Identification of Emerging Viral Genomes in Transcriptomic Datasets of Alfalfa (Medicago Sativa L.) Peng Jiang, Jonathan Shao and Lev G

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Emerging Viral Genomes in Transcriptomic Datasets of Alfalfa (Medicago Sativa L.) Peng Jiang, Jonathan Shao and Lev G Jiang et al. Virology Journal (2019) 16:153 https://doi.org/10.1186/s12985-019-1257-y RESEARCH Open Access Identification of emerging viral genomes in transcriptomic datasets of alfalfa (Medicago sativa L.) Peng Jiang, Jonathan Shao and Lev G. Nemchinov* Abstract Background: Publicly available transcriptomic datasets have become a valuable tool for the discovery of new pathogens, particularly viruses. In this study, several coding-complete viral genomes previously not found or experimentally confirmed in alfalfa were identified in the plant datasets retrieved from the NCBI Sequence Read Archive. Methods: Publicly available Medicago spp. transcriptomic datasets were retrieved from the NCBI SRA database. The raw reads were first mapped to the reference genomes of Medicago sativa and Medigago truncatula followed by the alignment of the unmapped reads to the NCBI viral genome database and de novo assembly using the SPAdes tool. When possible, assemblies were experimentally confirmed using 5′/3′ RACE and RT-PCRs. Results: Twenty three different viruses were identified in the analyzed datasets, of which several represented emerging viruses not reported in alfalfa prior to this study. Among them were two strains of cnidium vein yellowing virus, lychnis mottle virus and Cactus virus X, for which coding-complete genomic sequences were obtained by a de novo assembly. Conclusions: The results improve our knowledge of the diversity and host range of viruses infecting alfalfa, provide essential tools for their diagnostics and characterization and demonstrate the utility of transcriptomic datasets for the discovery of new pathogens. Keywords: Alfalfa (Medicago sativa L.), Transcriptomic discovery, Plant viruses Background Nonetheless, they are widespread in major alfalfa cultiva- Alfalfa (Medicago sativa L.) is one of the most exten- tion areas and their contribution to the severity of com- sively cultivated forage legumes in the world [1]. It has plex infections involving multiple pathogens is poorly recently become the third most valuable field crop in the understood. Recently, many emerging viral diseases of United States with an estimated worth of over $9.3 bil- alfalfa have been described that have the potential to lion, which is $1.2 billion more than that of wheat, ac- cause serious yield losses. These include a rhabdovirus cording to the National Alfalfa and Forage Alliance [2]. that was diagnosed in alfalfa plants displaying multiple Alfalfa productivity is often limited by various biotic and abnormalities [5]; a new enamovirus from Argentina, Al- abiotic components in the ecosystem [1, 3, 4]. With the falfa enamovirus-1 [6] (AEV-1) that was detected in al- increase in the production of monocropped alfalfa, infec- falfa plants showing dwarfism symptoms; an AEV isolate tious diseases, including viruses, have became more from Sudan, designated AEV-2 [7]; Alfalfa virus S, a new common. Traditionally, viral infections of alfalfa have species of the family Alphaflexiviridae discovered in al- been considered by producers, breeders, growers and re- falfa samples exhibiting chlorosis and stunting [8]; alfalfa search communities as diseases of limited importance. virus F, a new member of the genus Marafivirus [9]; and Alfalfa leaf curl virus found in plants displaying leaf * Correspondence: [email protected] curling symptoms [10]. Alfalfa appears to be widely in- USDA/ARS, Beltsville Agricultural Research Center, Molecular Plant Pathology fected with seed-transmitted partitiviruses and the Laboratory, Beltsville, MD 20705, USA © The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Jiang et al. Virology Journal (2019) 16:153 Page 2 of 12 biological significance of these in alfalfa is currently un- were not available for experimental confirmation of the known and requires further investigation [11, 12]. transcriptomic data. For the MsAV1 experiments, the Publicly available transcriptomic datasets have became same RNA samples employed in Nemchinov et al. [18] a valuable tool for the discovery of new pathogens, par- were used. Total RNA was extracted as previously de- ticularly viral sequences [11, 13–16]. The retrieval of scribed [18]. The 5′ end and 3′ end of MsAV1 were complete or nearly complete viral genomes from tran- amplified using the SMARTer RACE 5′/3′ Kit (Takara scriptomic data improves our knowledge of the diversity Bio USA, Inc., Madison. WI). The primers used for 5′/ and host range of these pathogens and provides essential 3′ RACE and the specific RT-PCR detection of the virus tools for their diagnostics and characterization. In this are listed in the Additional file 1. Phylogenetic trees study, we performed a systematic survey