Trace Akankunda

Total Page:16

File Type:pdf, Size:1020Kb

Trace Akankunda THE EVOLUTION OF DIET WIDTH IN LASIOGLOSSUM (CHILALICTUS) (HALICTIDAE, APOIDEA), IN ASSOCIATION WITH SPECIATION AND SENSORY MORPHOLOGY Trace Akankunda M.Bio (PB), The University of Adelaide Thesis submitted to The University of Adelaide for the degree of Doctor of Philosophy Department of Plant Protection School of Agriculture, Food & Wine Faculty of Sciences, The University of Adelaide Waite Campus April 2019 Table of contents List of tables ........................................................................................................................................................ 4 List of figures ...................................................................................................................................................... 5 List of supplementary material ................................................................................................................... 8 Tables ........................................................................................................................................................... 8 Figures ......................................................................................................................................................... 9 List of electronic files ................................................................................................................................... 10 Summary ........................................................................................................................................................... 13 Declaration ....................................................................................................................................................... 15 Acknowledgements ....................................................................................................................................... 17 Chapter 1: General Introduction - Why is broadly polylectic behaviour rare in bees? .... 21 Aims and overview ................................................................................................................................... 37 References ................................................................................................................................................... 39 Chapter 2: Multi-locus barcoding of pinned insect specimens using MiSeq ......................... 51 Abstract ......................................................................................................................................................... 52 Introduction ................................................................................................................................................ 53 Materials and Methods ........................................................................................................................... 58 Results ........................................................................................................................................................... 68 Discussion .................................................................................................................................................... 73 Acknowledgements .................................................................................................................................. 84 References ................................................................................................................................................... 85 Data Accessibility ...................................................................................................................................... 97 Appendices .................................................................................................................................................. 97 1 Supporting information ......................................................................................................................... 99 Chapter 3: The evolution of broadly polylectic behaviour in Lasioglossum (Chilalictus) (Halictidae, Apoidea)................................................................................................................................. 117 Abstract ...................................................................................................................................................... 118 Introduction ............................................................................................................................................. 119 Methods ..................................................................................................................................................... 123 Results ........................................................................................................................................................ 130 Discussion ................................................................................................................................................. 137 References ................................................................................................................................................ 143 Supporting information ...................................................................................................................... 151 Chapter 4: The association between broad polylecty and olfactory sensory morphology in Lasioglossum (Chilalictus) (Halictidae, Apoidea)...................................................................... 159 Abstract ...................................................................................................................................................... 160 Introduction ............................................................................................................................................. 161 Methods ..................................................................................................................................................... 165 Results ........................................................................................................................................................ 170 Discussion ................................................................................................................................................. 173 References ................................................................................................................................................ 176 Supporting information ...................................................................................................................... 182 CHAPTER 5 .................................................................................................................................................... 183 GENERAL DISCUSSION ............................................................................................................................. 183 Summary ................................................................................................................................................... 183 Why is broadly polylectic behaviour rare in bees? .................................................................. 184 2 Multilocus barcoding of pinned insect specimens using MiSeq ......................................... 185 The evolution of broad polylecty in Lasioglossum (Chilalictus) ......................................... 186 The association between pollen host breadth and olfactory sensory morphology in L. (Chilalictus) (Apoidea: Halictidae) .................................................................................................. 188 General Conclusion ............................................................................................................................... 189 References ................................................................................................................................................ 194 3 List of tables Table 1.1. Lexicon and criteria for classifying species according to their diet width (Cane & Sipes 2006). ............................................................................... 22 Table 2.1. Degenerate primers for Lasioglossum used to amplify CO1, EF-1α and WNT with references for those modified from published primers. Modifications include; adopting degenerate bases and adding M13 tails and Illumina sequencing adapters for next generation sequencing. For each gene region in the table, the first and last primers amplify near-full length loci and the middle primers are nested within each gene sequence to amplify 300-350 bp gene fragments. ....................................................... 60 Table 3.1. Species of Lasioglossum (Chilalictus) included in the sequence dataset for phylogenetic analysis with GenBank accession numbers. Sequences whose accession numbers start with MH were produced using the amplicon sequencing method developed in chapter 2, while the rest were sourced from GenBank archives. ........................................................................ 124 Table 3.2. A modified diet width classification system based on suggestions by Cane & Sipes (2006), that takes sampling bias into account. ......................... 127 Table 3.3. Summary of the categories of diet width for 77 Lasioglossum (Chilalictus) species. ................................................................................................... 133 Table 4.1. Phylogenetic signal of categorical and continuous traits using Pagel’s lambda.
