink.com Abstract Solar flare emission is detected in all EM bands and variations in flux density of solar energetic particles. Often the EM radiation generated in solar and stellar flares shows a pronounced oscillatory pattern, with characteristic periods ranging from a fraction of a second to several minutes. These oscillations are referred to as quasi-periodic pulsa- tions (QPPs), to emphasise that they often contain apparent amplitude and period modu- lation. We review the current understanding of quasi-periodic pulsations in solar and stel- lar flares. In particular, we focus on the possible physical mechanisms, with an emphasis on the underlying physics that generates the resultant range of periodicities. These physi- cal mechanisms include MHD oscillations, self-oscillatory mechanisms, oscillatory recon- nection/reconnection reversal, wave-driven reconnection, two loop coalescence, MHD flow B J.A. McLaughlin [email protected] V.M. Nakariakov [email protected] M. Dominique [email protected] P. Jelínek [email protected] S. Takasao [email protected] 1 Northumbria University, Newcastle upon Tyne, NE1 8ST, UK 2 Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL, UK 3 School of Space Research, Kyung Hee University, Yongin, 446-701, Gyeonggi, Korea 4 St. -
Doc.10100.Space Weather Manual FINAL DRAFT Version
Doc 10100 Manual on Space Weather Information in Support of International Air Navigation Approved by the Secretary General and published under his authority First Edition – 2018 International Civil Aviation Organization TABLE OF CONTENTS Page Chapter 1. Introduction ..................................................................................................................................... 1-1 1.1 General ............................................................................................................................................... 1-1 1.2 Space weather indicators .................................................................................................................... 1-1 1.3 The hazards ........................................................................................................................................ 1-2 1.4 Space weather mitigation aspects ....................................................................................................... 1-3 1.5 Coordinating the response to a space weather event ......................................................................... 1-3 Chapter 2. Space Weather Phenomena and Aviation Operations ................................................................. 2-1 2.1 General ............................................................................................................................................... 2-1 2.2 Geomagnetic storms .......................................................................................................................... -
Solar Radius Determined from PICARD/SODISM Observations and Extremely Weak Wavelength Dependence in the Visible and the Near-Infrared
A&A 616, A64 (2018) https://doi.org/10.1051/0004-6361/201832159 Astronomy c ESO 2018 & Astrophysics Solar radius determined from PICARD/SODISM observations and extremely weak wavelength dependence in the visible and the near-infrared M. Meftah1, T. Corbard2, A. Hauchecorne1, F. Morand2, R. Ikhlef2, B. Chauvineau2, C. Renaud2, A. Sarkissian1, and L. Damé1 1 Université Paris Saclay, Sorbonne Université, UVSQ, CNRS, LATMOS, 11 Boulevard d’Alembert, 78280 Guyancourt, France e-mail: [email protected] 2 Université de la Côte d’Azur, Observatoire de la Côte d’Azur (OCA), CNRS, Boulevard de l’Observatoire, 06304 Nice, France Received 23 October 2017 / Accepted 9 May 2018 ABSTRACT Context. In 2015, the International Astronomical Union (IAU) passed Resolution B3, which defined a set of nominal conversion constants for stellar and planetary astronomy. Resolution B3 defined a new value of the nominal solar radius (RN = 695 700 km) that is different from the canonical value used until now (695 990 km). The nominal solar radius is consistent with helioseismic estimates. Recent results obtained from ground-based instruments, balloon flights, or space-based instruments highlight solar radius values that are significantly different. These results are related to the direct measurements of the photospheric solar radius, which are mainly based on the inflection point position methods. The discrepancy between the seismic radius and the photospheric solar radius can be explained by the difference between the height at disk center and the inflection point of the intensity profile on the solar limb. At 535.7 nm (photosphere), there may be a difference of 330 km between the two definitions of the solar radius. -
On the Structure of Polar Faculae on the Sun