of alfalfa tran- were constructed using MEGA 7 software [19] by apply- scriptomic datasets publicly available at NCBI. The sur- ing maximum likelihood method (with 1000 replicates) vey indicated that approximately 90% of Medicago sativa based on the JTT matrix-based model. The protein se- samples employed in the generation of the deposited quences were aligned by Cluster W incorporated into datasets contained viruses. Several emerging viruses MEGA7. The sequence pairwise identity analysis of were identified that had not been reported to infect al- MsAV1 RdRp sequences was performed using the falfa prior to this study or had not been experimentally MAFFT program of the Sequence Demarcation Tool confirmed in the plant. (http://web.cbio.uct.ac.za/~brejnev/). The SIAS tool that calculates pairwise sequence identity and similarity from Methods multiple sequence alignments (http://imed.med.ucm.es/ Viral sequences were identified in alfalfa datasets re- Tools/sias.html) was used to predict amino acid iden- trieved from the NCBI Sequence Read Archive (https:// tities between the Pro-Pol regions of cnidium vein yel- www.ncbi.nlm.nih.gov/sra). The raw sequencing reads lowing virus (CnVYV) and lychnis mottle virus were first mapped to the reference genomes of Medicago (LycMoV). sativa (http://www.medicagohapmap.org/downloads/ cadl)andMedicago truncatula (http://www.medicago- Results genome.org/) with the Bowtie2 software described We performed a systematic survey of 655 alfalfa tran- below. Those reads that did not map to the reference ge- scriptomic datasets publicly available from the NCBI. nomes were assembled into contigs using SPAdes The survey indicated that approximately 90% of Medi- (v.3.12.0) and searched (BLASTn with default setting cago sativa samples employed in the generation of the and the following parameters: 20 threads, two align- deposited datasets contained viruses. Twenty three dif- ments and two descriptions) against other plant ge- ferent viruses were found in these transcriptomes, in- nomes (rice, apple, beet, arabidopsis and tomato) to cluding several viruses not previously reported in alfalfa. check for possible cross-run contamination. Reads that The heterogeneity of the viral contigs identified in this did not map to any plant species were aligned to the study is summarized in Fig. 1 (see Additional file 2 for NCBI viral genome database (https://www.ncbi.nlm.nih. details). Essentially complete viral genomes were assem- gov/genome/viruses/). The alignments were performed bled for three emerging alfalfa viruses that have not been using BBMap (v. 37.66), SeqMan Ngen (version 15.2.0, identified in alfalfa prior to this study (CnVYV, LycMoV build number 130; mer size 17–21, minimum match and Cactus virus X) and for one virus that had not been percentage 85%) and Bowtie 2 (v.2.3.4) with the follow- experimentally confirmed in the plant (MsAV1). ing very sensitive settings: -D 20 -R 3 -N 0 -L 20 -i S, 1, 0.50 and -p 20 (threads). In general, the very sensitive Medicago sativa amalgavirus 1 (MsAV1) settings increase the search effort of Bowtie2 (D, R) by The Medicago sativa amalgavirus 1 sequence was origin- increasing the cutoffs for which Bowtie would stop ally reported by Wang and Zhang in 2013 under the searching. The length of the seed substring (L) was GenBank accession GAFF01077243.1 and later dubbed shortened to 20 from 22 and the interval (i) between MsAV1 by Nibert et al. [20]. Prior to this study, the substrings was decreased to 0.50. The reads that were virus was not found in the US and its sequence had not mapped to the reference viral sequences related to the been experimentally confirmed. viruses of interest and to the assembled viral contigs The RNA-seq data in which the virus reads were dis- from the datasets, were sequestered and assembled de covered, derived from the publicly available datasets novo using SPAdes (v.3.12.0) [17] with the following pa- SRR6050922 to SRR6050957 generated in our laboratory rameters: kmers 21,31,41,51,81,91,95, −m 800 -t 20. Wet from the US alfalfa cultivars Maverick and ZG9830 [18]. lab experiments to confirm the identified viral sequences The identified raw viral reads were mapped to the refer- were performed only with Medicago sativa amalgavirus ence genome of MsAV1 (GAFF01077243.1; NC_ 1 (MsAV1). Plant materials infected with other viruses 040591.1) [20, 21] by Bowtie2 [22]. Each assembled Jiang et al. Virology Journal (2019) 16:153 Page 3 of 12 Fig. 1 Virome heterogeneity found in 655 publicly available alfalfa transcriptomic datasets. * indicates viruses not previously reported in alfalfa. Highlighted are viruses that were characterized in this study transcriptome was individually searched for amalgavirus addition, the assembled contigs were searched with sequences using the BLAST tool [23]. The numbers of BLASTX against a database of the RNA-dependent RNA amalgavirus reads found in the datasets are listed in polymerase (RdRp) motif sequences of known RNA vi- Fig.
