Heuristic Algorithms for Graph Coloring Problems Wen Sun

Total Page:16

File Type:pdf, Size:1020Kb

Heuristic Algorithms for Graph Coloring Problems Wen Sun Heuristic Algorithms for Graph Coloring Problems Wen Sun To cite this version: Wen Sun. Heuristic Algorithms for Graph Coloring Problems. Data Structures and Algorithms [cs.DS]. Université d’Angers, 2018. English. NNT : 2018ANGE0027. tel-02136810 HAL Id: tel-02136810 https://tel.archives-ouvertes.fr/tel-02136810 Submitted on 22 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE DE DOCTORAT DE L'UNIVERSITE D'ANGERS COMUE UNIVERSITE BRETAGNE LOIRE ECOLE DOCTORALE N° 601 Mathématiques et Sciences et Technologies de l'Information et de la Communication Spécialité : Informatique, section CNU 27 Par Wen SUN Heuristic Algorithms for Graph Coloring Problems Thèse présentée et soutenue à Angers, le 29/11/2018 Unité de recherche : Laboratoire d'Étude et de Recherche en Informatique d'Angers (LERIA) Rapporteurs avant soutenance : Djamal HABET MC HDR, Université d'Aix-Marseille Olivier BAILLEUX MC HDR, Université de Bourgogne Composition du Jury : Examinateurs : Béatrice DUVAL Professeur, Université d'Angers Djamal HABET MC HDR, Université d'Aix-Marseille Marc SCHOENAUER Directeur de Recherche, INRIA Olivier BAILLEUX MC HDR, Université de Bourgogne Dir. de thèse : Jin-Kao HAO Professeur, Université d'Angers Co-dir. de thèse : Alexandre CAMINADA Professeur, Université Côte d’Azur Contents General Introduction7 1 Introduction 11 1.1 Graph coloring problem.................................. 12 1.1.1 Problem Introduction............................... 12 1.1.2 Exact algorithm................................... 12 1.1.3 Heuristic algorithm................................. 13 1.1.4 Summary...................................... 14 1.2 Equitable coloring problem................................ 15 1.2.1 Theoretical Studies................................. 15 1.2.2 Exact approaches.................................. 15 1.2.3 Heuristic approaches................................ 16 1.2.4 Summary...................................... 16 1.3 Weighted vertex coloring problem............................ 17 1.3.1 Exact approaches.................................. 18 1.3.2 Heuristic approaches................................ 18 1.3.3 Summary...................................... 18 1.4 k-vertex critical subgraphs problem............................ 19 1.4.1 Problem Introduction............................... 19 1.4.2 Exact approaches.................................. 20 1.4.3 Heuristic approaches................................ 20 1.4.4 Summary...................................... 20 2 A reduction-based memetic algorithm for GCP 21 2.1 Introduction......................................... 23 2.2 Memetic algorithm for the GCP.............................. 23 2.2.1 General approach.................................. 23 2.2.2 Population initialization.............................. 24 2.2.3 The adaptive multi-parent crossover procedure................ 27 2.2.4 Backbone-based group matching......................... 27 2.2.5 Weight tabu search improvement......................... 30 2.2.6 Uncoarsening phase................................ 31 2.2.7 Pool updating strategy............................... 32 2.3 Experimental results and comparisons.......................... 32 2.3.1 Benchmark instances................................ 33 2.3.2 Experiment settings................................ 33 2.3.3 Comparison with state-of-the-art algorithms.................. 35 2.3.4 Comparative results on easy instances...................... 35 2.3.5 Comparative results on difficult instances.................... 36 2.4 Analysis........................................... 37 3 4 CONTENTS 2.4.1 Effectiveness of the number of parents for RMA................ 37 2.4.2 Effectiveness of the different matching strategies for RMA.......... 37 2.4.3 Effectiveness of the perturbation operation................... 38 2.5 Conclusions......................................... 38 3 On feasible and infeasible search for ECP 41 3.1 Introduction......................................... 42 3.2 Basic definitions....................................... 42 3.3 Feasible and infeasible search algorithm for ECP.................... 43 3.3.1 General approach.................................. 