Recommended publications
  • 5.4 Insect Visitors to Marianthus Aquilonaris and Surrounding Flora
    REPORT: Insect visitors to Marianthus aquilonaris and surrounding flora Nov 2-4, 2019 Kit Prendergast, Native bee scientist BSc First Class Honours, PhD researcher and Forrest Scholar On behalf of Botanica Consulting 1 REPORT: Insect visitors to Marianthus aquilonaris and surrounding flora Nov 2-4 2019 Kit Prendergast, Native bee scientist Background Marianthus aquilonaris (Fig. 1) was declared as Rare Flora under the Western Australian Wildlife Conservation Act 1950 in 2002 under the name Marianthus sp. Bremer, and is ranked as Critically Endangered (CR) under the International Union for Conservation of Nature (IUCN 2001) criteria B1ab(iii,v)+2ab(iii,v); C2a(ii) due to its extent of occurrence being less than 100 km2, its area of occupancy being less than 10 km2, a continuing decline in the area, extent and/or quality of its habitat and number of mature individuals and there being less than 250 mature individuals known at the time of ranking (Appendix A). However, it no longer meets these criteria as more plants have been found, and a recommendation has been proposed to be made by DBCA to the Threatened Species Scientific Committee (TSSC) to change its conservation status to CR B1ab(iii,v)+2ab(iii,v) (Appendix A), but this recommendation has not gone ahead (DEC, 2010). Despite its listing as CR under the Western Australian Biodiversity Conservation Act 2016, the species is not currently listed under the Environment Protection and Biodiversity Conservation Act 1999. The main threats to the species are mining/exploration, track maintenance and inappropriate fire regimes (DEC, 2010). Fig. 1. Marianthus aquilonaris, showing flower, buds and leaves.
    [Show full text]
  • INSECTA MUNDIA Journal of World Insect Systematics
    INSECTA MUNDI A Journal of World Insect Systematics 0506 Annotated checklist and biogeographic composition of the Lycaenidae (Lepidoptera) of Trinidad, West Indies Matthew J.W. Cock CABI, Bakeham Lane Egham, Surrey, TW20 9TY United Kingdom Robert K. Robbins Smithsonian Institution PO Box 37012, NHB Stop 105 (E-514) Washington, DC 20013-7012 USA Date of Issue: October 21, 2016 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Matthew J.W. Cock and Robert K. Robbins Annotated checklist and biogeographic composition of the Lycaenidae (Lepidoptera) of Trinidad, West Indies Insecta Mundi 0506: 1–33 ZooBank Registered: urn:lsid:zoobank.org:pub:37A7668A-0D83-4DB0-BD28-C36302F18398 Published in 2016 by Center for Systematic Entomology, Inc. P. O. Box 141874 Gainesville, FL 32614-1874 USA http://centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non-marine arthropod. Topics considered for publication include systematics, taxonomy, nomenclature, checklists, faunal works, and natural history. Insecta Mundi will not consider works in the applied sciences (i.e. medical entomology, pest control research, etc.), and no longer publishes book reviews or editorials. Insecta Mundi publishes original research or discoveries in an inexpensive and timely manner, distributing them free via open access on the internet on the date of publication. Insecta Mundi is referenced or abstracted by several sources including the Zoological Record, CAB Ab- stracts, etc. Insecta Mundi is published irregularly throughout the year, with completed manuscripts assigned an individual number. Manuscripts must be peer reviewed prior to submission, after which they are reviewed by the editorial board to ensure quality.
    [Show full text]
  • Mating Cluster Behaviour in the Solitary Bee Colletes Succinctus
    To confirm species identification a small sample was Mating cluster behaviour in the collected in 2006 when the population reappeared. The identity was established from a male specimen whose solitary bee Colletes succinctus morphological characters, including features in the (Linn.), Hymenoptera, Colletidae genitalia, match those of Colletes succinctus , the girdled Colletes (Saunders, 1896; Step, 1946). This is 1 1 a common species on heaths and commons and usually Pauline Lang , E. Geoffrey Hancock , Kevin forages on heather. 1 2 J. Murphy & Robert L. Watt 1Division of Environmental Biology and Evolutionary Biology, University of Glasgow, Glasgow, Scotland G12 8QQ 2Bogendreip Farm, Strachan, Banchory, Kincardineshire, Scotland AB31 6LP In August 2005, during a botanical freshwater survey of the Water of Dye, a tributary of the River Dee at the Bridge of Bogendreip, Kincardineshire (NGR: NO 662910), our attention was drawn to the behaviour of a population of solitary bees. These bees were occupying plots of soil in the garden of Bogendreip Farm (Fig 1). Only in the last few years had Mr. Watt Fig. 2. Mating cluster in Colletes succinctus. observed the bees and not previously, in his more than fifty years of farm occupancy. The bees were A related species, Colletes hederae (Schmidt & subsequently identified as Colletes succinctus (Linn.). Westrich), the ivy bee, has been observed to form small knots of males when competing for females. A The bees had colonized extensive areas of sandy soils coloured photograph of a small group is shown in adjacent to the farmhouse, in which hundreds of Moenen (2005). Other species of the genus also individual nests formed two main “villages” with exhibit mating clusters.
