Tithonian-Neocomian Fossil Invertebrates from the Piuquenes Pass

Total Page:16

File Type:pdf, Size:1020Kb

Tithonian-Neocomian Fossil Invertebrates from the Piuquenes Pass 32 Revista de la Asociación Geológica Argentina 64 (1): 32 - 42 (2009) ON DARWIN'S FOOTSTEPS ACROSS THE ANDES: TITHONIAN-NEOCOMIAN FOSSIL INVERTEBRATES FROM THE PIUQUENES PASS Beatriz AGUIRRE-URRETA and Verónica VENNARI Laboratorio de Bioestratigrafía de Alta Resolución, Departamento de Ciencias Geológicas, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires. Email: [email protected] ABSTRACT The aim of this work is to summarize the modern knowledge of the geology of the Piuquenes Pass, in the Main Andes of Argentina and Chile, and to describe a small fauna of Tithonian-Neocomian invertebrates mostly represented by ammonites. The present knowledge of the region is compared with Darwin's, as expressed in his famous book on the Geology of South America. Keywords: Main Andes, Mesozoic, Ammonites, Piuquenes Pass, Darwin. RESUMEN: Tras las huellas de Darwin a través de los Andes: invertebrados fósiles del Tithoniano-Neocomiano del paso de Piuquenes. El objetivo de este trabajo es presentar una breve revisión moderna de la geología del Paso de Piuquenes en los Andes Principales de Chile y Argentina y describir una pequeña fauna de invertebrados del Tithoniano-Neocomiano compuesta principalmente por amo- nites. Se compara también el conocimiento de esta región con la referida por Darwin en su famoso libro sobre la geología de América del Sur. Palabras clave: Andes Principales, Mesozoico, Amonites, Paso de Piuquenes, Darwin. INTRODUCTION scientific point of view as can be seen in thus: "I have just returned from Mendoza, the long and detailed letters he sent both having crossed the Cordilleras by two passes. During his 5 years' voyage around the to Professor Henslow and to his sister This trip has added much to my knowledge of world on board the HMS Beagle, Dar- Susan. The letter to Henslow begins the geology of the country. Some of the facts, of win spent more than 3 years on shore. This was most probably due to his inte- rest in exploring new regions, but also to avoid the strong sea-sickness that anno- yed him when sailing. During the Beagle years and some time later Darwin was foremost a geologist, though we are used to think of him as a pure biologist. Thus, his enormous collection of fauna and flora came second to his interest as can be seen in the fact that he gave most of it to different specialists after his return to England. In March-April 1835, Darwin undertook a long ride to examine the geology of the Andes. He started the journey in Valpa- raiso on the Pacific coast, crossed the Andes along the Piuquenes and Portillo passes, reached Mendoza city and went back to Chile by the Cumbre or Uspallata Pass (Fig. 1). This trip was probably one of the most valuable to him from a Figure 1: Location of the Piuquenes Pass in the Main Andes of Argentina and Chile. On Darwin's footsteps across the Andes: Tithonian-Neocomian fossil ... 33 Figure 2: Geological map of the region of the Piuquenes Pass, Main Andes (from Pángaro et al. 1996). the truth of which I in my own mind feel fully dary between Argentina and Chile in the rhyolitic tuffs and lavas of Permian and convinced, will appear to you quite absurd & Main Central Andes (33°38'S, 69°52'W, Triassic age are unconformably overlying incredible", followed by several paragraphs Fig. 1). It reaches 4,030 m a.s.l., and the basement (Polanski 1964). The Me- devoted to the structure of the cordillera though it is the international divide, the sozoic sequences, which record a Pacific (Burkhardt and Smith 1985). highest pass is Portillo, located some 24 marine transgression, constitute different One hundred and sixty years later, in the km to the east, with 4,374 m a.s.l. stratigraphic cycles described by Groeber summer of 1995 one of us (BAU) follo- The geology of this part of the Main (1953), Malumián and Ramos (1984) and wed the steps of Darwin along the Piu- Andes was studied in detail by Polanski Riccardi (1983, 1988). quenes Pass, checking the stratigraphy (1964) as part of the mapping program These sedimentary successions are cove- and collecting fossils. Thus, the objective of the Geological Survey of Argentina. red by extensive Cenozoic volcanic and of this work is to summarize the modern It is characterized by a normal subduc- pyroclastic rocks, including some Recent knowledge of the geology and palaeon- tion zone, where the oceanic Nazca plate volcanic centers, such as San José and tology of the region of the Piuquenes subducts beneath South America at an Marmolejo volcanoes. Isolated patches Pass, in the Main Andes of Argentina angle of 30° (Jordan et al. 1983). As a of colluvial and alluvial deposits are wid- and Chile, comparing these views with result of that the