A&A 425, 321–331 (2004) Astronomy DOI: 10.1051/0004-6361:20041120 & c ESO 2004 Astrophysics On the structure of polar faculae on the Sun O. V. Okunev1,2 and F. Kneer1 1 Universitäts-Sternwarte, Geismarlandstr. 11, 37083 Göttingen, Germany e-mail: [Kneer;olok]@uni-sw.gwdg.de 2 Central Astronomical Observatory at Pulkovo, 196140 St. Petersburg, Russia Received 20 April 2004 / Accepted 25 May 2004 Abstract. Faculae on the polar caps of the Sun, in short polar faculae (PFe), are investigated. They take part in the magnetic solar cycle. Here, we study the fine structures of PFe, their magnetic fields and their dynamics on short time scales. The observations stem from several periods in 2001 and 2002. They consist of spectropolarimetric data (Stokes I and V) taken in the Fe 6301.5 and 6302.5 Å and Fe 6149.3 Å lines with the Gregory-Coudé Telescope (GCT) and the Vacuum Tower Telescope (VTT) at the Observatorio del Teide on Tenerife. At the VTT, the “Göttingen” two-dimensional Fabry-Perot spectrometer was used. It allows image reconstruction with speckle methods resulting in spatial resolution of approximately 0. 25 for broadband images and 0. 5 for magnetograms. The application of singular value decomposition yielded a polarimetric detection limit of −3 |V|≈2 × 10 Ic.WefindthatPFe,ofsizeof1 or larger, possess substantial fine structure of both brightness and magnetic fields. The brightness and the location of polar facular points change noticeably within 50 s. The facular points have strong, kilo-Gauss magnetic fields, they are unipolar with the same polarity as the global, poloidal magnetic field. -
Sphere Confusion: a Textual Reconstruction of Instruments and Observational Practice in First-Millennium CE China Daniel Patrick Morgan
Sphere confusion: a textual reconstruction of instruments and observational practice in first-millennium CE China Daniel Patrick Morgan To cite this version: Daniel Patrick Morgan. Sphere confusion: a textual reconstruction of instruments and observa- tional practice in first-millennium CE China . Centaurus, Wiley, 2016, 58 (1-2), pp.87-103. halshs- 01374805v3 HAL Id: halshs-01374805 https://halshs.archives-ouvertes.fr/halshs-01374805v3 Submitted on 4 Oct 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License Centaurus, 58.1 (2016) Sphere Confusion: a Textual Reconstruction of Astronomical Instruments and Observational Practice in First-millennium CE China * Daniel Patrick MORGAN Abstract: This article examines the case of an observational and demonstration- al armillary sphere confused, one for the other, by fifth-century historians of astronomy He Chengtian and Shen Yue. Seventh-century historian Li Chunfeng dismisses them as ignorant, supplying the reader with additional evidence. Using their respective histories and what sources for the history of early imperial ar- millary instruments survive independent thereof, this article tries to explain the mix-up by exploring the ambiguities of ‘observation’ (guan) as it was mediated through terminology, text, materiality and mathematics. -
2. Astrophysical Constants and Parameters
2. Astrophysical constants 1 2. ASTROPHYSICAL CONSTANTS AND PARAMETERS Table 2.1. Revised May 2010 by E. Bergren and D.E. Groom (LBNL). The figures in parentheses after some values give the one standard deviation uncertainties in the last digit(s). Physical constants are from Ref. 1. While every effort has been made to obtain the most accurate current values of the listed quantities, the table does not represent a critical review or adjustment of the constants, and is not intended as a primary reference. The values and uncertainties for the cosmological parameters depend on the exact data sets, priors, and basis parameters used in the fit. Many of the parameters reported in this table are derived parameters or have non-Gaussian likelihoods. The quoted errors may be highly correlated with those of other parameters, so care must be taken in propagating them. Unless otherwise specified, cosmological parameters are best fits of a spatially-flat ΛCDM cosmology with a power-law initial spectrum to 5-year WMAP data alone [2]. For more information see Ref. 3 and the original papers. Quantity Symbol, equation Value Reference, footnote speed of light c 299 792 458 m s−1 exact[4] −11 3 −1 −2 Newtonian gravitational constant GN 6.674 3(7) × 10 m kg s [1] 19 2 Planck mass c/GN 1.220 89(6) × 10 GeV/c [1] −8 =2.176 44(11) × 10 kg 3 −35 Planck length GN /c 1.616 25(8) × 10 m[1] −2 2 standard gravitational acceleration gN 9.806 65 m s ≈ π exact[1] jansky (flux density) Jy 10−26 Wm−2 Hz−1 definition tropical year (equinox to equinox) (2011) yr 31 556 925.2s≈ π × 107 s[5] sidereal year (fixed star to fixed star) (2011) 31 558 149.8s≈ π × 107 s[5] mean sidereal day (2011) (time between vernal equinox transits) 23h 56m 04.s090 53 [5] astronomical unit au, A 149 597 870 700(3) m [6] parsec (1 au/1 arc sec) pc 3.085 677 6 × 1016 m = 3.262 ...ly [7] light year (deprecated unit) ly 0.306 6 .. -
Estimate of Plasma Temperatures Across a CME-Driven Shock from a Comparison Between EUV and Radio Data