43 3.3.2 Searching equity-feasible solutions........................ 44 3.3.3 Searching equity-infeasible solutions....................... 45 3.3.4 Perturbation of infeasible search......................... 47 3.4 Experimental results and comparisons.......................... 48 3.4.1 Experiment settings................................ 48 3.4.2 Comparison with state-of-the-art algorithms.................. 48 3.5 Analysis........................................... 49 3.5.1 Analysis of the penalty coefficient j ....................... 49 3.5.2 Impact of the perturbation operation....................... 49 3.6 Conclusions......................................... 52 4 Adaptive feasible and infeasible search for WVCP 53 4.1 Introduction......................................... 54 4.2 Adaptive feasible and infeasible search for the WVCP................. 54 4.2.1 General approach.................................. 54 4.2.2 Initial solution.................................... 55 4.2.3 Search space and penalty-based evaluation function.............. 55 4.2.4 Searching feasible and infeasible solutions with tabu search......... 57 4.2.5 Perturbation strategy................................ 59 4.2.6 Connections with existing studies........................ 60 4.3 Experimental results and comparisons.......................... 60 4.3.1 Benchmark instances................................ 60 4.3.2 Experimental settings............................... 61 4.3.3 Computational results and comparisons with state-of-the-art algorithms.. 62 4.4 Analysis........................................... 65 4.4.1 Impact of the penalty coefficient......................... 66 4.4.2 Benefit of searching both feasible and infeasible solutions.......... 67 4.4.3 Impact of the perturbation operation....................... 68 4.5 Conclusions......................................... 69 5 Iterated backtrack removal search for finding k-VCS 71 5.1 Introduction......................................... 72 5.2 Notations........................................... 72 5.3 The Iterated Backtrack-based Removal Algorithm................... 73 5.3.1 General structure of the IBR algorithm...................... 73 5.3.2 The removal algorithm............................... 76 5.3.3 Heuristic coloring algorithm........................... 76 5.3.4 Backtrack-based removal approach....................... 77 5.3.5 Perturbation operator of backtrack-based removal algorithm......... 78 5.3.6 Update procedure................................. 79 5.4 Experimental results and analysis............................. 81 CONTENTS 5 5.4.1 Experiment settings................................ 81 5.4.2 Instances and experimental settings....................... 83 5.4.3 Comparison with state of the art algorithm................... 83 5.5 Analysis and discussions.................................. 85 5.5.1 Effectiveness of different backtrack strategies for k-VCS detection...... 86 5.5.2 Effectiveness of perturbation for k-VCS detection............... 86 5.5.3 Effectiveness of backtrack for k-VCS detection................. 87 5.6 Conclusion.......................................... 87 General Conclusion 89 Appendix 93 List of Publications 95 List of Figures 97 List of Tables 100 References 109 General Introduction Context Graph vertex coloring problems are known to be very general and useful models to formulate numerous practical problems [Lewis, 2015]. Given an undirected graph G = (V, E) with the vertex set V = f1, 2, . , ng, the edge set E 2 V × V, graph vertex coloring problems typically involve assigning a color to each vertex of V such that two vertices linked by an edge must receive different colors while optimizing a given optimization objective. This thesis focuses on four generalized graph coloring problems, namely the graph color- ing problem (GCP), the equitable coloring problem (ECP), the weighted vertex coloring problem (WVCP) and the k-vertex critical subgraphs (k-VCS). The first one is the most basic graph coloring problem. The ECP requires that the sizes of two arbitrary color classes differ in at most one unit while the WVCP aims to minimize the sum of the largest weights of the vertices of each color class. The k-VCS is to find a subgraph H of G with minimum vertices such that removing any vertex from the subgraph H decreases its chromatic number. These four problems are practically relevant since they have wide applications in real world such as garbage collection, load balancing, timetabling, scheduling, operating system, manufac- turing, etc. From the perspective of computational theory, graph coloring problems belong to the class of the NP-hard problems, meaning that optimal solutions cannot be found in polynomial time in the general case. For solving large and challenging problem instances, heuristic and metaheuristic approaches are commonly used with the purpose of finding sub-optimal