Mesozoic sequence is ely distributed in the region (Fig. 2). Darwin's (1846), as expressed in his fa- heavily deformed in a series of thrust sli- mous book on the Geology of South ces (see Giambiagi et al. 2009). These THE GEOLOGY OF THE America. thrusts produced an imbricated sequen- PIUQUENES PASS ce, where the strata are repeated several REGIONAL GEOLOGICAL times, creating a complex structure. A geological map of the Piuquenes Pass SETTING The basement of the Andes at this latitu- region is shown in figure 2 (Pángaro et al. de is composed of metamorphic rocks of 1996), where Darwin's itinerary is mar- The Piuquenes (Darwin always spelled it Precambrian age. Carboniferous marine ked, and the rock succession according as Peuquenes) Pass runs across the boun- successions devoid of fossils and some to Darwin (1846) is also shown. He des- 34 B. AGUIRRE-URRETA AND V. VENNARI cribed the following: the Auquilco Formation of Argentina nes and black shales with Spitidiscus riccar- "The ridge of Peuquenes, which divides the wa- (Río Colina Formation in Chile) of Ox- dii Leanza and Wiedmann, 1992 (Agui- ters flowing into the Pacific and Atlantic oceans, fordian-Kimmeridgian age, and T is rre-Urreta 2001), Protohemichenopus neu- extends in a nearly N.N.W. and S.S.E. line; again the Tordillo Formation. It is ob- quensis Camacho, 1953, Lucinidea indet., its strata dip eastward at an angle of between vious now that Darwin did not quite and callianassid crustaceans. 30° and 45°, but in the higher peaks bending understand the complex structure of the The fossils that Darwin collected in Q up and becoming almost vertical. Where the region, as can be seen in the geological and S (presently Lo Valdés Formation/ road crosses this range, the height is 13,210 feet map of figure 2, where a western back- Mendoza Group) were studied by d'Or- above the sea-level, and I estimated the neighbou- thrust puts the Auquilco Formation on bigny and cited by Darwin (1846, p. 181) ring pinnacles at from 14,000 to 15,000 feet. top of the Agrio Formation and a as follows: The lowest stratum visible in this ridge is a red second fore-thrust repeats again the stratified sandstone [P]; on it are superimposed Agrio and Chachao Formations (Pángaro "The fossils above alluded to in the black calca- two great masses [Q and S] of black, hard, et al. 1996, Giambiagi et al. 2009). reous shales are few in number, and are in an compact, even having a conchoidal fracture, cal- A section was measured on the Argenti- imperfect condition; they consist, as named for me careous, more or less laminated shale, passing nean slope (Fig. 3), along the northern by M. d'Orbigny, of into limestone: this rock contains organic re- bank of the Arroyo Piuquenes (Aguirre- 1. Ammonite, indeterminable, near to A. recti- mains, presently to be enumerated. The compac- Urreta 1996; see location in Fig. 2). The costatus, D'Orbig. Pal. Franc. (Neocomian ter varieties fuse easily in a white glass; and this top beds of the Tordillo Formation formation). I may add is a very general character with all the (Kimmeridgian) are sandstones interbed- 2. Gryphæa, near to G. Couloni, (Neoco- sedimentary beds in the Cordillera: although this ded with siltstones and green shales. The mian formations of France and Neufchatel). rock when broken is generally quite black, it Vaca Muerta Formation begins with a 3. Natica, indeterminable. everywhere weathers into an ash-grey tint. Be- few meters of limestone with algal lami- 4. Cyprina rostrata, D'Orbig. Pal. Franc. tween these two great masses [Q and S], a bed nation, followed in its lower part by black (Neocomian formation). [R] of gypsum is interposed, about 300 feet in papyraceous shales with abundant calca- 5. Rostellaria angulosa (?), D'Orbig. Pal. de thickness, and having the same characters as reous nodules with three fossiliferous l'Amer. Mer. heretofore described. I estimated the total thick- levels, from bottom to top with: Virga- 6. Terebratula ?" ness of these three beds [Q, R, S] at nearly tosphinctes aff. V. denseplicatus rotundus 3000 feet; and to this must be added, as will be Spath, 1931, Pseudolissoceras zitteli (Burck- However, it seems that d'Orbigny gave immediately seen, a great overlying mass of red hardt, 1903) and Aulacosphinctes proximus Darwin slightly different information sandstone. (Steuer, 1897). These shales grade up- (see fig. 4). According to his notes, the In descending the eastern slope of this great cen- wards to dark grey, thinly laminated li- specimens collected by Darwin in the tral range, the strata, which in the upper part dip mestones, reaching more than 110 me- "Cordillera Centrale du Chili" comprised: eastward at about an angle of 40°, become more tres (Fig. 3). The age of the Vaca Muerta and more curved, till they are nearly vertical; and Formation in the area is Early to Middle- "617/792.
