SmithChart & MatchingNetwork

James Lu

JamesJ.Q.Lu ECSE2100Fields&WavesI 1

NonmatchedImpedance(0)

• ReflectionsleadtoZin variationswithline lengthand • Poweriswastedbecauseofreactivepower, whichcanalsodamageequipmentduring shortcircuit(forexample) • Onlypartialpowerisdeliveredtotheload. • SWR>1:therewillbevoltagemaximaon theline,voltagebreakdownathighpower levels • Noises(bouncesorechoes)

JamesJ.Q.Lu ECSE2100Fields&WavesI 2 BenefitsofMatching(=0)

• Zin =ZO, independentoflinelength, andfrequency(overthebandwidth ofthematchingnetwork) • Maximumpowertransfertotheload isachieved • SWR=1:novoltagepeaksontheline • Nobounces(echoes)

JamesJ.Q.Lu ECSE2100Fields&WavesI 3 UQ

LoadMatching

What if the load cannot be made equal to Zo for some other reasons? Then, we need to build a matching network so that the source effectively sees a match load.

Ps Z0 M ZL

  0

Typically we only want to use lossless devices such as capacitors, inductors, transmission lines, in our matching network so that we do not dissipate any power in the network and deliver all the available power to the load.

JamesJ.Q.Lu ECSE2100Fields&WavesI 4 NormalizedImpedance It will be easier if we normalize the load impedance to the of the attached to the load. Z z   r  jx Zo 1  z  1  Since the impedance is a , the will be a complex number   u  jv

 2  2 2v  1 u v x  r  2  2 1 u 2  v2 1 u v

JamesJ.Q.Lu ECSE2100Fields&WavesI 5

SmithCharts The impedance as a function of reflection coefficient can be re-written in the form:  2  2 C r S2 1  1 u v Du  T  v2  r  2 1 u 2  v2 E 1 r U 1 r

2v C S2 x   2   1  1  2  2 u 1 Dv T 1 u v E x U x2

These are equations for circles on the (u,v) plane 2 2 2 x  xo  (y  yo )  a

JamesJ.Q.Lu ECSE2100Fields&WavesI 6 SmithChart– RealCircles

1 Im  1 Circle

0.5

r=0 r=1/3 r=1 r=2.5  1 0.5 0 0.5 1 Re

0.5

1

JamesJ.Q.Lu ECSE2100Fields&WavesI 7

SmithChart– ImaginaryCircles Im1 

x=1/3 x=1 x=2.5 0.5

 1 0.5 0 0.5 1 Re

x=-1/3 x=-1 x=-2.5 0.5

1

JamesJ.Q.Lu ECSE2100Fields&WavesI 8 z L1   L  Impedances, voltages, SmithChart z L1 currents, etc. all repeat 1  every half zL  r L jxL 1 

1 l   e j2 l zl  l 1 l   j 4 l Inductive  e  TG W R z=1+j 1  W S   ro (atP max) S 1 

z=1 ro Short P  Open Pmin =0 Pmax (z=0) (z=) 

=1 =1

L y=1/(1+j)

T W =0.5-j0.5 Capacitive

Purely real impedances along Purely imaginary impedances the horizontal centre line along the periphery

JamesJ.Q.Lu ECSE2100Fields&WavesI 9

SmithChartExample1

Given:   - L 0.5 45 Z  50 o G

WT What is ZL?

ZL  501.39  j1.35

 69.5  j67.5

L

T W

JamesJ.Q.Lu ECSE2100Fields&WavesI 10 SmithChartExample2

Given:     ZL 15 j25   Zo 50

 G What is L? WT 15  j25 z  L 50  0.3 j0.5

L  0.6- 123

z1 = 2 + j

z2 = 1.5 -j2 L

T z3 = j4 W z4 = 3 z5 = infinity z6 = 0 z7 = 1 z8 = 3.68 -j18

JamesJ.Q.Lu ECSE2100Fields&WavesI 11

SmithChartExample3

    Given: ZL 50 j50   Zo 50   6.78ns

G

WT What is Zin at 50 MHz? 50  j50 z  L 50 1.0  j1.0   - L 0.445 64

   e j2l   e j4 l /    e j2

in L L L L

T 2  244  W l  f  504106 46.78410 9   0.339

in 180   - in 0.445 180

Zin  500.38  j0.0 19

JamesJ.Q.Lu ECSE2100Fields&WavesI 12

A matching network is going to be a combination of elements connected in series AND parallel. Z1 Impedance is well suited when working with series configurations. For example: Z2    V ZI ZL Z1 Z2

