Evaluating Hypotheses of Basal Animal Phylogeny Using Complete Sequences of Large and Small Subunit Rrna
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Number of Living Species in Australia and the World
Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure. -
Ctenophore Relationships and Their Placement As the Sister Group to All Other Animals
ARTICLES DOI: 10.1038/s41559-017-0331-3 Ctenophore relationships and their placement as the sister group to all other animals Nathan V. Whelan 1,2*, Kevin M. Kocot3, Tatiana P. Moroz4, Krishanu Mukherjee4, Peter Williams4, Gustav Paulay5, Leonid L. Moroz 4,6* and Kenneth M. Halanych 1* Ctenophora, comprising approximately 200 described species, is an important lineage for understanding metazoan evolution and is of great ecological and economic importance. Ctenophore diversity includes species with unique colloblasts used for prey capture, smooth and striated muscles, benthic and pelagic lifestyles, and locomotion with ciliated paddles or muscular propul- sion. However, the ancestral states of traits are debated and relationships among many lineages are unresolved. Here, using 27 newly sequenced ctenophore transcriptomes, publicly available data and methods to control systematic error, we establish the placement of Ctenophora as the sister group to all other animals and refine the phylogenetic relationships within ctenophores. Molecular clock analyses suggest modern ctenophore diversity originated approximately 350 million years ago ± 88 million years, conflicting with previous hypotheses, which suggest it originated approximately 65 million years ago. We recover Euplokamis dunlapae—a species with striated muscles—as the sister lineage to other sampled ctenophores. Ancestral state reconstruction shows that the most recent common ancestor of extant ctenophores was pelagic, possessed tentacles, was bio- luminescent and did not have separate sexes. Our results imply at least two transitions from a pelagic to benthic lifestyle within Ctenophora, suggesting that such transitions were more common in animal diversification than previously thought. tenophores, or comb jellies, have successfully colonized from species across most of the known phylogenetic diversity of nearly every marine environment and can be key species in Ctenophora. -
NEW RECORD of PLEUROBRACHIA PILEUS (O. F. MÜLLER, 1776) (CTENOPHORA, CYDIPPIDA) from CORAL REEF, IRAQI MARINE WATERS Hanaa
Mohammed and Ali Bull. Iraq nat. Hist. Mus. (2020) 16 (1): 83- 93. https://doi.org/10.26842/binhm.7.2020.16.1.0083 NEW RECORD OF PLEUROBRACHIA PILEUS (O. F. MÜLLER, 1776) (CTENOPHORA, CYDIPPIDA) FROM CORAL REEF, IRAQI MARINE WATERS Hanaa Hussein Mohammed* and Malik Hassan Ali** *Department Biological Development of Shatt Al-Arab and N W Arabian Gulf, Marine Science Center, University of Basrah, Basrah, Iraq **Department Marine Biology, Marine Science Center, University of Basrah, Basrah, Iraq **Corresponding author: [email protected] Received Date: 16 January 2020, Accepted Date: 27April 2020, Published Date: 24 June 2020 ABSTRACT The aim of this paper is to present the first record of ctenophore species Pleurobrachia pileus (O. F. Müller, 1776) in the coral reef as was recently found in Iraqi marine waters. The specimens were collected from two sites, the first was in Khor Abdullah during May 2015, and the second site was located in the pelagic water of the coral reef area, near the Al-Basrah deep sea crude oil marine loading terminal. Three samples were collected at this site during May 2015, February and March 2018 which showed that P. pileus were present at a densities of 3.0, 2.2 and 0.55 ind./ m3 respectively. The species can affect on the abundance of other zooplankton community through predation. The results of examining the stomach contents revealed that they are important zooplanktivorous species; their diets comprised large number of zooplankton as well as egg and fish larvae. The calanoid copepods formed the highest percentage of the diet, reaching 47%, followed by cyclopoid copepods 30%, and then the fish larvae formed 20% of the diet. -
Simple Animals Sponges and Placozoa the Twig of the Tree That Is the Animals the Tour Begins