Recommended publications
  • CEPHALOPODS 688 Cephalopods
    click for previous page CEPHALOPODS 688 Cephalopods Introduction and GeneralINTRODUCTION Remarks AND GENERAL REMARKS by M.C. Dunning, M.D. Norman, and A.L. Reid iving cephalopods include nautiluses, bobtail and bottle squids, pygmy cuttlefishes, cuttlefishes, Lsquids, and octopuses. While they may not be as diverse a group as other molluscs or as the bony fishes in terms of number of species (about 600 cephalopod species described worldwide), they are very abundant and some reach large sizes. Hence they are of considerable ecological and commercial fisheries importance globally and in the Western Central Pacific. Remarks on MajorREMARKS Groups of CommercialON MAJOR Importance GROUPS OF COMMERCIAL IMPORTANCE Nautiluses (Family Nautilidae) Nautiluses are the only living cephalopods with an external shell throughout their life cycle. This shell is divided into chambers by a large number of septae and provides buoyancy to the animal. The animal is housed in the newest chamber. A muscular hood on the dorsal side helps close the aperture when the animal is withdrawn into the shell. Nautiluses have primitive eyes filled with seawater and without lenses. They have arms that are whip-like tentacles arranged in a double crown surrounding the mouth. Although they have no suckers on these arms, mucus associated with them is adherent. Nautiluses are restricted to deeper continental shelf and slope waters of the Indo-West Pacific and are caught by artisanal fishers using baited traps set on the bottom. The flesh is used for food and the shell for the souvenir trade. Specimens are also caught for live export for use in home aquaria and for research purposes.
    [Show full text]
  • New and Poorly Known Perisphinctoidea (Ammonitina) from the Upper Tithonian of Le Chouet (Drôme, SE France)
    Volumina Jurassica, 2014, Xii (1): 113–128 New and poorly known Perisphinctoidea (Ammonitina) from the Upper Tithonian of Le Chouet (Drôme, SE France) Luc G. BULOT1, Camille FRAU2, William A.P. WIMBLEDON3 Key words: Ammonoidea, Ataxioceratidae, Himalayitidae, Neocomitidae, Upper Tithonian, Le Chouet, South-East France. Abstract. The aim of this paper is to document the ammonite fauna of the upper part of the Late Tithonian collected at the key section of Le Chouet (Drôme, SE France). Emphasis is laid on new and poorly known Ataxioceratidae, Himalayitidae and Neocomitidae from the upper part of the Tithonian. Among the Ataxioceratidae, a new account on the taxonomy and relationship between Paraulacosphinctes Schindewolf and Moravisphinctes Tavera is presented. Regarding the Himalayitidae, the range and content of Micracanthoceras Spath is discussed and two new genera are introduced: Ardesciella gen. nov., for a group of Mediterranean ammonites that is homoeomorphic with the Andean genus Corongoceras Spath, and Pratumidiscus gen. nov. for a specimen that shows morphological similarities with the Boreal genera Riasanites Spath and Riasanella Mitta. Finally, the occurrence of Neocomitidae in the uppermost Tithonian is documented by the presence of the reputedly Berriasian genera Busnardoiceras Tavera and Pseudargentiniceras Spath. INTRODUCTION known Perisphinctoidea from the Upper Tithonian of this reference section. Additional data on the Himalayitidae in- The unique character of the ammonite fauna of Le Chouet cluding the description and discussion of Boughdiriella (near Les Près, Drôme, France) (Fig. 1) has already been chouetensis gen. nov. sp. nov. are to be published elsewhere outlined by Le Hégarat (1973), but, so far, only a handful of (Frau et al., 2014).