Recommended publications
  • Grapevine Virus Diseases: Economic Impact and Current Advances in Viral Prospection and Management1
    1/22 ISSN 0100-2945 http://dx.doi.org/10.1590/0100-29452017411 GRAPEVINE VIRUS DISEASES: ECONOMIC IMPACT AND CURRENT ADVANCES IN VIRAL PROSPECTION AND MANAGEMENT1 MARCOS FERNANDO BASSO2, THOR VINÍCIUS MArtins FAJARDO3, PASQUALE SALDARELLI4 ABSTRACT-Grapevine (Vitis spp.) is a major vegetative propagated fruit crop with high socioeconomic importance worldwide. It is susceptible to several graft-transmitted agents that cause several diseases and substantial crop losses, reducing fruit quality and plant vigor, and shorten the longevity of vines. The vegetative propagation and frequent exchanges of propagative material among countries contribute to spread these pathogens, favoring the emergence of complex diseases. Its perennial life cycle further accelerates the mixing and introduction of several viral agents into a single plant. Currently, approximately 65 viruses belonging to different families have been reported infecting grapevines, but not all cause economically relevant diseases. The grapevine leafroll, rugose wood complex, leaf degeneration and fleck diseases are the four main disorders having worldwide economic importance. In addition, new viral species and strains have been identified and associated with economically important constraints to grape production. In Brazilian vineyards, eighteen viruses, three viroids and two virus-like diseases had already their occurrence reported and were molecularly characterized. Here, we review the current knowledge of these viruses, report advances in their diagnosis and prospection of new species, and give indications about the management of the associated grapevine diseases. Index terms: Vegetative propagation, plant viruses, crop losses, berry quality, next-generation sequencing. VIROSES EM VIDEIRAS: IMPACTO ECONÔMICO E RECENTES AVANÇOS NA PROSPECÇÃO DE VÍRUS E MANEJO DAS DOENÇAS DE ORIGEM VIRAL RESUMO-A videira (Vitis spp.) é propagada vegetativamente e considerada uma das principais culturas frutíferas por sua importância socioeconômica mundial.
    [Show full text]
  • Viral Diseases of Pitaya and Other Cactaceae Plants
    Improving Pitaya Production and Marketing VIRAL DISEASES OF PITAYA AND OTHER CACTACEAE PLANTS Yong-Shi Li1, Ching-Hua Mao1, Ting-Yi Kuo2, and Ya-Chun Chang1 1 Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan 2 Master Program for Plant Medicine, National Taiwan University, Taipei, Taiwan E-mail: [email protected] ABSTRACT Pitaya (Hylocereus spp.), also called dragon fruit, pitahaya or pitajaya, native to the forests of Latin America, and the West Indies, belongs to the family of Cactaceae. Among the cactus fruit crops, pitaya is classified as the climbing epiphytic species and produces edible fruits which have sweet pulps with numerous small black seeds on the trailing cladode stems. Due to the progress in breeding and cultivation techniques in Taiwan, pitaya is becoming an important fruit crop in the domestic and foreign markets. During a disease survey of pitaya in Taiwan, some plants were found with systemic mild mottling on the stems, and these were found to be infected by a potexvirus, Cactus virus X (CVX). In addition, another two potexviruses Zygocactus virus X (ZyVX) and Pitaya virus X (PiVX), were identified later in Taiwan. Because of the similar features of Cactaceae plants, there is high possibility that cactus-infecting viruses will infect pitaya just like CVX and ZyVX did. The objective of this article is to provide information of viral diseases of pitaya and other Cactaceae plants so as to help further study of pitaya- infecting viruses and propose the control strategy. Keywords: pitaya, Hylocereus, Cactaceae, viral diseases INTRODUCTION Pitaya, also called dragon fruit, pitahaya or pitajaya, native to the forests of northern South America, Central America, Mexico, and the West Indies, belongs to the genus Hylocereus in the family of Cactaceae (Mizrahi et al.