Recommended publications
  • Indian Journal of Science ANALYSIS International Journal for Science ISSN 2319 – 7730 EISSN 2319 – 7749
    Indian Journal of Science ANALYSIS International Journal for Science ISSN 2319 – 7730 EISSN 2319 – 7749 Graph colouring problem applied in genetic algorithm Malathi R Assistant Professor, Dept of Mathematics, Scsvmv University, Enathur, Kanchipuram, Tamil Nadu 631561, India, Email Id: [email protected] Publication History Received: 06 January 2015 Accepted: 05 February 2015 Published: 18 February 2015 Citation Malathi R. Graph colouring problem applied in genetic algorithm. Indian Journal of Science, 2015, 13(38), 37-41 ABSTRACT In this paper we present a hybrid technique that applies a genetic algorithm followed by wisdom of artificial crowds that approach to solve the graph-coloring problem. The genetic algorithm described here, utilizes more than one parent selection and mutation methods depending u p on the state of fitness of its best solution. This results in shifting the solution to the global optimum, more quickly than using a single parent selection or mutation method. The algorithm is tested against the standard DIMACS benchmark tests while, limiting the number of usable colors to the chromatic numbers. The proposed algorithm succeeded to solve the sample data set and even outperformed a recent approach in terms of the minimum number of colors needed to color some of the graphs. The Graph Coloring Problem (GCP) is also known as complete problem. Graph coloring also includes vertex coloring and edge coloring. However, mostly the term graph coloring refers to vertex coloring rather than edge coloring. Given a number of vertices, which form a connected graph, the objective is that to color each vertex so that if two vertices are connected in the graph (i.e.
    [Show full text]
  • COLORING and DEGENERACY for DETERMINING VERY LARGE and SPARSE DERIVATIVE MATRICES ASHRAFUL HUQ SUNY Bachelor of Science, Chittag
    COLORING AND DEGENERACY FOR DETERMINING VERY LARGE AND SPARSE DERIVATIVE MATRICES ASHRAFUL HUQ SUNY Bachelor of Science, Chittagong University of Engineering & Technology, 2013 A Thesis Submitted to the School of Graduate Studies of the University of Lethbridge in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE Department of Mathematics and Computer Science University of Lethbridge LETHBRIDGE, ALBERTA, CANADA c Ashraful Huq Suny, 2016 COLORING AND DEGENERACY FOR DETERMINING VERY LARGE AND SPARSE DERIVATIVE MATRICES ASHRAFUL HUQ SUNY Date of Defence: December 19, 2016 Dr. Shahadat Hossain Supervisor Professor Ph.D. Dr. Daya Gaur Committee Member Professor Ph.D. Dr. Robert Benkoczi Committee Member Associate Professor Ph.D. Dr. Howard Cheng Chair, Thesis Examination Com- Associate Professor Ph.D. mittee Dedication To My Parents. iii Abstract Estimation of large sparse Jacobian matrix is a prerequisite for many scientific and engi- neering problems. It is known that determining the nonzero entries of a sparse matrix can be modeled as a graph coloring problem. To find out the optimal partitioning, we have proposed a new algorithm that combines existing exact and heuristic algorithms. We have introduced degeneracy and maximum k-core for sparse matrices to solve the problem in stages. Our combined approach produce better results in terms of partitioning than DSJM and for some test instances, we report optimal partitioning for the first time. iv Acknowledgments I would like to express my deep acknowledgment and profound sense of gratitude to my supervisor Dr. Shahadat Hossain, for his continuous guidance, support, cooperation, and persistent encouragement throughout the journey of my MSc program.