    [Show full text]
  • First Records and Descriptions of Early-Life Stages of Cephalopods from Rapa Nui (Easter Island) and the Nearby Apolo Seamount
    First records and descriptions of early-life stages of cephalopods from Rapa Nui (Easter Island) and the nearby Apolo Seamount By Sergio A. Carrasco*, Erika Meerhoff, Beatriz Yannicelly, and Christian M. Ibáñez Abstract New records of early-life stages of cephalopods are presented based on planktonic collections carried out around Easter Island (Rapa Nui; 27°7′S; 109°21′W) and at the nearby Apolo Seamount (located at ∼7 nautical miles southwest from Easter Island) during March and September 2015 and March 2016. A total of thirteen individuals were collected, comprising four families (Octopodidae, Ommastrephidae, Chtenopterygidae, and Enoploteuthidae) and five potential genera/types (Octopus sp., Chtenopteryx sp., rhynchoteuthion paralarvae, and two undetermined Enoploteuthid paralarvae). Cephalopod mantle lengths (ML) ranged from 0.8 to 4.5 mm, with 65% of them (mainly Octopodidae) corresponding to newly hatched paralarvae of ~1 mm ML, and 35% to rhynchoteuthion and early stages of oceanic squids of around 1.5 - 4.5 mm ML. These results provide the first records on composition and presence of early stages of cephalopods around a remote Chilean Pacific Island, while also providing a morphological and molecular basis to validate the identity of Octopus rapanui (but not Callistoctopus, as currently recorded), Ommastrephes bartramii and Chtenopteryx sp. around Rapa Nui waters. Despite adult Octopodidae and Ommastrephidae have been previously recorded at these latitudes, the current findings provide evidence to suggest that the northwest side of Easter Island, and one of the nearby seamounts, may provide a suitable spawning ground for benthic and pelagic species of cephalopods inhabiting these areas. For Chtenopterygidae and Enoploteuthidae, this is the first record for the Rapa Nui ecoregion.
    [Show full text]
  • Abelisaurus Comahuensis 321 Acanthodiscus Sp. 60, 64
    Index Page numbers in italic denote figure. Page numbers in bold denote tables. Abelisaurus comahuensis 321 structure 45-50 Acanthodiscus sp. 60, 64 Andean Fold and Thrust Belt 37-53 Acantholissonia gerthi 61 tectonic evolution 50-53 aeolian facies tectonic framework 39 Huitrin Formation 145, 151-152, 157 Andes, Neuqu6n 2, 3, 5, 6 Troncoso Member 163-164, 167, 168 morphostructural units 38 aeolian systems, flooded 168, 169, 170, 172, stratigraphy 40 174-182 tectonic evolution, 15-32, 37-39, 51 Aeolosaurus 318 interaction with Neuqu6n Basin 29-30 Aetostreon 200, 305 Andes, topography 37 Afropollis 76 Andesaurus delgadoi 318, 320 Agrio Fold and Thrust Belt 3, 16, 18, 29, 30 andesite 21, 23, 26, 42, 44 development 41 anoxia see dysoxia-anoxia stratigraphy 39-40, 40, 42 Aphrodina 199 structure 39, 42-44, 47 Aphrodina quintucoensis 302 uplift Late Cretaceous 43-44 Aptea notialis 75 Agrio Formation Araucariacites australis 74, 75, 76 ammonite biostratigraphy 58, 61, 63, 65, 66, Araucarioxylon 95,273-276 67 arc morphostructural units 38 bedding cycles 232, 234-247 Arenicolites 193, 196 calcareous nannofossil biostratigraphy 68, 71, Argentiniceras noduliferum 62 72 biozone 58, 61 highstand systems tract 154 Asteriacites 90, 91,270 lithofacies 295,296, 297, 298-302 Asterosoma 86 92 marine facies 142-143, 144, 153 Auca Mahuida volcano 25, 30 organic facies 251-263 Aucasaurus garridoi 321 palaeoecology 310, 311,312 Auquilco evaporites 42 palaeoenvironment 309- 310, 311, Avil6 Member 141,253, 298 312-313 ammonites 66 palynomorph biostratigraphy 74,
    [Show full text]