    [Show full text]
  • Pollination Ecology and Evolution of Epacrids
    Pollination Ecology and Evolution of Epacrids by Karen A. Johnson BSc (Hons) Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy University of Tasmania February 2012 ii Declaration of originality This thesis contains no material which has been accepted for the award of any other degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Karen A. Johnson Statement of authority of access This thesis may be made available for copying. Copying of any part of this thesis is prohibited for two years from the date this statement was signed; after that time limited copying is permitted in accordance with the Copyright Act 1968. Karen A. Johnson iii iv Abstract Relationships between plants and their pollinators are thought to have played a major role in the morphological diversification of angiosperms. The epacrids (subfamily Styphelioideae) comprise more than 550 species of woody plants ranging from small prostrate shrubs to temperate rainforest emergents. Their range extends from SE Asia through Oceania to Tierra del Fuego with their highest diversity in Australia. The overall aim of the thesis is to determine the relationships between epacrid floral features and potential pollinators, and assess the evolutionary status of any pollination syndromes. The main hypotheses were that flower characteristics relate to pollinators in predictable ways; and that there is convergent evolution in the development of pollination syndromes.
    [Show full text]
  • Intro Outline
    THE REPRODUCTIVE ECOLOGY OF TWO TERRESTRIAL ORCHIDS, CALADENIA RIGIDA AND CALADENIA TENTACULATA RENATE FAAST Submitted for the degree of Doctor of Philosophy School of Earth and Environmental Sciences The University of Adelaide, South Australia December, 2009 i . DEcLARATION This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Renate Faast and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines. Published works contained within this thesis: Faast R, Farrington L, Facelli JM, Austin AD (2009) Bees and white spiders: unravelling the pollination' syndrome of C aladenia ri gída (Orchidaceae). Australian Joumal of Botany 57:315-325. Faast R, Facelli JM (2009) Grazrngorchids: impact of florivory on two species of Calademz (Orchidaceae). Australian Journal of Botany 57:361-372. Farrington L, Macgillivray P, Faast R, Austin AD (2009) Evaluating molecular tools for Calad,enia (Orchidaceae) species identification.
    [Show full text]
  • Scottish Bees
    Scottish Bees Introduction to bees Bees are fascinating insects that can be found in a broad range of habitats from urban gardens to grasslands and wetlands. There are over 270 species of bee in the UK in 6 families - 115 of these have been recorded in Scotland, with 4 species now thought to be extinct and insufficient data available for another 2 species. Bees are very diverse, varying in size, tongue-length and flower preference. In the UK we have 1 species of honey bee, 24 species of bumblebee and the rest are solitary bees. They fulfil an essential ecological and environmental role as one of the most significant groups of pollinating insects, all of which we depend upon for the pollination of 80% of our wild and cultivated plants. Some flowers are in fact designed specifically for bee pollination, to the exclusion of generalist pollinators. Bees and their relatives Bees are classified in the complex insect order Hymenoptera (meaning membrane-winged), which also includes many kinds of parasitic wasps, gall wasps, hunting wasps, ants and sawflies. There are about 150,000 species of Hymenoptera known worldwide separated into two sub-orders. The first is the most primitive sub-order Symphyta which includes the sawflies and their relatives, lacking a wasp-waist and generally with free-living caterpillar-like larvae. The second is the sub-order Apocrita, which includes the ants, bees and wasps which are ’wasp-waisted’ and have grub-like larvae that develop within hosts, galls or nests. The sub-order Apocrita is in turn divided into two sections, the Parasitica and Aculeata.
