Exokernel: an Operating System Architecture for Application-Level Resource Management

Total Page:16

File Type:pdf, Size:1020Kb

Exokernel: an Operating System Architecture for Application-Level Resource Management Exokernel: an operating system architecture for application-level resource management Dawson R. Engler, M. Frans Kaashoek and James O'Toole Jr. M.I.T. Laboratory for Computer Science Cambridge, MA 02139 engler,kaashoek,james ¡ @lcs.mit.edu March 24, 1995 Abstract management that is strongly centralized. Centralized man- agement can con¯ict with application needs, limiting both We describe an operating system architecture that securely performance and ¯exibility. We believe these problems can multiplexes machine resources while permitting an unprece- be solved through distributed, application-level, resource dented degree of application-speci®c customization of tradi- management. To this end, we have designed a kernel that se- tional operating system abstractions. By abstracting physical curely multiplexes machine resources and permits traditional hardware resources, traditional operating systems have sig- operation system abstractions to be implemented ef®ciently ni®cantly limited the performance, ¯exibility, and function- at application-level, so that they can easily be extended, spe- ality of applications. The exokernel architecture removes cialized, or even replaced. these limitations by allowing untrusted software to imple- Traditionally, operating systems hide information about ment traditional operating system abstractions entirely at machine resources behind high-level core abstractions, application-level. choosing particular implementations of abstractions such as We have implemented a prototype exokernel-based sys- processes, ®le system storage, address spaces, inter-process tem that includes Aegis, an exokernel, and ExOS, an un- communication, exception handling, etc. Core abstractions trusted application-level operating system. Aegis de®nes de®ne a virtual machine on which applications execute, and the low-level interface to machine resources. Applications their implementation cannot be replaced by untrusted appli- can allocate and use machine resources, ef®ciently handle cations. We believe that ®xing the implementations of these events, and participate in resource revocation. Measure- traditional operating system abstractions is unacceptable be- ments show that most primitive Aegis operations are 10±100 cause this denies applications the advantages of domain- times faster than Ultrix,a mature monolithic UNIX operating speci®c optimizations. More important, it restricts the ¯ex- system. ExOS implements processes, virtual memory, and ibility of application builders in adding new resource ab- inter-process communication abstractions entirely within a stractions to the operating system because they must resort library. Measurements show that ExOS's application-level to emulating the new abstraction on top of high-level core virtual memory and IPC primitives are 5±50 times faster abstractions. than Ultrix's primitives. These results demonstrate that the Substantial evidence exists that applications can bene®t exokernel operating system design is practical and offers an greatly from having more control over how machine re- excellent combination of performance and ¯exibility. sources are used to implement higher-level abstractions. Ap- pel et al. [4] reported that the high cost of general-purpose virtual memory primitives reduces the performance of persis- 1 Introduction tent stores, garbage collectors, and distributed shared mem- ory systems. Cao et al. demonstrated that application-level Operating systems de®ne the interface between applications control over ®le caching can reduce the number of I/O op- and physical resources. Unfortunately, this interface can erations by up to 80% [9]. Cheriton et al. [21] and Krueger signi®cantly limit the performance and implementation free- et al. [25] showed how application-speci®c virtual mem- dom of applications. This problem arises because the op- ory policies can increase application performance. Stone- erating system abstracts the details of hardware resources braker [43] demonstrated that inappropriate ®le-system im- to provide a more portable and more full-featured interface plementation decisions can have a dramatic impact on the than is directly implemented by the hardware. The end result performance of databases. Thekkath et al. [45] showed that of such a full-featured interface is an approach to resource by deferring signal handling to applications the cost of ex- ceptions can be reduced by an order of magnitude. This work was supported in part by the Advanced Research Projects Agency under contracts N00014-94-1-0985 and by a NSF National Young We have designed a new operating system architecture in Investigator Award. which traditional operating system abstractions are imple- 1 DRAFT COPY Ð Do not distribute or cite. 2 mented entirely at application level by untrusted software. In summarize performance measurements of Aegis and ExOS this architecture, an exokernel securely multiplexes available (Sections 4 and 5), discuss global optimizations (Section 6), hardware resources. Using the exokernel, applications can summarize related work (Section 7), and report our conclu- securely bind to machine resources, ef®ciently handle events, sions (Section 8). and participate in a resource revocation protocol. The ex- okernel interface is very low-level and can be implemented extremely ef®ciently. Library operating systems, working 2 Motivation for Exokernels above the exokernel interface, implement higher-level