  • Stratigraphic Constraints on the Late Jurassic–Cretaceous Paleotectonic Interpretations of the Placetas Belt in Cuba, in C
    Pszczo´łkowski, A., and R. Myczyn´ ski, 2003, Stratigraphic constraints on the Late Jurassic–Cretaceous paleotectonic interpretations of the Placetas belt in Cuba, in C. Bartolini, R. T. Buffler, and J. Blickwede, eds., The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin 25 formation, and plate tectonics: AAPG Memoir 79, p. 545–581. Stratigraphic Constraints on the Late Jurassic–Cretaceous Paleotectonic Interpretations of the Placetas Belt in Cuba Andrzej Pszczo´łkowski Institute of Geological Sciences, Polish Academy of Sciences, Warszawa, Poland Ryszard Myczyn´ski Institute of Geological Sciences, Polish Academy of Sciences, Warszawa, Poland ABSTRACT he Placetas belt in north-central Cuba consists of Late Jurassic–Cretaceous rocks that were highly deformed during the Paleocene to middle Eocene T arc-continent collision. The Late Proterozoic marble and Middle Jurassic granite are covered by the shallow-marine arkosic clastic rocks of late Middle Jurassic(?) or earliest Late Jurassic(?) ages. These arkosic rocks may be older than the transgressive arkosic deposits of the Late Jurassic–earliest Cretaceous Con- stancia Formation. The Berriasian age of the upper part of the Constancia For- mation in some outcrops at Sierra Morena and in the Jarahueca area does not confirm the Late Jurassic (pre-Tithonian) age of all deposits of this unit in the Placetas belt. The Tithonian and Berriasian ammonite assemblages are similar in the Placetas belt of north-central Cuba and the Guaniguanico successions in western Cuba. We conclude that in all paleotectonic interpretations, the Placetas, Camajuanı´, and Guaniguanico stratigraphic successions should be considered as biogeographically and paleogeographically coupled during the Tithonian and the entire Cretaceous.
    [Show full text]
  • NEUQUÉN BASIN, ARGENTINA Latin American Journal of Sedimentology and Basin Analysis, Vol
    Latin American Journal of Sedimentology and Basin Analysis ISSN: 1669-7316 [email protected] Asociación Argentina de Sedimentología Argentina TUNIK, Maisa A.; PAZOS, Pablo J.; IMPICCINI, Agnes; LAZO, Darío; AGUIRRE- URRETA, María Beatriz DOLOMITIZED TIDAL CYCLES IN THE AGUA DE LA MULA MEMBER OF THE AGRIO FORMATION (LOWER CRETACEOUS), NEUQUÉN BASIN, ARGENTINA Latin American Journal of Sedimentology and Basin Analysis, vol. 16, núm. 1, enero-julio, 2009, pp. 29-43 Asociación Argentina de Sedimentología Buenos Aires, Argentina Available in: http://www.redalyc.org/articulo.oa?id=381740363004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative LATIN AMERICAN JOURNAL OF SEDIMENTOLOGY AND BASIN ANALYSIS | VOL. 16 (1) 2009, 29-43 © Asociación Argentina de Sedimentología - ISSN 1669 7316 DOLOMITIZED TIDAL CYCLES IN THE AGUA DE LA MULA MEMBER OF THE AGRIO FORMATION (LOWER CRETACEOUS), NEUQUÉN BASIN, ARGENTINA Maisa A. TUNIK 1, Pablo J. PAZOS 2, Agnes IMPICCINI 3, Darío LAZO 4 and María Beatriz AGUIRRE-URRETA 4 1Laboratorio de Tectónica Andina, Universidad de Buenos Aires. CONICET. Actualmente en: CIMAR - Universidad Nacional del Comahue. Av. Buenos Aires 1400, Neuquén. Argentina. E-mail: [email protected] 2Universidad de Buenos Aires. Ciudad Universitaria, Pabellón 2, 1428 Buenos Aires. Argentina. 3Universidad Nacional del Comahue, Av. Buenos Aires 1400, Neuquén, Argentina. 4Laboratorio de Bioestratigrafía de Alta Resolución. Universidad de Buenos Aires. Ciudad Universitaria, Pabellón 2, 1428 Buenos Aires. Argentina. Abstract: The Agrio Formation (Valanginian to early Barremian) is a siliciclastic and carbonate unit of the Neuquén Basin in west central Argentina.