Solar Phys (2020) 295:124 https://doi.org/10.1007/s11207-020-01686-0 Estimate of Plasma Temperatures Across a CME-Driven Shock from a Comparison Between EUV and Radio Data Federica Frassati1 · Salvatore Mancuso1 · Alessandro Bemporad1 Received: 9 March 2020 / Accepted: 6 August 2020 / Published online: 8 September 2020 © The Author(s) 2020 Abstract In this work, we analyze the evolution of an EUV wave front associated with a solar eruption that occurred on 30 October 2014, with the aim of investigating, through differential emission measure (DEM) analysis, the physical properties of the plasma com- pressed and heated by the accompanying shock wave. The EUV wave was observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) and was accompanied by the detection of a metric Type II burst observed by ground-based radio spectrographs. The EUV signature of the shock wave was also detected in two of the AIA channels centered at 193 Å and 211 Å as an EUV intensity enhancement propagating ahead of the associated CME. The density compression ratio X of the shock as inferred from the analysis of the EUV data is X ≈ 1.23, in agreement with independent estimates obtained from the analysis of the Type II band-splitting of the radio data and inferred by adopting the upstream–downstream interpretation. By applying the Rankine–Hugoniot jump conditions under the hypothesis of a perpendicular shock, we also estimate the temperature ratio as TD/TU ≈ 1.55 and the post-shock temperature as TD ≈ 2.75 MK. The modest compression ratio and temperature jump derived from the EUV analysis at the shock passage are typical of weak coronal shocks. -
Trajectory Coordinate System Information We Have Calculated the New Horizons Trajectory and Full State Vector Information in 11 Different Coordinate Systems
Trajectory Coordinate System Information We have calculated the New Horizons trajectory and full state vector information in 11 different coordinate systems. Below we describe the coordinate systems, and in the next section we describe the trajectory file format. Heliographic Inertial (HGI) This system is Sun centered with the X-axis along the intersection line of the ecliptic (zero longitude occurs at the +X-axis) and solar equatorial planes. The Z-axis is perpendicular to the solar equator, and the Y-axis completes the right-handed system. This coordinate system is also referred to as the Heliocentric Inertial (HCI) system. Heliocentric Aries Ecliptic Date (HAE-DATE) This coordinate system is heliocentric system with the Z-axis normal to the ecliptic plane and the X-axis pointes toward the first point of Aries on the Vernal Equinox, and the Y- axis completes the right-handed system. This coordinate system is also referred to as the Solar Ecliptic (SE) coordinate system. The word “Date” refers to the time at which one defines the Vernal Equinox. In this case the date observation is used. Heliocentric Aries Ecliptic J2000 (HAE-J2000) This coordinate system is heliocentric system with the Z-axis normal to the ecliptic plane and the X-axis pointes toward the first point of Aries on the Vernal Equinox, and the Y- axis completes the right-handed system. This coordinate system is also referred to as the Solar Ecliptic (SE) coordinate system. The label “J2000” refers to the time at which one defines the Vernal Equinox. In this case it is defined at the J2000 date, which is January 1, 2000 at noon. -
Abd Al-Rahman Al-Sufi and His Book of the Fixed Stars: a Journey of Re-Discovery
ResearchOnline@JCU This file is part of the following reference: Hafez, Ihsan (2010) Abd al-Rahman al-Sufi and his book of the fixed stars: a journey of re-discovery. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/28854/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/28854/ 5.1 Extant Manuscripts of al-Ṣūfī’s Book Al-Ṣūfī’s ‘Book of the Fixed Stars’ dating from around A.D. 964, is one of the most important medieval Arabic treatises on astronomy. This major work contains an extensive star catalogue, which lists star co-ordinates and magnitude estimates, as well as detailed star charts. Other topics include descriptions of nebulae and Arabic folk astronomy. As I mentioned before, al-Ṣūfī’s work was first translated into Persian by al-Ṭūsī. It was also translated into Spanish in the 13th century during the reign of King Alfonso X. The introductory chapter of al-Ṣūfī’s work was first translated into French by J.J.A. Caussin de Parceval in 1831. However in 1874 it was entirely translated into French again by Hans Karl Frederik Schjellerup, whose work became the main reference used by most modern astronomical historians. In 1956 al-Ṣūfī’s Book of the fixed stars was printed in its original Arabic language in Hyderabad (India) by Dārat al-Ma‘aref al-‘Uthmānīa. -
National Space Weather Program Implementation Plan, 2Nd Edition, July 2000