    [Show full text]
  • The Harmonious Coloring Problem Is NP-Complete for Interval and Permutation Graphsଁ Katerina Asdre, Kyriaki Ioannidou, Stavros D
    Discrete Applied Mathematics 155 (2007) 2377–2382 www.elsevier.com/locate/dam Note The harmonious coloring problem is NP-complete for interval and permutation graphsଁ Katerina Asdre, Kyriaki Ioannidou, Stavros D. Nikolopoulos Department of Computer Science, University of Ioannina, P.O. Box 1186, GR-45110 Ioannina, Greece Received 4 November 2006; received in revised form 25 May 2007; accepted 6 July 2007 Available online 14 September 2007 Abstract In this paper, we prove that the harmonious coloring problem is NP-complete for connected interval and permutation graphs. Given a simple graph G, a harmonious coloring of G is a proper vertex coloring such that each pair of colors appears together on at most one edge. The harmonious chromatic number is the least integer k for which G admits a harmonious coloring with k colors. Extending previous work on the NP-completeness of the harmonious coloring problem when restricted to the class of disconnected graphs which are simultaneously cographs and interval graphs, we prove that the problem is also NP-complete for connected interval and permutation graphs. © 2007 Elsevier B.V. All rights reserved. Keywords: Harmonious coloring; Harmonious chromatic number; Achromatic number; Interval graphs; Permutation graphs; NP-completeness 1. Introduction Many NP-complete problems on arbitrary graphs admit polynomial time algorithms when restricted to the classes of interval graphs and cographs; NP-complete problems for these two classes of graphs that become solvable in polynomial time can be found in [1,3,7,12,15,16]. However, the pair-complete coloring problem, which is NP-hard on arbitrary graphs [17], remains NP-complete when restricted to graphs that are simultaneously interval and cographs [4].Apair- complete coloring of a simple graph G is a proper vertex coloring such that each pair of colors appears together on at least one edge, while the achromatic number (G) is the largest integer k for which G admits a pair-complete coloring with k colors.
    [Show full text]
  • 3-Coloring Gnp3 in Polynomial Expected Time
    Mathematisch-Naturwissenschaftliche Fakultat¨ II Institut fur¨ Informatik Lehrstuhl fur¨ Algorithmen und Komplexit¨at Coloring sparse random k-colorable graphs in polynomial expected time Diplomarbeit eingereicht von: Julia B¨ottcher Gutachter: Dr. Amin Coja-Oghlan Dr. Mihyun Kang Berlin, den 5. Januar 2005 Erkl¨arung Hiermit erkl¨are ich, die vorliegende Arbeit selbstst¨andig verfasst und keine anderen als die angegebenen Hilfsmittel verwendet zu haben. Ich bin damit einverstanden, dass die vorliegen- de Arbeit in der Zentralbibliothek Naturwissenschaften der Humboldt-Universit¨at zu Berlin ¨offentlich ausgelegt wird. Berlin, den 5. Januar 2005 Julia B¨ottcher Zusammenfassung Nach wie vor stellt das Graphenf¨arbungsproblem eine der anspruchsvollsten algorithmischen Aufgaben innerhalb der Graphentheorie dar. So blieb bisher nicht nur die Suche nach effizienten Methoden, die dieses Problem exakt l¨osen, erfolglos. Gem¨aß eines Resultates von Feige und Kilian [22] ist auch die Existenz von signifikant besseren Approximationsalgorithmen als dem Trivialen, der jedem Knoten eine eigene Farbe zuordnet, sehr unwahrscheinlich. Diese Tatsache motiviert die Suche nach Algorithmen, die das Problem entweder nicht in allen sondern nur den meisten F¨allen entscheiden, dafur¨ aber von polynomieller Laufzeitkomplexit¨at sind, oder aber stets eine korrekte L¨osung ausgeben, eine polynomielle Laufzeit jedoch nur im Durchschnitt garantieren. Ein Algorithmus der ersterem Paradigma folgt, wurde von Alon und Kahale [2] fur¨ die fol- gende Klasse zuf¨alliger k-f¨arbbarer Graphen entwickelt: Konstruiere einen Graphen mit Gn,p,k einer Knotenmenge V der Kardinalit¨at n durch Partitionierung von V in k Mengen gleicher Gr¨oße und anschließendes Hinzufugen¨ der m¨oglichen Kanten zwischen diesen Mengen mit Wahrscheinlichkeit jeweils p.