    [Show full text]
  • Taxa Dedicated to Alberto C. Riccardi
    Revue de Paléobiologie, Genève (2012) Vol. spéc. 11: 471-475 ISSN 0253-6730 Taxa dedicated to Alberto C. RICCARDI Carlos E. MACELLARI1, Susana E. DAMBORENEA 2 & Miguel O. MANCEÑIDO2 INTRODUCTION R. richardsoni DIETZE et al., R. trapanicum (RENZ) and R. wysogorski (HANTKEN in PRINZ). Other Dr. Alberto RICCARDI has greatly impacted in the species have been included in this genus too, but advance of palaeontological and geological knowledge were later reclassified in other taxa so the list may be in several areas of the world, particularly in Latin- subject to taxonomic debate. Incidentally, several of America. As a token of appreciation to his outstanding them have been transferred to a homoeomorph of this career, contributions, and positive influence, he has been genus that has been aptly called Westermannites by recognized in several instances with the dedication of DIETZE et al. (2001). taxa bearing his name. His former mentor, several of his former students, and colleagues are among the people Olcostephanus (Olcostephanus) riccardii COOPER, that have dedicated scientific names to him. This brief 1981 (p. 311-314, figs. 160A-B, 162, 163; herein contribution summarizes the taxa and the circumstances Pl. I, figs. 5, 6). This species of perisphinctacean related to each genus and species dedicated to Dr. Olcostephanidae occurs only in the Lower Cretaceous RICCARDI of which the authors are aware. (Valanginian) Sundays River Formation (Uitenhage Group), near Coega, Eastern Cape, South Africa. The name was given by the South African palaeontologist ANNOTATED LIST OF TAXA Michael COOPER and stems from his MSc thesis at the University of Natal, Durban.
    [Show full text]
  • Jurassic-Cretaceous Tectonic and Depositional Evolution of the Forearc
    International Geology Review ISSN: 0020-6814 (Print) 1938-2839 (Online) Journal homepage: https://tandfonline.com/loi/tigr20 The Byers Basin: Jurassic-Cretaceous tectonic and depositional evolution of the forearc deposits of the South Shetland Islands and its implications for the northern Antarctic Peninsula Joaquin Bastias, Mauricio Calderón, Lea Israel, Francisco Hervé, Richard Spikings, Robert Pankhurst, Paula Castillo, Mark Fanning & Raúl Ugalde To cite this article: Joaquin Bastias, Mauricio Calderón, Lea Israel, Francisco Hervé, Richard Spikings, Robert Pankhurst, Paula Castillo, Mark Fanning & Raúl Ugalde (2019): The Byers Basin: Jurassic-Cretaceous tectonic and depositional evolution of the forearc deposits of the South Shetland Islands and its implications for the northern Antarctic Peninsula, International Geology Review, DOI: 10.1080/00206814.2019.1655669 To link to this article: https://doi.org/10.1080/00206814.2019.1655669 View supplementary material Published online: 21 Aug 2019. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://tandfonline.com/action/journalInformation?journalCode=tigr20 INTERNATIONAL GEOLOGY REVIEW https://doi.org/10.1080/00206814.2019.1655669 ARTICLE The Byers Basin: Jurassic-Cretaceous tectonic and depositional evolution of the forearc deposits of the South Shetland Islands and its implications for the northern Antarctic Peninsula Joaquin Bastias a,b, Mauricio Calderónc, Lea Israela, Francisco Hervéa,c, Richard
    [Show full text]
  • Valanginian Knowles Limestone, East Texas: Biostratigraphy and Potential Hydrocarbon Reservoir 81