    [Show full text]
  • Diversity, Ecology and Herbivory of Hairstreak Butterflies (Theclinae) Associated with the Velvet Tree, Miconia Calvescens in Costa Rica Author(S): F
    Diversity, Ecology and Herbivory of Hairstreak Butterflies (Theclinae) Associated with the Velvet Tree, Miconia calvescens in Costa Rica Author(s): F. R. Badenes-Pérez, M. A. Alfaro-Alpízar and M. T. Johnson Source: Journal of Insect Science, 10(209):1-9. 2010. Published By: Entomological Society of America DOI: http://dx.doi.org/10.1673/031.010.20901 URL: http://www.bioone.org/doi/full/10.1673/031.010.20901 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Insect Science: Vol. 10 | Article 209 Badenes-Pérez et al. Diversity, ecology and herbivory of hairstreak butterflies (Theclinae) associated with the velvet tree, Miconia calvescens in Costa
    [Show full text]
  • 1. Padil Species Factsheet Scientific Name: Common Name Image
    1. PaDIL Species Factsheet Scientific Name: Homalictus (Homalictus) houstoni Walker, 1986 (Hymenoptera: Halictidae: Halictinae: Halictini) Common Name Native houstoni halictid bee Live link: http://www.padil.gov.au/pollinators/Pest/Main/138367 Image Library Australian Pollinators Live link: http://www.padil.gov.au/pollinators/ Partners for Australian Pollinators image library Western Australian Museum https://museum.wa.gov.au/ South Australian Museum https://www.samuseum.sa.gov.au/ Australian Museum https://australian.museum/ Museums Victoria https://museumsvictoria.com.au/ 2. Species Information 2.1. Details Specimen Contact: Museum Victoria - [email protected] Author: Walker, K. Citation: Walker, K. (2009) Native houstoni halictid bee(Homalictus (Homalictus) houstoni)Updated on 10/1/2011 Available online: PaDIL - http://www.padil.gov.au Image Use: Free for use under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY- NC 4.0) 2.2. URL Live link: http://www.padil.gov.au/pollinators/Pest/Main/138367 2.3. Facets Status: Native Australian Beneficial Species Host Genera: Fresh Flowers Bio-Region: Australasian - Oceanian Host Family: Santalaceae Female Frons sculpture: Reticulate Female Mesoscutum colour: Metallic Green Female Mesoscutum sculpture: Shiny - weakly punctate Female Propodeum: Posterior rim not carinate, Surface finely reticulate Male Clypeus colour: Without any yellow marking Male lower inner eye width: Narrower than upper inner width Male scape colour: Entirely black or brown 2.4. Diagnostic Notes Homalictus (Homalictus) houstoni Walker, 1986 Homalictus (Homalictus) houstoni Walker, K.L. 1986. Revision of the Australian species of the genus Homalictus Cockerell (Hymenoptera: Halictidae). Memoirs of Museum Victoria 47: 105–200 [141]. Type data:Holotype SAMA ?, 64 km E Norseman, WA.
    [Show full text]
  • Bees and Wasps of the East Sussex South Downs
    A SURVEY OF THE BEES AND WASPS OF FIFTEEN CHALK GRASSLAND AND CHALK HEATH SITES WITHIN THE EAST SUSSEX SOUTH DOWNS Steven Falk, 2011 A SURVEY OF THE BEES AND WASPS OF FIFTEEN CHALK GRASSLAND AND CHALK HEATH SITES WITHIN THE EAST SUSSEX SOUTH DOWNS Steven Falk, 2011 Abstract For six years between 2003 and 2008, over 100 site visits were made to fifteen chalk grassland and chalk heath sites within the South Downs of Vice-county 14 (East Sussex). This produced a list of 227 bee and wasp species and revealed the comparative frequency of different species, the comparative richness of different sites and provided a basic insight into how many of the species interact with the South Downs at a site and landscape level. The study revealed that, in addition to the character of the semi-natural grasslands present, the bee and wasp fauna is also influenced by the more intensively-managed agricultural landscapes of the Downs, with many species taking advantage of blossoming hedge shrubs, flowery fallow fields, flowery arable field margins, flowering crops such as Rape, plus plants such as buttercups, thistles and dandelions within relatively improved pasture. Some very rare species were encountered, notably the bee Halictus eurygnathus Blüthgen which had not been seen in Britain since 1946. This was eventually recorded at seven sites and was associated with an abundance of Greater Knapweed. The very rare bees Anthophora retusa (Linnaeus) and Andrena niveata Friese were also observed foraging on several dates during their flight periods, providing a better insight into their ecology and conservation requirements.