ab- stractions and can de®ne special-purpose implementations Traditionally, operating systems have centralized resource that best meet the performance and functionality goals of management in a set of core abstractions that cannot be spe- applications. cialized, extended, or replaced. Whether provided by the We have implemented a prototype exokernel-based system kernel or by trusted user-level servers, these core abstrac- that includes an exokernel (Aegis) and an untrusted library tions are implemented by privileged software that must be operating system (ExOS). This system demonstrates several used by all applications, and therefore cannot be changed important properties of the exokernel architecture: by untrusted software. Typically, the core abstractions de- ®ned by the operating system include processes, ®le storage, Low-level secure multiplexing of hardware resources address spaces, and inter-process communication. can be implemented ef®ciently. In this section, we argue that ®xing the implementation of these high-level abstractions can reduce the performance, Traditional core abstractions can be implemented ef®- increase the complexity, and limit the functionality of appli- ciently at application-level. cation programs. We then give an end-to-end argument for Applications can create special-purpose implementa- the exokernel architecture and discuss the role of application- tions of core abstractions. level library operating systems. In practice, our implementation provides applications with 2.1 The Cost of Core Abstractions greater ¯exibility and better performance than in a mono- lithic system. Aegis's low-level interface allows application- Application performance suffers because there is no sin- level software, such as ExOS, to manipulate resources very gle way to abstract physical resources or to implement a ef®ciently. Aegis's protected control transfer is three times core abstraction that is best for all applications. In imple- faster than the best reported implementation [29]. Aegis's menting a core abstraction, the operating system is forced exception forwarding and control transfers are close to to make trade-offs between support for sparse or dense ad- 100 times faster than in Ultrix 4.2, a mature monolithic dress spaces, read-intensive or write-intensive workloads, system using identical hardware. Because of this ef®ciency, etc. Any such trade-off penalizes some applications, and of- ExOS is able to implement virtual memory entirely at appli- ten the applications that suffer most are those whose behav- cation level. ior is the most predictable. Relational databases and garbage Aegis also permits ExOS (or other application-level soft- collectors sometimes have very predictable data access pat- ware) ¯exibility that is not available in microkernel-based terns, and their performance suffers when a general-purpose systems. Aegis's ef®cient protected control transfer allows page replacement strategy such as LRU is imposed by the applications to trade between a wide array of IPC semantics operating system. that differ in performance by a factor of 10. In contrast, High-level core abstractions hide information from microkernel systems such as Amoeba [44], Chorus [39], application-level (untrusted) software. For example, most Mach [1], and V [13], do not allow untrusted application current systems do not make low-level exceptions, timer software to de®ne specialized IPC primitive because vir- interrupts, or raw device I/O directly available to applica- tual memory and message passing services are implemented tions. Unfortunately, hiding this information makes it dif®- by the kernel and trusted servers. Similarly, many other cult or impossible for applications to implement their own microkernel abstractions, such as page-table structures and resource management abstractions. For example, database process abstractions, are ®xed. Finally, many of the hard- implementations must struggle to emulate random-access ware resources in microkernel systems, such as the network, record storage on top of ®le systems [43]. Implementing screen, and disk, are encapsulated
Recommended publications
  • The Case for Compressed Caching in Virtual Memory Systems
    THE ADVANCED COMPUTING SYSTEMS ASSOCIATION The following paper was originally published in the Proceedings of the USENIX Annual Technical Conference Monterey, California, USA, June 6-11, 1999 The Case for Compressed Caching in Virtual Memory Systems _ Paul R. Wilson, Scott F. Kaplan, and Yannis Smaragdakis aUniversity of Texas at Austin © 1999 by The USENIX Association All Rights Reserved Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein. For more information about the USENIX Association: Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: [email protected] WWW: http://www.usenix.org The Case for Compressed Caching in Virtual Memory Systems Paul R. Wilson, Scott F. Kaplan, and Yannis Smaragdakis Dept. of Computer Sciences University of Texas at Austin Austin, Texas 78751-1182 g fwilson|sfkaplan|smaragd @cs.utexas.edu http://www.cs.utexas.edu/users/oops/ Abstract In [Wil90, Wil91b] we proposed compressed caching for virtual memory—storing pages in compressed form Compressed caching uses part of the available RAM to in a main memory compression cache to reduce disk pag- hold pages in compressed form, effectively adding a new ing. Appel also promoted this idea [AL91], and it was level to the virtual memory hierarchy. This level attempts evaluated empirically by Douglis [Dou93] and by Russi- to bridge the huge performance gap between normal (un- novich and Cogswell [RC96]. Unfortunately Douglis’s compressed) RAM and disk.