    A Publication of the Gulf Coast Association of Geological Societies www.gcags.org V K L, E T: B P H R Robert W. Scott Precision Stratigraphy Associates, 149 W. Ridge Rd., Cleveland, Oklahoma 74020–5037, U.S.A. ABSTRACT The Lower Cretaceous Knowles Limestone is the uppermost unit of the Cotton Valley Group in the northeastern Texas Gulf Coast. It is the oldest Cretaceous carbonate shelf deposit that is a prospective reservoir. This shallow shelf-to-ramp shoal- ing-up complex is an arcuate lenticular lithosome that trends from East Texas across northwestern Louisiana. It is up to 330 m (1080 ft) thick and thins both landward and basinward. Landward lagoonal inner ramp facies are mollusk wackestone and peloidal packstone. The thickest buildup facies are coral-chlorophyte-calcimicrobial boundstone and bioclast grainstone, and the basinward facies is pelagic oncolite wackestone. The base of the Knowles is apparently conformable with the Bossier/Hico dark gray shale. The top contact in East Texas is disconformable with the overlying Travis Peak/Hosston formations. Porosity resulted from successive diagenetic stages including early marine fringing cements, dissolution of aragonitic bioclasts, micrite encrustation, later mosaic cement, and local fine crystalline dolomitization. The age of the Knowles Limestone is early Valanginian based on a calpionellid-calcareous dinoflagellate-calcareous nan- nofossil assemblage in the lower part and a coral-stromatoporoid assemblage in its upper part. The intra-Valanginian hiatus represented by the Knowles/Travis Peak unconformity correlates with the Valanginian “Weissert” oceanic anoxic event. Possi- bly organic-rich source rocks were deposited downdip during that oceanic low-oxygen event.
    [Show full text]
  • Remarks on the Tithonian–Berriasian Ammonite Biostratigraphy of West Central Argentina
    Volumina Jurassica, 2015, Xiii (2): 23–52 DOI: 10.5604/17313708 .1185692 Remarks on the Tithonian–Berriasian ammonite biostratigraphy of west central Argentina Alberto C. RICCARDI 1 Key words: Tithonian–Berriasian, ammonites, west central Argentina, calpionellids, nannofossils, radiolarians, geochronology. Abstract. Status and correlation of Andean ammonite biozones are reviewed. Available calpionellid, nannofossil, and radiolarian data, as well as radioisotopic ages, are also considered, especially when directly related to ammonite zones. There is no attempt to deal with the definition of the Jurassic–Cretaceous limit. Correlation of the V. mendozanum Zone with the Semiforme Zone is ratified, but it is open to question if its lower part should be correlated with the upper part of the Darwini Zone. The Pseudolissoceras zitteli Zone is characterized by an assemblage also recorded from Mexico, Cuba and the Betic Ranges of Spain, indicative of the Semiforme–Fallauxi standard zones. The Aulacosphinctes proximus Zone, which is correlated with the Ponti Standard Zone, appears to be closely related to the overlying Wind­ hauseniceras internispinosum Zone, although its biostratigraphic status needs to be reconsidered. On the basis of ammonites, radiolarians and calpionellids the Windhauseniceras internispinosum Assemblage Zone is approximately equivalent to the Suarites bituberculatum Zone of Mexico, the Paralytohoplites caribbeanus Zone of Cuba and the Simplisphinctes/Microcanthum Zone of the Standard Zonation. The C. alternans Zone could be correlated with the uppermost Microcanthum and “Durangites” zones, although in west central Argentina it could be mostly restricted to levels equivalent to the “Durangites Zone”. The Substeueroceras koeneni Zone ranges into the Occitanica Zone, Subalpina and Privasensis subzones, the A.