    [Show full text]
  • High-Performance Parallel Graph Coloring with Strong Guarantees on Work, Depth, and Quality
    High-Performance Parallel Graph Coloring with Strong Guarantees on Work, Depth, and Quality Maciej Besta1, Armon Carigiet1, Zur Vonarburg-Shmaria1, Kacper Janda2, Lukas Gianinazzi1, Torsten Hoefler1 1Department of Computer Science, ETH Zurich 2Faculty of Computer Science, Electronics and Telecommunications, AGH-UST Abstract—We develop the first parallel graph coloring heuris- to their degrees, random (R) [26] which chooses vertices tics with strong theoretical guarantees on work and depth and uniformly at random, incidence-degree (ID) [1] which picks coloring quality. The key idea is to design a relaxation of the vertices with the largest number of uncolored neighbors first, vertex degeneracy order, a well-known graph theory concept, and to color vertices in the order dictated by this relaxation. This saturation-degree (SD) [27], where a vertex whose neighbors introduces a tunable amount of parallelism into the degeneracy use the largest number of distinct colors is chosen first, and ordering that is otherwise hard to parallelize. This simple idea smallest-degree-last (SL) [28] that removes lowest degree enables significant benefits in several key aspects of graph color- vertices, recursively colors the resulting graph, and then colors ing. For example, one of our algorithms ensures polylogarithmic the removed vertices. All these ordering heuristics, combined depth and a bound on the number of used colors that is superior to all other parallelizable schemes, while maintaining work- with Greedy, have the inherent problem of no parallelism. efficiency. In addition to provable guarantees, the developed Jones and Plassmann combined this line of work with earlier algorithms have competitive run-times for several real-world parallel schemes for deriving maximum independent sets [29], graphs, while almost always providing superior coloring quality.
    [Show full text]
  • Jgrapht--A Java Library for Graph Data Structures and Algorithms
    JGraphT - A Java library for graph data structures and algorithms Dimitrios Michail1, Joris Kinable2,3, Barak Naveh4, and John V Sichi5 1Dept. of Informatics and Telematics Harokopio University of Athens, Greece [email protected] 2Dept. of Industrial Engineering and Innovation Sciences Eindhoven University of Technology, The Netherlands [email protected] 3Robotics Institute Carnegie Mellon University, Pittsburgh, USA 4barak [email protected] 5The JGraphT project [email protected] Abstract Mathematical software and graph-theoretical algorithmic packages to efficiently model, analyze and query graphs are crucial in an era where large-scale spatial, societal and economic network data are abundantly available. One such package is JGraphT, a pro- gramming library which contains very efficient and generic graph data-structures along with a large collection of state-of-the-art algorithms. The library is written in Java with stability, interoperability and performance in mind. A distinctive feature of this library is its ability to model vertices and edges as arbitrary objects, thereby permitting natural representations of many common networks including transportation, social and biologi- cal networks. Besides classic graph algorithms such as shortest-paths and spanning-tree algorithms, the library contains numerous advanced algorithms: graph and subgraph iso- morphism; matching and flow problems; approximation algorithms for NP-hard problems arXiv:1904.08355v2 [cs.DS] 3 Feb 2020 such as independent set and TSP; and several more exotic algorithms such as Berge graph detection. Due to its versatility and generic design, JGraphT is currently used in large- scale commercial products, as well as non-commercial and academic research projects. In this work we describe in detail the design and underlying structure of the library, and discuss its most important features and algorithms.
    [Show full text]
  • Graph Colorings
    Algorithmic Graph Theory Part II - Graph Colorings Martin Milanicˇ [email protected] University of Primorska, Koper, Slovenia Dipartimento di Informatica Universita` degli Studi di Verona, March 2013 1/59 What we’ll do 1 THE CHROMATIC NUMBER OF A GRAPH. 2 HADWIGER’S CONJECTURE. 3 BOUNDS ON χ. 4 EDGE COLORINGS. 5 LIST COLORINGS. 6 ALGORITHMIC ASPECTS OF GRAPH COLORING. 7 APPLICATIONS OF GRAPH COLORING. 1/59 THE CHROMATIC NUMBER OF A GRAPH. 1/59 Chromatic Number Definition A k-coloring of a graph G = (V , E) is a mapping c : V → {1,..., k} such that uv ∈ E ⇒ c(u) = c(v) . G is k-colorable if there exists a k-coloring of it. χ(G) = chromatic number of G = the smallest number k such that G is k-colorable. 2/59 Graph Coloring Example: Figure: A 4-coloring of a graph k-coloring ≡ partition V = I1 ∪ . ∪ Ik , where Ij is a (possibly empty) independent set independent set = a set of pairwise non-adjacent vertices 3/59 Graph Coloring Example: Figure: A 3-coloring of the same graph k-coloring ≡ partition V = I1 ∪ . ∪ Ik , where Ij is a (possibly empty) independent set independent set = a set of pairwise non-adjacent vertices 3/59 Graph Coloring Examples: complete graphs: χ(Kn)= n. 2, if n is even; cycles: χ(Cn)= 3, if n is odd. χ(G) ≤ 2 ⇔ G is bipartite. N 4/59 Greedy Coloring How could we color, in a simple way, the vertices of a graph? Order the vertices of G linearly, say (v1,..., vn). for i = 1,..., n do c(vi ) := smallest available color end for 5/59 Greedy Coloring How many colors are used? For every vertex vi , at most d(vi ) different colors are used on its neighbors.