    [Show full text]
  • Extracting Compressed Pages from the Windows 10 Virtual Store WHITE PAPER | EXTRACTING COMPRESSED PAGES from the WINDOWS 10 VIRTUAL STORE 2
    white paper Extracting Compressed Pages from the Windows 10 Virtual Store WHITE PAPER | EXTRACTING COMPRESSED PAGES FROM THE WINDOWS 10 VIRTUAL STORE 2 Abstract Windows 8.1 introduced memory compression in August 2013. By the end of 2013 Linux 3.11 and OS X Mavericks leveraged compressed memory as well. Disk I/O continues to be orders of magnitude slower than RAM, whereas reading and decompressing data in RAM is fast and highly parallelizable across the system’s CPU cores, yielding a significant performance increase. However, this came at the cost of increased complexity of process memory reconstruction and thus reduced the power of popular tools such as Volatility, Rekall, and Redline. In this document we introduce a method to retrieve compressed pages from the Windows 10 Memory Manager Virtual Store, thus providing forensics and auditing tools with a way to retrieve, examine, and reconstruct memory artifacts regardless of their storage location. Introduction Windows 10 moves pages between physical memory and the hard disk or the Store Manager’s virtual store when memory is constrained. Universal Windows Platform (UWP) applications leverage the Virtual Store any time they are suspended (as is the case when minimized). When a given page is no longer in the process’s working set, the corresponding Page Table Entry (PTE) is used by the OS to specify the storage location as well as additional data that allows it to start the retrieval process. In the case of a page file, the retrieval is straightforward because both the page file index and the location of the page within the page file can be directly retrieved.
    [Show full text]
  • Memory Protection File B [RWX] File D [RW] File F [R] OS GUEST LECTURE
    11/17/2018 Operating Systems Protection Goal: Ensure data confidentiality + data integrity + systems availability Protection domain = the set of accessible objects + access rights File A [RW] File C [R] Printer 1 [W] File E [RX] Memory Protection File B [RWX] File D [RW] File F [R] OS GUEST LECTURE XIAOWAN DONG Domain 1 Domain 2 Domain 3 11/15/2018 1 2 Private Virtual Address Space Challenges of Sharing Memory Most common memory protection Difficult to share pointer-based data Process A virtual Process B virtual Private Virtual addr space mechanism in current OS structures addr space addr space Private Page table Physical addr space ◦ Data may map to different virtual addresses Each process has a private virtual in different address spaces Physical address space Physical Access addr space ◦ Set of accessible objects: virtual pages frame no Rights Segment 3 mapped … … Segment 2 ◦ Access rights: access permissions to P1 RW each virtual page Segment 1 P2 RW Segment 1 Recorded in per-process page table P3 RW ◦ Virtual-to-physical translation + P4 RW Segment 2 access permissions … … 3 4 1 11/17/2018 Challenges of Sharing Memory Challenges for Memory Sharing Potential duplicate virtual-to-physical Potential duplicate virtual-to-physical translation information for shared Process A page Physical Process B page translation information for shared memory table addr space table memory Processor ◦ Page table is per-process at page ◦ Single copy of the physical memory, multiple granularity copies of the mapping info (even if identical) TLB L1 cache
    [Show full text]
  • Paging: Smaller Tables
    20 Paging: Smaller Tables We now tackle the second problem that paging introduces: page tables are too big and thus consume too much memory. Let’s start out with a linear page table. As you might recall1, linear page tables get pretty 32 12 big. Assume again a 32-bit address space (2 bytes), with 4KB (2 byte) pages and a 4-byte page-table entry. An address space thus has roughly 232 one million virtual pages in it ( 212 ); multiply by the page-table entry size and you see that our page table is 4MB in size. Recall also: we usually have one page table for every process in the system! With a hundred active processes (not uncommon on a modern system), we will be allocating hundreds of megabytes of memory just for page tables! As a result, we are in search of some techniques to reduce this heavy burden. There are a lot of them, so let’s get going. But not before our crux: CRUX: HOW TO MAKE PAGE TABLES SMALLER? Simple array-based page tables (usually called linear page tables) are too big, taking up far too much memory on typical systems. How can we make page tables smaller? What are the key ideas? What inefficiencies arise as a result of these new data structures? 20.1 Simple Solution: Bigger Pages We could reduce the size of the page table in one simple way: use bigger pages. Take our 32-bit address space again, but this time assume 16KB pages. We would thus have an 18-bit VPN plus a 14-bit offset.