Impedance is NOT well suited when working with parallel configurations. Z1 Z2 Z Z Z  1 2 L  Z1 Z2

For parallel loads it is better to work with admittance.  1 Y1 Y2  Y1   I YV Z1 YL Y1 Y2

JamesJ.Q.Lu ECSE2100Fields&WavesI 13

NormalizedAdmittance  Y    y YZo g jb Yo 1  y  1  2 1 u2  v2 C g S 1  Du  T  v2  g D  T 2 1 u 2  v2 E 1 g U 1 g

 2v C S2 b   2   1  1  2  2 u 1 Dv T 1 u v E b U b2

These are equations for circles on the (u,v) plane

JamesJ.Q.Lu ECSE2100Fields&WavesI 14 AdmittanceSmithChart

Conductance Circles Circles

1 1  Im Im b=-1 b=-1/3 b=-2.5 0.5 0.5

 g=2.5 g=1 g=1/3 g=0 b= 1 0.5 0 0.5 1 1 g= 0.5 0 0.5Re 1 Re

b=2.5 b=1/3

0.5 0.5 b=1

1 1

JamesJ.Q.Lu ECSE2100Fields&WavesI 15

ImpedanceandAdmittanceSmithCharts

• For a matching network that contains elements connected in series and parallel, we will need two types of Smith charts Z impedance Smith chart Z admittance Smith Chart • The admittance Smith chart is the impedance Smith chart rotated 180 degrees. – We could use one Smith chart and flip the reflection coefficient vector 180 degrees when switching between a series configuration to a parallel configuration.

JamesJ.Q.Lu ECSE2100Fields&WavesI 16 AdmittanceSmithChartExample1 Given: y 1 j1

Find z G

WT • Procedure: Plot y •Plot 1+j1 on chart •vector =0.445-64 Flip 180 •Flip vector 180 degrees degrees   0.445- 116

Read L

T  & z

z  0.5  j0.5 W

JamesJ.Q.Lu ECSE2100Fields&WavesI 17

AdmittanceSmithChartExample2 Given:   -    0.5 45 Zo 50 Find Y G • Procedure: WT •Plot Plot  • Flip vector by 180 degrees • Read coordinate Read y Flip 180

degrees

L

y  0.38  j0.36 T W 1 Y  0.38  j0.36 50   7.6  j7.2 410 3 S

JamesJ.Q.Lu ECSE2100Fields&WavesI 18 MatchingExample

   Ps Z0 50 M 100

  0

Match 100 load to a 50 system at 100MHz

A 100 resistor in parallel would do the trick, but ½ of the power would be dissipated in the matching network. We want to use only lossless elements such as inductors and capacitors so we don’t dissipate any power in the matching network

JamesJ.Q.Lu ECSE2100Fields&WavesI 19

MatchingExample

We need to go from z=2+j0 to z=1+j0 on the Smith chart We won’t get any G closer by adding WT series impedance so we will need to add something in parallel. We need to flip over to the admittance

chart

L

T W

Impedance Chart

JamesJ.Q.Lu ECSE2100Fields&WavesI 20 MatchingExample

y=0.5+j0 Before we add the admittance, add a

mirror of the r=1 G

circle as a guide. WT

L

T W

Admittance Chart

JamesJ.Q.Lu ECSE2100Fields&WavesI 21

MatchingExample

y=0.5+j0 Before we add the admittance, add a

mirror of the r=1 G circle as a guide WT Now add positive imaginary

admittance.