National Space Weather Program Implementation Plan, 2nd Edition, July 2000 http://www.ofcm.gov/ The National Space Weather Program The Implementation Plan 2nd Edition July 2000 National Space Weather Program Implementation Plan, 2nd Edition, July 2000 http://www.ofcm.gov/ NATIONAL SPACE WEATHER PROGRAM COUNCIL Mr. Samuel P. Williamson, Chairman Federal Coordinator Dr. David L. Evans Department of Commerce Colonel Michael A. Neyland, USAF Department of Defense Mr. Robert E. Waldron Department of Energy Mr. James F. Devine Department of the Interior Mr. David Whatley Department of Transportation Dr. Edward J. Weiler National Aeronautics and Space Administration Dr. Margaret S. Leinen National Science Foundation Lt Col Michael R. Babcock, USAF, Executive Secretary Office of the Federal Coordinator for Meteorological Services and Supporting Research National Space Weather Program Implementation Plan, 2nd Edition, July 2000 http://www.ofcm.gov/ NATIONAL SPACE WEATHER PROGRAM Implementation Plan 2nd Edition Prepared by the Committee for Space Weather for the National Space Weather Program Council Office of the Federal Coordinator for Meteorology FCM-P31-2000 Washington, DC July 2000 National Space Weather Program Implementation Plan, 2nd Edition, July 2000 http://www.ofcm.gov/ National Space Weather Program Implementation Plan, 2nd Edition, July 2000 http://www.ofcm.gov/ FOREWORD We are pleased to present this Second Edition of the National Space Weather Program Implementation Plan. We published the program's Strategic Plan in 1995 and the first Implementation Plan in 1997. In the intervening period, we have made tremendous progress toward our goals but much work remains to be accomplished to achieve our ultimate goal of providing the space weather observations, forecasts, and warnings needed by our Nation. -
Comprehensive Characterization of Solar Eruptions with Remote and In-Situ Observations, and Modeling: the Major Solar Events on 4 November 2015
Solar Physics DOI: 10.1007/•••••-•••-•••-••••-• Comprehensive Characterization of Solar Eruptions With Remote and In-Situ Observations, and Modeling: The Major Solar Events on 4 November 2015 Iver H. Cairns?1 · Kamen A. Kozarev2 · Nariaki V. Nitta3 · Neus Agueda4 · Markus Battarbee5,6 · Eoin P. Carley7 · Nina Dresing8 · Ra´ulG´omez-Herrero9 · Karl-Ludwig Klein10 · David Lario11,12 · Jens Pomoell13 · Carolina Salas-Matamoros10,14 · Astrid M. Veronig15 · Bo Li1 · Patrick McCauley1 B Iver H. Cairns? [email protected],+61 2 9351 3961 Kamen A. Kozarev [email protected] Nariaki V. Nitta [email protected] Neus Agueda [email protected] Markus Battarbee [email protected] Eoin P. Carley [email protected] Nina Dresing [email protected] Ra´ulG´omez-Herrero [email protected] Karl-Ludwig Klein [email protected] David Lario [email protected] Jens Pomoell jens.pomoell@helsinki.fi Carolina Salas-Matamoros [email protected] Astrid M. Veronig arXiv:1910.03319v1 [astro-ph.SR] 8 Oct 2019 [email protected] Bo Li [email protected] SOLA: overview_51_8Oct19.tex; 9 October 2019; 0:35; p. 1 ISSI team: I.H. Cairns et al. c Springer •••• Abstract Solar energetic particles (SEPs) are an important product of solar activity. They are connected to solar active regions and flares, coronal mass ejections (CMEs), EUV waves, shocks, Type II and III radio emissions, and X- ray bursts. These phenomena are major probes of the partition of energy in solar eruptions, as well as for the organization, dynamics, and relaxation of coronal and interplanetary magnetic fields. -
I. ASYMMETRY of ECLIPSES. CALENDAR CYCLES Igor Taganov & Ville-V.E
I. ASYMMETRY OF ECLIPSES. CALENDAR CYCLES Igor Taganov & Ville-V.E. Saari 1.1 Metaphysics of solar eclipses p. 12 1.2 Calendar cycles of solar eclipses p. 20 Literature p. 26 To describe the two main types of solar eclipses in modern astronomy the old Latin terms – umbra, antumbra and penumbra are still used (Fig. 1.1). A “partial eclipse” (c. 35 %) occurs when the Sun and Moon are not exactly in line and the Moon only partially obscures the Sun. The term “central eclipse” (c. 65 %) is often used as a generic term for eclipses when the Sun and Moon are exactly in line. The strict definition of a central eclipse is an eclipse, during which the central line of the Moon’s umbra touches the Earth’s surface. However, extremely rare the part of the Moon’s umbra intersects with Earth, producing an annular or total eclipse, but not its central line. Such event is called a “non-central” total or annular eclipse [2]. Fig. 1.1. Main types of solar eclipses The central solar eclipses are subdivided into three main groups: a “total eclipse” (c. 27 %) occurs when the dark silhouette of the Moon completely obscures the Sun; an “annular eclipse” (c. 33 %) occurs when the Sun and Moon are exactly in line, but the apparent size of the Moon is smaller than that of the Sun; a “hybrid eclipse” or annular/total eclipse (c. 5 %) at certain sites on the Earth’s surface appears as a total eclipse, whereas at other sites it looks as annular.