    [Show full text]
  • Downloaded in July 2020
    viruses Article The Phylogeography of Potato Virus X Shows the Fingerprints of Its Human Vector Segundo Fuentes 1, Adrian J. Gibbs 2 , Mohammad Hajizadeh 3, Ana Perez 1 , Ian P. Adams 4, Cesar E. Fribourg 5, Jan Kreuze 1 , Adrian Fox 4 , Neil Boonham 6 and Roger A. C. Jones 7,* 1 Crop and System Sciences Division, International Potato Center, La Molina Lima 15023, Peru; [email protected] (S.F.); [email protected] (A.P.); [email protected] (J.K.) 2 Emeritus Faculty, Australian National University, Canberra, ACT 2600, Australia; [email protected] 3 Plant Protection Department, Faculty of Agriculture, University of Kurdistan, Sanandaj 6617715175, Iran; [email protected] 4 Fera Science Ltd., Sand Hutton York YO41 1LZ, UK; [email protected] (I.P.A.); [email protected] (A.F.) 5 Departamento de Fitopatologia, Universidad Nacional Agraria, La Molina Lima 12056, Peru; [email protected] 6 Institute for Agrifood Research Innovations, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; [email protected] 7 UWA Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia * Correspondence: [email protected] Abstract: Potato virus X (PVX) occurs worldwide and causes an important potato disease. Complete PVX genomes were obtained from 326 new isolates from Peru, which is within the potato crop0s main Citation: Fuentes, S.; Gibbs, A.J.; domestication center, 10 from historical PVX isolates from the Andes (Bolivia, Peru) or Europe (UK), Hajizadeh, M.; Perez, A.; Adams, I.P.; and three from Africa (Burundi). Concatenated open reading frames (ORFs) from these genomes Fribourg, C.E.; Kreuze, J.; Fox, A.; plus 49 published genomic sequences were analyzed.
    [Show full text]
  • Recent Advances on Detection and Characterization of Fruit Tree Viruses Using High-Throughput Sequencing Technologies
    viruses Review Recent Advances on Detection and Characterization of Fruit Tree Viruses Using High-Throughput Sequencing Technologies Varvara I. Maliogka 1,* ID , Angelantonio Minafra 2 ID , Pasquale Saldarelli 2, Ana B. Ruiz-García 3, Miroslav Glasa 4 ID , Nikolaos Katis 1 and Antonio Olmos 3 ID 1 Laboratory of Plant Pathology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; [email protected] 2 Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/D, 70126 Bari, Italy; [email protected] (A.M.); [email protected] (P.S.) 3 Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113 Moncada, Valencia, Spain; [email protected] (A.B.R.-G.); [email protected] (A.O.) 4 Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovak Republic; [email protected] * Correspondence: [email protected]; Tel.: +30-2310-998716 Received: 23 July 2018; Accepted: 13 August 2018; Published: 17 August 2018 Abstract: Perennial crops, such as fruit trees, are infected by many viruses, which are transmitted through vegetative propagation and grafting of infected plant material. Some of these pathogens cause severe crop losses and often reduce the productive life of the orchards. Detection and characterization of these agents in fruit trees is challenging, however, during the last years, the wide application of high-throughput sequencing (HTS) technologies has significantly facilitated this task. In this review, we present recent advances in the discovery, detection, and characterization of fruit tree viruses and virus-like agents accomplished by HTS approaches.
