Intimin and the Intimate Attachment of Bacteria to Human Cells
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Using the Spycatcher-Spytag and Related Systems for Labeling and Localizing Bacterial Proteins
International Journal of Molecular Sciences Review Catching a SPY: Using the SpyCatcher-SpyTag and Related Systems for Labeling and Localizing Bacterial Proteins Daniel Hatlem , Thomas Trunk, Dirk Linke and Jack C. Leo * Bacterial Cell Surface Group, Section for Evolution and Genetics, Department of Biosciences, University of Oslo, 0316 Oslo, Norway; [email protected] (D.H.); [email protected] (T.T.); [email protected] (D.L.) * Correspondence: [email protected]; Tel.: +47-228-59027 Received: 2 April 2019; Accepted: 26 April 2019; Published: 30 April 2019 Abstract: The SpyCatcher-SpyTag system was developed seven years ago as a method for protein ligation. It is based on a modified domain from a Streptococcus pyogenes surface protein (SpyCatcher), which recognizes a cognate 13-amino-acid peptide (SpyTag). Upon recognition, the two form a covalent isopeptide bond between the side chains of a lysine in SpyCatcher and an aspartate in SpyTag. This technology has been used, among other applications, to create covalently stabilized multi-protein complexes, for modular vaccine production, and to label proteins (e.g., for microscopy). The SpyTag system is versatile as the tag is a short, unfolded peptide that can be genetically fused to exposed positions in target proteins; similarly, SpyCatcher can be fused to reporter proteins such as GFP, and to epitope or purification tags. Additionally, an orthogonal system called SnoopTag-SnoopCatcher has been developed from an S. pneumoniae pilin that can be combined with SpyCatcher-SpyTag to produce protein fusions with multiple components. Furthermore, tripartite applications have been produced from both systems allowing the fusion of two peptides by a separate, catalytically active protein unit, SpyLigase or SnoopLigase. -
Folding Control in the Path of Type 5 Secretion
toxins Review Folding Control in the Path of Type 5 Secretion Nathalie Dautin 1,2 1 Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005 Paris, France; [email protected] 2 Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005 Paris, France Abstract: The type 5 secretion system (T5SS) is one of the more widespread secretion systems in Gram-negative bacteria. Proteins secreted by the T5SS are functionally diverse (toxins, adhesins, enzymes) and include numerous virulence factors. Mechanistically, the T5SS has long been considered the simplest of secretion systems, due to the paucity of proteins required for its functioning. Still, despite more than two decades of study, the exact process by which T5SS substrates attain their final destination and correct conformation is not totally deciphered. Moreover, the recent addition of new sub-families to the T5SS raises additional questions about this secretion mechanism. Central to the understanding of type 5 secretion is the question of protein folding, which needs to be carefully controlled in each of the bacterial cell compartments these proteins cross. Here, the biogenesis of proteins secreted by the Type 5 secretion system is discussed, with a focus on the various factors preventing or promoting protein folding during biogenesis. Keywords: secretion; folding; autotransporter; type 5 secretion system; intimin; invasin; two-partner secretion; trimeric autotransporter Key Contribution: This short review describes the different factors preventing or promoting folding of proteins secreted by the T5SS. Citation: Dautin, N. Folding Control in the Path of Type 5 Secretion. -
CALANGO: an Annotation-Based, Phylogeny-Aware Comparative Genomics Framework for Exploring and Interpreting Complex Genotypes and Phenotypes
bioRxiv preprint doi: https://doi.org/10.1101/2021.08.25.457574; this version posted August 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. CALANGO: an annotation-based, phylogeny-aware comparative genomics framework for exploring and interpreting complex genotypes and phenotypes AUTHORS Jorge Augusto Hongo1∞, Giovanni Marques de Castro2∞, Agnello César Rios Picorelli2, Thieres Tayroni Martins da Silva2, Eddie Luidy Imada3, Luigi Marchionni3, Anderson Vieira Chaves2, Gabriel Magno de Freitas Almeida4, Felipe Campelo2,5, Francisco Pereira Lobo2* 1 – Instituto de Computação, Universidade Estadual de Campinas, Brazil. 2 - Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. 3 – Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York. 4 - Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland. 5 - Aston University, Birmingham, England. ∞ - Both authors contributed equally to this work. * - Corresponding Author ([email protected], [email protected]) bioRxiv preprint doi: https://doi.org/10.1101/2021.08.25.457574; this version posted August 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT The increasing availability of high-quality genomic, annotation and phenotypic data for different species contrasts with the lack of general software for comparative genomics that integrates these data types in a statistically sound framework in order to produce biologically meaningful knowledge.