    [Show full text]
  • New Data on the Stratigraphy of the Lower Cretaceous of the Gerecse Mts
    New data on the stratigraphy of the Lower Cretaceous of the Gerecse Mts. (Hungary) and the Lackbach section (Austria) 1 llona Bo0Roc1 , Attila FoGARAs1 2 This paper is dedicated to the memory of C. F. WE101cH (7'" Nov. 1952-10'" Nov. 1992) Bo0Roc1, 1. & foGARASI, A., 2002: New data on the stratigraphy of the Lower Cretaceous of the Gerecse Mts. (Hungary) and the Lackbach section (Austria). - In: WAGREICH, M. (Ed.): Aspects of Cretaceous Stratigraphy and Palaeobiogeography. - Österr. Akad. Wiss„ Schriftenr. Erdwiss. Komm. 15: 295-313, 4 Figs., 3 Pis., Wien. Abstract: Biostratigraphie and lithostratigraphic studies have been made on four boreholes (Ago­ styan Agt-2, Neszmely N-4, Tatabänya Ta-1472, Ta-1486) in the Gerecse Mts. and the Tatabanya basin in Hungary. The Lower Cretaceous succession of this area comprises the Neszmely Sandstone Formation (NSF, Barremian-Aptian), the Tata Limestone Formation(TLF, Aptian) and the Vertes­ som16 Formation (VF, Lower and Middle Albian). In its stratotype, borehole N-4, the NSF was subdivided into four integrated ammonite and planktonic foraminifera zones from top to bottom: The Ticinella bejaouensis ivz - Hedbergella gorbachikae ivz (Late Aptian - ?Early Albian), the G/obigerinelloides algerianus trz (early Late Aptian), the Shackoina cabrii trz - Globigerinelloides blowi ivz (Early and Mid Aptian), and the Hedbergella sigali ivz (Barremian). In the lower and middle part of the Sh. cabrii trz - GI. blowi ivz the ammonites Procheloniceras albrechtiaustriae HoH., Pseudosaynella ex gr. matheronites (o'ORBIGNY), and Barremites difficilis (o'ORBIGNY) indicate the Early Aptian Deshayesites weissi ammonite Zone. In the H. sigali ivz Costidiscus redicostatus (o'ORBIGNY) and Spitidiscus vandeckii (o'ORBIGNY) give evidence for a Barremian age.
    [Show full text]
  • Geological Survey of Austria ©Geol
    ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at und www.zobodat.at Berichte der Geologischen Bundesanstalt, 120 Berichte der Geologischen Bundesanstalt, Benjamin Sames (Ed.) th 10 International Symposium on the Cretaceous: ABSTRACTS Berichte der Geologischen Bundesanstalt, 120 www.geologie.ac.at Geological Survey of Austria ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at und www.zobodat.at Berichte der Geologischen Bundesanstalt (ISSN 1017-8880) Band 120 10th International Symposium on the Cretaceous Vienna, August 21–26, 2017 — ABSTRACTS BENJAMIN SAMES (Ed.) ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at und www.zobodat.at Berichte der Geologischen Bundesanstalt, 120 ISSN 1017-8880 Wien, im Juli 2017 10th International Symposium on the Cretaceous Vienna, August 21–26, 2017 – ABSTRACTS Benjamin Sames, Editor Dr. Benjamin Sames, Universität Wien, Department for Geodynamics and Sedimentology, Center for Earth Sciences, Althanstraße 14, 1090 Vienna, Austria. Recommended citation / Zitiervorschlag Volume / Gesamtwerk Sames, B. (Ed.) (2017): 10th International Symposium on the Cretaceous – Abstracts, 21–26 August 2017, Vienna. – Berichte der Geologischen Bundesanstalt, 120, 351 pp., Vienna. Abstract (example / Beispiel) Granier, B., Gèze, R., Azar, D. & Maksoud, S. (2017): Regional stages: What is the use of them – A case study in Lebanon. – In: Sames, B. (Ed.): 10th International Symposium on the Cretaceous – Abstracts, 21–26 August 2017, Vienna. – Berichte der Geologischen Bundesanstalt, 120, 102, Vienna. Cover design: Monika Brüggemann-Ledolter (Geologische Bundesanstalt). Cover picture: Postalm section, upper Campanian red pelagic limestone-marl cycles (CORBs) of the Nierental Formation, Gosau Group, Northern Calcareous Alps (Photograph: M. Wagreich). 10th ISC Logo: Benjamin Sames The 10th ISC Logo is composed of selected elements of the Viennese skyline with, from left to right, the Stephansdom (St.
    [Show full text]