    [Show full text]
  • EPPO Reporting Service
    ORGANISATION EUROPEENNE EUROPEAN AND MEDITERRANEAN ET MEDITERRANEENNE PLANT PROTECTION POUR LA PROTECTION DES PLANTES ORGANIZATION EPPO Reporting Service NO. 1 PARIS, 2008-01-01 CONTENTS _____________________________________________________________________ Pests & Diseases 2008/001 - First report of Tuta absoluta in Spain 2008/002 - Anoplophora chinensis found in the Netherlands 2008/003 - Incursion of Aculops fuchsiae in Germany 2008/004 - First report of Raoiella indica in Florida (US) 2008/005 - Clavibacter michiganensis subsp. michiganensis found in the Netherlands 2008/006 - First report of Tomato chlorotic dwarf viroid on Petunia in the United Kingdom 2008/007 - First report of Columnea latent viroid on tomatoes in the United Kingdom 2008/008 - Potato spindle tuber viroid detected on ornamental Solanaceae in Italy 2008/009 - Incursion of Potato spindle tuber viroid on ornamental Solanaceae in Austria 2008/010 - New host plant records for pospiviroids 2008/011 - Leucinodes orbonalis is regularly intercepted in the EPPO region: addition to the EPPO Alert List 2008/012 - Corn stunt: addition of Spiroplasma kunkelii to the EPPO Alert List 2008/013 - Maize redness in Serbia is associated with ‘Candidatus Phytoplasma solani’ and possibly transmitted by Reptalus panzeri 2008/014 - Cactus virus X found on Hylocereus sp. in Israel 2008/015 - BBA is now part of the ‘Federal Research Centre for Cultivated Plants – Julius Kuehn Institute’ CONTENTS _______________________________________________________________________Invasive Plants 2008/016 - The invasive shrub Buddleia davidii performs better in its introduced range 2008/017 - Invasive plants of Asian origin established in the USA 2008/018 - Akebia quinata in the EPPO region: addition to the EPPO Alert List 2008/019 - A Spanish law on Invasive Alien Species 2008/020 - Second Symposium "Intractable Weeds and Plant Invaders", 2008-09-14/18, Osijek, Croatia 2008/021 - 5th International Weed Science Congress, 2008-06-23/27, Vancouver (CA) 1, rue Le Nôtre Tel.
    [Show full text]
  • Rapid Protein Sequence Evolution Via Compensatory Frameshift Is Widespread in RNA Virus Genomes
    Park and Hahn BMC Bioinformatics (2021) 22:251 https://doi.org/10.1186/s12859-021-04182-9 RESEARCH Open Access Rapid protein sequence evolution via compensatory frameshift is widespread in RNA virus genomes Dongbin Park and Yoonsoo Hahn* *Correspondence: [email protected] Abstract Department of Life Science, Background: RNA viruses possess remarkable evolutionary versatility driven by the Chung-Ang University, Seoul 06794, South Korea high mutability of their genomes. Frameshifting nucleotide insertions or deletions (indels), which cause the premature termination of proteins, are frequently observed in the coding sequences of various viral genomes. When a secondary indel occurs near the primary indel site, the open reading frame can be restored to produce functional proteins, a phenomenon known as the compensatory frameshift. Results: In this study, we systematically analyzed publicly available viral genome sequences and identifed compensatory frameshift events in hundreds of viral protein- coding sequences. Compensatory frameshift events resulted in large-scale amino acid diferences between the compensatory frameshift form and the wild type even though their nucleotide sequences were almost identical. Phylogenetic analyses revealed that the evolutionary distance between proteins with and without a compensatory frameshift were signifcantly overestimated because amino acid mismatches caused by compensatory frameshifts were counted as substitutions. Further, this could cause compensatory frameshift forms to branch in diferent locations in the protein and nucleotide trees, which may obscure the correct interpretation of phylogenetic rela- tionships between variant viruses. Conclusions: Our results imply that the compensatory frameshift is one of the mecha- nisms driving the rapid protein evolution of RNA viruses and potentially assisting their host-range expansion and adaptation.