    [Show full text]
  • The Very Handy Bee Manual
    The Very Handy Manual: How to Catch and Identify Bees and Manage a Collection A Collective and Ongoing Effort by Those Who Love to Study Bees in North America Last Revised: October, 2010 This manual is a compilation of the wisdom and experience of many individuals, some of whom are directly acknowledged here and others not. We thank all of you. The bulk of the text was compiled by Sam Droege at the USGS Native Bee Inventory and Monitoring Lab over several years from 2004-2008. We regularly update the manual with new information, so, if you have a new technique, some additional ideas for sections, corrections or additions, we would like to hear from you. Please email those to Sam Droege ([email protected]). You can also email Sam if you are interested in joining the group’s discussion group on bee monitoring and identification. Many thanks to Dave and Janice Green, Tracy Zarrillo, and Liz Sellers for their many hours of editing this manual. "They've got this steamroller going, and they won't stop until there's nobody fishing. What are they going to do then, save some bees?" - Mike Russo (Massachusetts fisherman who has fished cod for 18 years, on environmentalists)-Provided by Matthew Shepherd Contents Where to Find Bees ...................................................................................................................................... 2 Nets ............................................................................................................................................................. 2 Netting Technique ......................................................................................................................................
    [Show full text]
  • The History of Early Bee Diversification Based on Five Genes Plus Morphology
    The history of early bee diversification based on five genes plus morphology Bryan N. Danforth†, Sedonia Sipes‡, Jennifer Fang§, and Sea´ n G. Brady¶ Department of Entomology, 3119 Comstock Hall, Cornell University, Ithaca, NY 14853 Communicated by Charles D. Michener, University of Kansas, Lawrence, KS, May 16, 2006 (received for review February 2, 2006) Bees, the largest (>16,000 species) and most important radiation of tongued (LT) bee families Megachilidae and Apidae and the pollinating insects, originated in early to mid-Cretaceous, roughly short-tongued (ST) bee families Colletidae, Stenotritidae, Andreni- in synchrony with the angiosperms (flowering plants). Under- dae, Halictidae, and Melittidae sensu lato (s.l.)ʈ (9). Colletidae is standing the diversification of the bees and the coevolutionary widely considered the most basal family of bees (i.e., the sister group history of bees and angiosperms requires a well supported phy- to the rest of the bees), because all females and most males possess logeny of bees (as well as angiosperms). We reconstructed a robust a glossa (tongue) with a bifid (forked) apex, much like the glossa of phylogeny of bees at the family and subfamily levels using a data an apoid wasp (18–22). set of five genes (4,299 nucleotide sites) plus morphology (109 However, several authors have questioned this interpretation (9, characters). The molecular data set included protein coding (elon- 23–27) and have hypothesized that the earliest branches of bee gation factor-1␣, RNA polymerase II, and LW rhodopsin), as well as phylogeny may have been either Melittidae s.l., LT bees, or a ribosomal (28S and 18S) nuclear gene data.
    [Show full text]
  • Promoting Pollinating Insects in Intensive Agricultural Matrices: Field-Scale Experimental Manipulation of Hay-Meadow Mowing Regimes and Its Effects on Bees
    Promoting Pollinating Insects in Intensive Agricultural Matrices: Field-Scale Experimental Manipulation of Hay-Meadow Mowing Regimes and Its Effects on Bees Pierrick Buri1*, Jean-Yves Humbert1, Raphae¨l Arlettaz1,2 1 Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland, 2 Swiss Ornithological Institute, Valais Field Station, Sion, Switzerland Abstract Bees are a key component of biodiversity as they ensure a crucial ecosystem service: pollination. This ecosystem service is nowadays threatened, because bees suffer from agricultural intensification. Yet, bees rarely benefit from the measures established to promote biodiversity in farmland, such as agri-environment schemes (AES). We experimentally tested if the spatio-temporal modification of mowing regimes within extensively managed hay meadows, a widespread AES, can promote bees. We applied a randomized block design, replicated 12 times across the Swiss lowlands, that consisted of three different mowing treatments: 1) first cut not before 15 June (conventional regime for meadows within Swiss AES); 2) first cut not before 15 June, as treatment 1 but with 15% of area left uncut serving as a refuge; 3) first cut not before 15 July. Bees were collected with pan traps, twice during the vegetation season (before and after mowing). Wild bee abundance and species richness significantly increased in meadows where uncut refuges were left, in comparison to meadows without refuges: there was both an immediate (within year) and cumulative (from one year to the following) positive effect of the uncut refuge treatment. An immediate positive effect of delayed mowing was also evidenced in both wild bees and honey bees.
    [Show full text]