    [Show full text]
  • Application Performance and Flexibility on Exokernel Systems
    Application Performance and Flexibility On Exokernel Systems –M. F. Kaashoek, D.R. Engler, G.R. Ganger et. al. Presented by Henry Monti Exokernel ● What is an Exokernel? ● What are its advantages? ● What are its disadvantages? ● Performance ● Conclusions 2 The Problem ● Traditional operating systems provide both protection and resource management ● Will protect processes address space, and manages the systems virtual memory ● Provides abstractions such as processes, files, pipes, sockets,etc ● Problems with this? 3 Exokernel's Solution ● The problem is that OS designers must try and accommodate every possible use of abstractions, and choose general solutions for resource management ● This causes the performance of applications to suffer, since they are restricted to general abstractions, interfaces, and management ● Research has shown that more application control of resources yields better performance 4 (Separation vs. Protection) ● An exokernel solves these problems by separating protection from management ● Creates idea of LibOS, which is like a virtual machine with out isolation ● Moves abstractions (processes, files, virtual memory, filesystems), to the user space inside of LibOSes ● Provides a low level interface as close to the hardware as possible 5 General Design Principles ● Exposes as much as possible of the hardware, most of the time using hardware names, allowing libOSes access to things like individual data blocks ● Provides methods to securely bind to resources, revoke resources, and an abort protocol that the kernel itself
    [Show full text]
  • Unikernel Monitors: Extending Minimalism Outside of the Box
    Unikernel Monitors: Extending Minimalism Outside of the Box Dan Williams Ricardo Koller IBM T.J. Watson Research Center Abstract Recently, unikernels have emerged as an exploration of minimalist software stacks to improve the security of ap- plications in the cloud. In this paper, we propose ex- tending the notion of minimalism beyond an individual virtual machine to include the underlying monitor and the interface it exposes. We propose unikernel monitors. Each unikernel is bundled with a tiny, specialized mon- itor that only contains what the unikernel needs both in terms of interface and implementation. Unikernel mon- itors improve isolation through minimal interfaces, re- Figure 1: The unit of execution in the cloud as (a) a duce complexity, and boot unikernels quickly. Our ini- unikernel, built from only what it needs, running on a tial prototype, ukvm, is less than 5% the code size of a VM abstraction; or (b) a unikernel running on a spe- traditional monitor, and boots MirageOS unikernels in as cialized unikernel monitor implementing only what the little as 10ms (8× faster than a traditional monitor). unikernel needs. 1 Introduction the application (unikernel) and the rest of the system, as defined by the virtual hardware abstraction, minimal? Minimal software stacks are changing the way we think Can application dependencies be tracked through the in- about assembling applications for the cloud. A minimal terface and even define a minimal virtual machine mon- amount of software implies a reduced attack surface and itor (or in this case a unikernel monitor) for the applica- a better understanding of the system, leading to increased tion, thus producing a maximally isolated, minimal exe- security.