    [Show full text]
  • A-Lovisolo.Vp:Corelventura
    Acta zoologica cracoviensia, 46(suppl.– Fossil Insects): 37-50, Kraków, 15 Oct., 2003 Searching for palaeontological evidence of viruses that multiply in Insecta and Acarina Osvaldo LOVISOLO and Oscar RÖSLER Received: 31 March, 2002 Accepted for publication: 17 Oct., 2002 LOVISOLO O., RÖSLER O. 2003. Searching for palaeontological evidence of viruses that multiply in Insecta and Acarina. Acta zoologica cracoviensia, 46(suppl.– Fossil Insects): 37-50. Abstract. Viruses are known to be agents of important diseases of Insecta and Acarina, and many vertebrate and plant viruses have arthropods as propagative vectors. There is fossil evidence of arthropod pathogens for some micro-organisms, but not for viruses. Iso- lated virions would be hard to detect but, in fossil material, it could be easier to find traces of virus infection, mainly virus-induced cellular structures (VICS), easily recognisable by electron microscopy, such as virions encapsulated in protein occlusion bodies, aggregates of membrane-bounded virus particles and crystalline arrays of numerous virus particles. The following main taxa of viruses that multiply in arthropods are discussed both for some of their evolutionary aspects and for the VICS they cause in arthropods: A. dsDNA Poxviridae, Asfarviridae, Baculoviridae, Iridoviridae, Polydnaviridae and Ascoviridae, infecting mainly Lepidoptera, Hymenoptera, Coleoptera, Diptera and Acarina; B. ssDNA Parvoviridae, infecting mainly Diptera and Lepidoptera; C. dsRNA Reoviridae and Bir- naviridae, infecting mainly Diptera, Hymenoptera and Acarina, and plant viruses also multiplying in Hemiptera; D. Amb.-ssRNA Bunyaviridae and Tenuivirus, that multiply in Diptera and Hemiptera (animal viruses) and in Thysanoptera and Hemiptera (plant vi- ruses); E. -ssRNA Rhabdoviridae, multiplying in Diptera and Acarina (vertebrate vi- ruses), and mainly in Hemiptera (plant viruses); F.
    [Show full text]
  • Viruses Virus Diseases Poaceae(Gramineae)
    Viruses and virus diseases of Poaceae (Gramineae) Viruses The Poaceae are one of the most important plant families in terms of the number of species, worldwide distribution, ecosystems and as ingredients of human and animal food. It is not surprising that they support many parasites including and more than 100 severely pathogenic virus species, of which new ones are being virus diseases regularly described. This book results from the contributions of 150 well-known specialists and presents of for the first time an in-depth look at all the viruses (including the retrotransposons) Poaceae(Gramineae) infesting one plant family. Ta xonomic and agronomic descriptions of the Poaceae are presented, followed by data on molecular and biological characteristics of the viruses and descriptions up to species level. Virus diseases of field grasses (barley, maize, rice, rye, sorghum, sugarcane, triticale and wheats), forage, ornamental, aromatic, wild and lawn Gramineae are largely described and illustrated (32 colour plates). A detailed index Sciences de la vie e) of viruses and taxonomic lists will help readers in their search for information. Foreworded by Marc Van Regenmortel, this book is essential for anyone with an interest in plant pathology especially plant virology, entomology, breeding minea and forecasting. Agronomists will also find this book invaluable. ra The book was coordinated by Hervé Lapierre, previously a researcher at the Institut H. Lapierre, P.-A. Signoret, editors National de la Recherche Agronomique (Versailles-France) and Pierre A. Signoret emeritus eae (G professor and formerly head of the plant pathology department at Ecole Nationale Supérieure ac Agronomique (Montpellier-France). Both have worked from the late 1960’s on virus diseases Po of Poaceae .
    [Show full text]
  • Exploring the Tymovirids Landscape Through Metatranscriptomics Data
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.15.452586; this version posted July 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Exploring the tymovirids landscape through metatranscriptomics data 2 Nicolás Bejerman1,2, Humberto Debat1,2 3 4 1 Instituto de Patología Vegetal – Centro de Investigaciones Agropecuarias – Instituto Nacional de 5 Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5 (X5020ICA), Córdoba, 6 Argentina 7 2 Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización 8 Agrícola, Camino 60 Cuadras Km 5,5 (X5020ICA), Córdoba, Argentina 9 10 Corresponding author: Nicolás Bejerman, [email protected] 11 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.15.452586; this version posted July 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 12 Abstract 13 Tymovirales is an order of viruses with positive-sense, single-stranded RNA genomes that mostly infect 14 plants, but also fungi and insects. The number of tymovirid sequences has been growing in the last few 15 years with the extensive use of high-throughput sequencing platforms. Here we report the discovery of 31 16 novel tymovirid genomes associated with 27 different host plant species, which were hidden in public 17 databases.