    [Show full text]
  • Invitation to Discrete Mathematics (2Nd Edition)
    Invitation to Discrete Mathematics “Only mathematicians could appreciate this work ...” Illustration by G.Roux from the Czech edition of Sans dessus dessous by Jules Verne, published by J.R. Vil´ımek, Prague, 1931 (English title: The purchase of the North Pole). Invitation to Discrete Mathematics Jirˇ´ıMatouˇsek Jaroslav Neˇsetrilˇ 2nd edition. 1 3 Great Clarendon Street, Oxford OX2 6DP Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide in Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto With offices in Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries Published in the United States by Oxford University Press Inc., New York c Jiˇr´ı Matouˇsek and Jaroslav Neˇsetˇril 2008 The moral rights of the authors have been asserted Database right Oxford University Press (maker) First Published 2008 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights
    [Show full text]
  • An Exact Algorithm with Learning for the Graph Coloring Problem$
    Computers & Operations Research 51 (2014) 282–301 Contents lists available at ScienceDirect Computers & Operations Research journal homepage: www.elsevier.com/locate/caor An exact algorithm with learning for the graph coloring problem$ Zhaoyang Zhou a,c, Chu-Min Li a,b, Chong Huang a, Ruchu Xu a,n a School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China b MIS, Université de Picardie Jules Verne, 33 Rue St. Leu 80039 Amiens Cedex, France c Library, Hubei University, Wuhan, China article info abstract Available online 24 May 2014 Given an undirected graph G¼(V,E), the Graph Coloring Problem (GCP) consists in assigning a color to each Keywords: vertex of the graph G in such a way that any two adjacent vertices are assigned different colors, and the Backtracking number of different colors used is minimized. State-of-the-art algorithms generally deal with the explicit Clause learning constraints in GCP: any two adjacent vertices should be assigned different colors, but do not specially deal with Graph Coloring the implicit constraints between non-adjacent vertices implied by the explicit constraints. In this paper, we SAT propose an exact algorithm with learning for GCP which exploits the implicit constraints using propositional logic. Our algorithm is compared with several exact algorithms among the best in the literature. The experi- mental results show that our algorithm outperforms other algorithms on many instances. Specifically, our algorithm allows to close the open DIMACS instance 4-Fullins_5. & 2014 Published by Elsevier Ltd. 1. Introduction Given an undirected graph G¼(V, E), where V is a set of vertices and E a set of unordered pairs of vertices called edges fðvi; vjÞjvi AV; vj AVg, the Graph Coloring Problem (GCP) consists in assigning a color to each vertex of the graph G in such a way that any two adjacent vertices are assigned different colors, and the number of different colors used is minimized.