    [Show full text]
  • X86 Memory Protection and Translation
    2/5/20 COMP 790: OS Implementation COMP 790: OS Implementation Logical Diagram Binary Memory x86 Memory Protection and Threads Formats Allocators Translation User System Calls Kernel Don Porter RCU File System Networking Sync Memory Device CPU Today’s Management Drivers Scheduler Lecture Hardware Interrupts Disk Net Consistency 1 Today’s Lecture: Focus on Hardware ABI 2 1 2 COMP 790: OS Implementation COMP 790: OS Implementation Lecture Goal Undergrad Review • Understand the hardware tools available on a • What is: modern x86 processor for manipulating and – Virtual memory? protecting memory – Segmentation? • Lab 2: You will program this hardware – Paging? • Apologies: Material can be a bit dry, but important – Plus, slides will be good reference • But, cool tech tricks: – How does thread-local storage (TLS) work? – An actual (and tough) Microsoft interview question 3 4 3 4 COMP 790: OS Implementation COMP 790: OS Implementation Memory Mapping Two System Goals 1) Provide an abstraction of contiguous, isolated virtual Process 1 Process 2 memory to a program Virtual Memory Virtual Memory 2) Prevent illegal operations // Program expects (*x) – Prevent access to other application or OS memory 0x1000 Only one physical 0x1000 address 0x1000!! // to always be at – Detect failures early (e.g., segfault on address 0) // address 0x1000 – More recently, prevent exploits that try to execute int *x = 0x1000; program data 0x1000 Physical Memory 5 6 5 6 1 2/5/20 COMP 790: OS Implementation COMP 790: OS Implementation Outline x86 Processor Modes • x86
    [Show full text]
  • CS 414/415 Systems Programming and Operating Systems
    1 MODERN SYSTEMS: EXTENSIBLE KERNELS AND CONTAINERS CS6410 Hakim Weatherspoon Motivation 2 Monolithic Kernels just aren't good enough? Conventional virtual memory isn't what userspace programs need (Appel + Li '91) Application-level control of caching gives 45% speedup (Cao et al '94) Application-specific VM increases performance (Krueger '93, Harty + Cheriton '92) Filesystems for databases (Stonebraker '81) And more... Motivation 3 Lots of problems… Motivation 4 Lots of problems…Lots of design opportunities! Motivation 5 Extensibility Security Performance Can we have all 3 in a single OS? From Stefan Savage’s SOSP 95 presentation Context for these papers 1990’s Researchers (mostly) were doing special purpose OS hacks Commercial market complaining that OS imposed big overheads on them OS research community began to ask what the best way to facilitate customization might be. In the spirit of the Flux OS toolkit… 2010’s containers: single-purpose appliances Unikernels: (“sealable”) single-address space Compile time specialized Motivation 7 1988-1995: lots of innovation in OS development Mach 3, the first “true” microkernel SPIN, Exokernel, Nemesis, Scout, SPACE, Chorus, Vino, Amoeba, etc... And even more design papers Motivation 8 Exploring new spaces Distributed computing Secure computing Extensible kernels (exokernel, unikernel) Virtual machines (exokernel) New languages (spin) New memory management (exokernel, unikernel) Exokernel Dawson R. Engler, M. Frans Kaashoek and James O’Toole Jr. Engler’s Master’s
    [Show full text]
  • Protection in the Think Exokernel Christophe Rippert, Jean-Bernard Stefani
    Protection in the Think exokernel Christophe Rippert, Jean-Bernard Stefani To cite this version: Christophe Rippert, Jean-Bernard Stefani. Protection in the Think exokernel. 4th CaberNet European Research Seminar on Advances in Distributed Systems, May 2001, Bertinoro, Italy. hal-00308882 HAL Id: hal-00308882 https://hal.archives-ouvertes.fr/hal-00308882 Submitted on 4 Aug 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Protection in the Think exokernel Christophe Rippert,∗ Jean-Bernard Stefani† [email protected], [email protected] Introduction In this paper, we present our preliminary ideas concerning the adaptation of security and protection techniques in the Think exokernel. Think is our proposition of a distributed adaptable kernel, designed according to the exokernel architecture. After summing up the main motivations for using the exokernel architecture, we describe the Think exokernel as it has been implemented on a PowerPC machine. We then present the major protection and security techniques that we plan to adapt to the Think environment, and give an example of how some of these techniques can be combined with the Think model to provide fair and protected resource management.