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person
    [Show full text]
  • Current Developments and Challenges in Plant Viral Diagnostics: a Systematic Review
    viruses Review Current Developments and Challenges in Plant Viral Diagnostics: A Systematic Review Gajanan T. Mehetre 1, Vincent Vineeth Leo 1 , Garima Singh 2 , Antonina Sorokan 3, Igor Maksimov 3, Mukesh Kumar Yadav 4, Kalidas Upadhyaya 5,*, Abeer Hashem 6,7, Asma N. Alsaleh 6 , Turki M. Dawoud 6, Khalid S. Almaary 6 and Bhim Pratap Singh 8,* 1 Department of Biotechnology, Mizoram University, Aizawl, Mizoram 796004, India; [email protected] (G.T.M.); [email protected] (V.V.L.) 2 Department of Botany, Pachhunga University College, Aizawl, Mizoram 796001, India; [email protected] 3 Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, pr. Oktyabrya 71, 450054 Ufa, Russia; [email protected] (A.S.); [email protected] (I.M.) 4 Department of Biotechnology, Pachhunga University College, Aizawl, Mizoram 796001, India; [email protected] 5 Department of Forestry, Mizoram University, Aizawl, Mizoram 796004, India 6 Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia; [email protected] (A.H.); [email protected] (A.N.A.); [email protected] (T.M.D.); [email protected] (K.S.A.) 7 Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza 12511, Egypt 8 Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Industrial Estate, Kundli 131028, India * Correspondence: [email protected] (K.U.); [email protected] (B.P.S.); Tel.: +91-9436374242 (K.U.); Citation: Mehetre, G.T.; Leo, V.V.; +91-9436353807 (B.P.S.) Singh, G.; Sorokan, A.; Maksimov, I.; Yadav, M.K.; Upadhyaya, K.; Hashem, Abstract: Plant viral diseases are the foremost threat to sustainable agriculture, leading to several A.; Alsaleh, A.N.; Dawoud, T.M.; et al.
    [Show full text]
  • EPPO Reporting Service
    ORGANISATION EUROPEENNE EUROPEAN AND MEDITERRANEAN ET MEDITERRANEENNE PLANT PROTECTION POUR LA PROTECTION DES PLANTES ORGANIZATION OEPP Service d'Information NO. 1 PARIS, 2008-01-01 SOMMAIRE_________________________________________________________________ Ravageurs & Maladies 2008/001 - Premier signalement de Tuta absoluta en Espagne 2008/002 - Anoplophora chinensis trouvé aux Pays-Bas 2008/003 - Incursion d'Aculops fuchsiae en Allemagne 2008/004 - Premier signalement de Raoiella indica en Florida (US) 2008/005 - Clavibacter michiganensis subsp. michiganensis trouvé aux Pays-Bas 2008/006 - Premier signalement du Tomato chlorotic dwarf viroid sur Petunia au Royaume-Uni 2008/007 - Premier signalement du Columnea latent viroid sur tomate au Royaume-Uni 2008/008 - Le Potato spindle tuber viroid détecté sur Solanaceae ornementales en Italie 2008/009 - Incursion du Potato spindle tuber viroid sur Solanaceae ornementales en Autriche 2008/010 - Nouveaux signalements de plante-hôtes pour les pospiviroïdes 2008/011 - Leucinodes orbonalis est régulièrement intercepté dans la région OEPP: addition à la Liste d'Alerte de l'OEPP 2008/012 - Rabougrissement du maïs: addition de Spiroplasma kunkelii à la Liste d'Alerte de l'OEPP 2008/013 - Le rougissement du maïs en Serbie est associé au ‘Candidatus Phytoplasma solani’ et peut- être transmis par Reptalus panzeri 2008/014 - Le Cactus virus X trouvé sur Hylocereus sp. en Israël 2008/015 - La BBA fait désormais partie du ‘Centre fédéral de recherche pour les plantes cultivées – Institut Julius Kuehn’ SOMMAIRE_________________________________________________________________
    [Show full text]