    [Show full text]
  • Graph Algorithms
    Graph Algorithms PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Wed, 29 Aug 2012 18:41:05 UTC Contents Articles Introduction 1 Graph theory 1 Glossary of graph theory 8 Undirected graphs 19 Directed graphs 26 Directed acyclic graphs 28 Computer representations of graphs 32 Adjacency list 35 Adjacency matrix 37 Implicit graph 40 Graph exploration and vertex ordering 44 Depth-first search 44 Breadth-first search 49 Lexicographic breadth-first search 52 Iterative deepening depth-first search 54 Topological sorting 57 Application: Dependency graphs 60 Connectivity of undirected graphs 62 Connected components 62 Edge connectivity 64 Vertex connectivity 65 Menger's theorems on edge and vertex connectivity 66 Ear decomposition 67 Algorithms for 2-edge-connected components 70 Algorithms for 2-vertex-connected components 72 Algorithms for 3-vertex-connected components 73 Karger's algorithm for general vertex connectivity 76 Connectivity of directed graphs 82 Strongly connected components 82 Tarjan's strongly connected components algorithm 83 Path-based strong component algorithm 86 Kosaraju's strongly connected components algorithm 87 Application: 2-satisfiability 88 Shortest paths 101 Shortest path problem 101 Dijkstra's algorithm for single-source shortest paths with positive edge lengths 106 Bellman–Ford algorithm for single-source shortest paths allowing negative edge lengths 112 Johnson's algorithm for all-pairs shortest paths in sparse graphs 115 Floyd–Warshall algorithm
    [Show full text]
  • NP-Completeness Results for Some Problems on Subclasses of Bipartite and Chordal Graphs
    Theoretical Computer Science 381 (2007) 248–259 www.elsevier.com/locate/tcs NP-completeness results for some problems on subclasses of bipartite and chordal graphs Katerina Asdre, Stavros D. Nikolopoulos∗ Department of Computer Science, University of Ioannina, P.O. Box 1186, GR-45110 Ioannina, Greece Received 29 August 2006; received in revised form 26 April 2007; accepted 9 May 2007 Communicated by O. Watanabe Abstract Extending previous NP-completeness results for the harmonious coloring problem and the pair-complete coloring problem on trees, bipartite graphs and cographs, we prove that these problems are also NP-complete on connected bipartite permutation graphs. We also study the k-path partition problem and, motivated by a recent work of Steiner [G. Steiner, On the k-path partition of graphs, Theoret. Comput. Sci. 290 (2003) 2147–2155], where he left the problem open for the class of convex graphs, we prove that the k- path partition problem is NP-complete on convex graphs. Moreover, we study the complexity of these problems on two well-known subclasses of chordal graphs namely quasi-threshold and threshold graphs. Based on the work of Bodlaender [H.L. Bodlaender, Achromatic number is NP-complete for cographs and interval graphs, Inform. Process. Lett. 31 (1989) 135–138], we show NP- completeness results for the pair-complete coloring and harmonious coloring problems on quasi-threshold graphs. Concerning the k-path partition problem, we prove that it is also NP-complete on this class of graphs. It is known that both the harmonious coloring problem and the k-path partition problem are polynomially solvable on threshold graphs.
    [Show full text]
  • The Harmonious Coloring Problem Is NP-Complete for Interval and Permutation Graphsଁ Katerina Asdre, Kyriaki Ioannidou, Stavros D
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Applied Mathematics 155 (2007) 2377–2382 www.elsevier.com/locate/dam Note The harmonious coloring problem is NP-complete for interval and permutation graphsଁ Katerina Asdre, Kyriaki Ioannidou, Stavros D. Nikolopoulos Department of Computer Science, University of Ioannina, P.O. Box 1186, GR-45110 Ioannina, Greece Received 4 November 2006; received in revised form 25 May 2007; accepted 6 July 2007 Available online 14 September 2007 Abstract In this paper, we prove that the harmonious coloring problem is NP-complete for connected interval and permutation graphs. Given a simple graph G, a harmonious coloring of G is a proper vertex coloring such that each pair of colors appears together on at most one edge. The harmonious chromatic number is the least integer k for which G admits a harmonious coloring with k colors. Extending previous work on the NP-completeness of the harmonious coloring problem when restricted to the class of disconnected graphs which are simultaneously cographs and interval graphs, we prove that the problem is also NP-complete for connected interval and permutation graphs. © 2007 Elsevier B.V. All rights reserved. Keywords: Harmonious coloring; Harmonious chromatic number; Achromatic number; Interval graphs; Permutation graphs; NP-completeness 1. Introduction Many NP-complete problems on arbitrary graphs admit polynomial time algorithms when restricted to the classes of interval graphs and cographs; NP-complete problems for these two classes of graphs that become solvable in polynomial time can be found in [1,3,7,12,15,16].
    [Show full text]