    [Show full text]
  • OS Extensibility: Spin, Exo-Kernel and L4
    OS Extensibility: Spin, Exo-kernel and L4 Extensibility Problem: How? Add code to OS how to preserve isolation? … without killing performance? What abstractions? General principle: mechanisms in OS, policies through the extensions What mechanisms to expose? 2 Spin Approach to extensibility Co-location of kernel and extension Avoid border crossings But what about protection? Language/compiler forced protection Strongly typed language Protection by compiler and run-time Cannot cheat using pointers Logical protection domains No longer rely on hardware address spaces to enforce protection – no boarder crossings Dynamic call binding for extensibility 3 ExoKernel 4 Motivation for Exokernels Traditional centralized resource management cannot be specialized, extended or replaced Privileged software must be used by all applications Fixed high level abstractions too costly for good efficiency Exo-kernel as an end-to-end argument 5 Exokernel Philosophy Expose hardware to libraryOS Not even mechanisms are implemented by exo-kernel They argue that mechanism is policy Exo-kernel worried only about protection not resource management 6 Design Principles Track resource ownership Ensure protection by guarding resource usage Revoke access to resources Expose hardware, allocation, names and revocation Basically validate binding, then let library manage the resource 7 Exokernel Architecture 8 Separating Security from Management Secure bindings – securely bind machine resources Visible revocation – allow libOSes to participate in resource revocation Abort protocol
    [Show full text]
  • Composing Abstractions Using the Null-Kernel
    Composing Abstractions using the null-Kernel James Litton Deepak Garg University of Maryland Max Planck Institute for Software Systems Max Planck Institute for Software Systems [email protected] [email protected] Peter Druschel Bobby Bhattacharjee Max Planck Institute for Software Systems University of Maryland [email protected] [email protected] CCS CONCEPTS hardware, such as GPUs, crypto/AI accelerators, smart NICs/- • Software and its engineering → Operating systems; storage devices, NVRAM etc., and to efficiently support new Layered systems; • Security and privacy → Access control. application requirements for functionality such as transac- tional memory, fast snapshots, fine-grained isolation, etc., KEYWORDS that demand new OS abstractions that can exploit existing hardware in novel and more efficient ways. Operating Systems, Capability Systems At its core, the null-Kernel derives its novelty from being ACM Reference Format: able to support and compose across components, called Ab- James Litton, Deepak Garg, Peter Druschel, and Bobby Bhattachar- stract Machines (AMs) that provide programming interfaces jee. 2019. Composing Abstractions using the null-Kernel. In Work- at different levels of abstraction. The null-Kernel uses an ex- shop on Hot Topics in Operating Systems (HotOS ’19), May 13–15, 2019, Bertinoro, Italy. ACM, New York, NY, USA, 6 pages. https: tensible capability mechanism to control resource allocation //doi.org/10.1145/3317550.3321450 and use at runtime. The ability of the null-Kernel to support interfaces at different levels of abstraction accrues several 1 INTRODUCTION benefits: New hardware can be rapidly deployed using rela- tively low-level interfaces; high-level interfaces can easily Abstractions imply choice, one that OS designers must con- be built using low-level ones; and applications can benefit front when designing a programming interface to expose.
    [Show full text]
  • An Evolutionary Study of Linux Memory Management for Fun and Profit Jian Huang, Moinuddin K
    An Evolutionary Study of Linux Memory Management for Fun and Profit Jian Huang, Moinuddin K. Qureshi, and Karsten Schwan, Georgia Institute of Technology https://www.usenix.org/conference/atc16/technical-sessions/presentation/huang This paper is included in the Proceedings of the 2016 USENIX Annual Technical Conference (USENIX ATC ’16). June 22–24, 2016 • Denver, CO, USA 978-1-931971-30-0 Open access to the Proceedings of the 2016 USENIX Annual Technical Conference (USENIX ATC ’16) is sponsored by USENIX. An Evolutionary Study of inu emory anagement for Fun and rofit Jian Huang, Moinuddin K. ureshi, Karsten Schwan Georgia Institute of Technology Astract the patches committed over the last five years from 2009 to 2015. The study covers 4587 patches across Linux We present a comprehensive and uantitative study on versions from 2.6.32.1 to 4.0-rc4. We manually label the development of the Linux memory manager. The each patch after carefully checking the patch, its descrip- study examines 4587 committed patches over the last tions, and follow-up discussions posted by developers. five years (2009-2015) since Linux version 2.6.32. In- To further understand patch distribution over memory se- sights derived from this study concern the development mantics, we build a tool called MChecker to identify the process of the virtual memory system, including its patch changes to the key functions in mm. MChecker matches distribution and patterns, and techniues for memory op- the patches with the source code to track the hot func- timizations and semantics. Specifically, we find that tions that have been updated intensively.
    [Show full text]