L

T W

Admittance Chart

JamesJ.Q.Lu ECSE2100Fields&WavesI 22 MatchingExample

y=0.5+j0 Before we add the admittance, add a

mirror of the r=1 G circle as a guide WT Now add positive imaginary admittance jb = j0.5 jb  j0.5 j0.5

 j2100MHz C

L 50 T C 16pF W

 16pF 100 Admittance Chart

JamesJ.Q.Lu ECSE2100Fields&WavesI 23

MatchingExample

We will now add series impedance Flip to the

impedance Smith G Chart WT We land at on the r=1 circle at x=-1, i.e.

z = 1 – j1

L

T W

Impedance Chart

JamesJ.Q.Lu ECSE2100Fields&WavesI 24 MatchingExample

Add positive imaginary admittance to get to z=1+j0 G

WT jx  j1.0 j1.0 50  j2 100MHz L

L  80nH

80nH L T W

16pF 100 Impedance Chart

JamesJ.Q.Lu ECSE2100Fields&WavesI 25

MatchingExample

This solution would have also worked

G

WT

32pF

L

T W

160nH 100 Impedance Chart

JamesJ.Q.Lu ECSE2100Fields&WavesI 26 MatchingBandwidth

0 80 nH

5 16 pF  10 100 G T W 15 150 MHz

20

25 Reflection Coefficient (dB) 30

35

50 MHz L

40 T 50 60 70 80 90 100 110 120 130 140 150 W Frequency (MHz)

Because the inductor and capacitor impedances change with frequency, the match works over a narrow frequency range Impedance Chart

JamesJ.Q.Lu ECSE2100Fields&WavesI 27

SingleStubTuner

yl1 l 1

yl2 Z Z0 Z0 L

Z Goal:   0 0 z =1 (y =1) l   in in 2 Open 1 1 l or yl   Short zl 1 l 2 l = 1 l  e yin = yl1 + yl2 = (gl1 + jbl1) + jbl2

gl1 = 1 (real-part condition) Stub length l =  up=f bl1 = -bl2 (imaginary-part condition) Phase shift:  =2l=2(2/)l=4(l/) (2 Degrees of freedom) Open: Z = -jZ cotl, or z = -jcotl in o l in l Short: Zin = jZotan , or zin = jtan JamesJ.Q.Lu ECSE2100Fields&WavesI 28 SingleStubTuner Match 100 load to a 50 system at 100MHz using two transmission lines connected in parallel

Flip to Admittance G chart WT y=0.5+j0 Adding length to Cable 1 rotates the reflection

coefficient

L

clockwise to g=1. T W

l1 = 0.152

y1l=1+j0.72 Admittance Chart JamesJ.Q.Lu ECSE2100Fields&WavesI 29

SingleStubTuner

The stub has to add a normalized admittance of -0.72

to bring the G trajectory to the WT center of the Smith

Chart

L

T W

Admittance Chart

JamesJ.Q.Lu ECSE2100Fields&WavesI 30 SingleStubTuner

An short stub of zero length has an admittance=j By adding enough G WT cable to the short stub, the admittance of the stub will

reach to -0.72

L

T W

l2 = (0.401-0.25) = 0.151

Admittance Chart

JamesJ.Q.Lu ECSE2100Fields&WavesI 31

SingleStubTuner

100 l1 = 0.152   0

G

l2 = 0.151 WT

L

T W

Admittance Chart

JamesJ.Q.Lu ECSE2100Fields&WavesI 32 SingleStubTuner

l1 = 0.347 100   0

G

l2 = 0.097 WT

This solution would

have worked as well.

L

T W An open stub of zero length has an admittance=j0 Admittance Chart

JamesJ.Q.Lu ECSE2100Fields&WavesI 33

SingleStubTunerMatchingBandwidth

l1 = 0.347    0 100

l = 0.097 G 2 T W 0

5

10

15

20 50 MHz

25

L

Reflection Coefficient (dB) T 30 W

35 150 MHz

40 50 60 70 80 90 100 110 120 130 140 15 Frequency (MHz) Because the cable phase changes linearly with frequency, the match works over a Impedance narrow frequency range Chart

JamesJ.Q.Lu ECSE2100Fields&WavesI 34 Summary • is necessary to: –reduce VSWR – obtain maximum power transfer • Lump reactive elements and a single stub can be used. • A quarter-wave line can also be used to transform resistance values, and act as an impedance inverter. • These matching network types are narrow-band: they are designed to operate at a single frequency only.

JamesJ.Q.Lu ECSE2100Fields&WavesI 36