Animal Kingdom Simple animals Sponges and placozoa Tom Hartman Asymmetry www.tuatara9.co.uk Animal form and function 1 Module 111121 2 The twig of the tree that is the animals Animals All other animals Animals Sponges Choanoflagellates Choanoflagellates Fungi Fungi 3 4 All other animals Animals (bilateralia) Radiata Sponges Choanoflagellates Fungi The tour begins 5 6 1 Animal Kingdom The Phylum Quirky phyla • In the standard Linnean system (and taxonomic systems • There are 39 animal phyla (+/- 10!) based on it), a Phylum is the taxonomic category between Kingdom and Class. • The Micrognathozoa were • A phylum is a major ranking of organisms, defined discovered in 2000 (1 species)in according to the most basic body-parts shared by that springs in Greenland. group. But we must include the creatures and their • Xenoturbellida removed from the common ancestor. molluscs and moved to the – Chordata (animals with a notochord - vertebrates and others), – Arthropoda (animals with a jointed exoskeleton) dueterostomes when DNA – Mollusca (animals with a shell-secreting mantle), evidence was discounted due to – Angiosperma (flowering plants), and so on. what it had eaten! – A number of traditional Phyla - e.g. Protozoa, possibly Arthropoda - • Cycliophora discovered on the are probably invalid (polyphyletic). lips of lobsters in 1995. 7 8 The Class Our journey • In the Linnean system (and taxonomic systems Kingdom Group Phylum based on it), a Class is the taxonomic category Porifera between Phylum and Order. Placozoa • A class is a major group of organisms, e.g. Cnidaria Mammalia, Gastropoda, Insecta, etc that Parazoa Ctenophora contains a large number of different Radiata Platyhelminthes sublineages, but have shared characteristics in Animalia Protostome Rotifera common e.g. -
The Unique Skeleton of Siliceous Sponges (Porifera; Hexactinellida and Demospongiae) That Evolved first from the Urmetazoa During the Proterozoic: a Review” by W
Biogeosciences Discuss., 4, S262–S276, 2007 Biogeosciences www.biogeosciences-discuss.net/4/S262/2007/ BGD Discussions c Author(s) 2007. This work is licensed 4, S262–S276, 2007 under a Creative Commons License. Interactive Comment Interactive comment on “The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review” by W. E. G. Müller et al. W. E. G. Müller et al. Received and published: 3 April 2007 3rd April 2007 Full Screen / Esc From : Prof. Dr. W.E.G. Müller, Institut für Physiologische Chemie, Abteilung Ange- wandte Molekularbiologie, Universität, Duesbergweg 6, 55099 Mainz; GERMANY. tel.: Printer-friendly Version +49-6131-392-5910; fax.: +49-6131-392-5243; E-mail: [email protected] To the Editorial Board Interactive Discussion MS-NR: bgd-2006-0069 Discussion Paper S262 EGU Dear colleagues: BGD Thank you for your email from April 2nd informing me that our manuscript entitled: 4, S262–S276, 2007 The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review by: Werner E.G. Müller, Jinhe Li, Heinz C. Schröder, Li Qiao and Xiaohong Wang Interactive Comment which we submit for the Journal Biogeosciences must be revised. In the following we discuss point for point the arguments raised by the referees/reader. In detail: Interactive comment on “The unique skeleton of siliceous sponges (Porifera; Hex- actinellida and Demospongiae) that evolved first from the Urmetazoa during the Pro- terozoic: a review” by W. E. G. Müller et al. By: M. -
Arctic and Antarctic Bryozoan Communities and Facies
© Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Bryozoans in polar latitudes: Arctic and Antarctic bryozoan communities and facies B. BADER & P. SCHÄFER Abstract: Bryozoan community patterns and facies of high to sub-polar environments of both hemi- spheres were investigated. Despite the overall similarities between Arctic/Subarctic and Antarctic ma- rine environments, they differ distinctly regarding their geological history and hydrography which cause differences in species characteristics and community structure. For the first time six benthic communi- ties were distinguished and described for the Artie realm where bryozoans play an important role in the community structure. Lag deposits resulting from isostatic uplift characterise the eastbound shelves of the Nordic Seas with bryozoan faunas dominated by species encrusting glacial boulders and excavated infaunal molluscs. Bryozoan-rich carbonates occur on shelf banks if terrigenous input is channelled by fjords and does not affect sedimentary processes on the banks. Due to strong terrigenous input on the East Greenland shelf, benthic filter feeding communities including a larger diversity and abundance of bryozoans are rare and restricted to open shelf banks separated from the continental shelf. Isolated ob- stacles like seamount Vesterisbanken, although under fully polar conditions, provide firm substrates and high and seasonal food supply, which favour bryozoans-rich benthic filter-feeder communities. In con- trast, the Weddell Sea/Antarctic shelf is characterised by iceberg grounding that causes considerable damage to the benthic communities. Sessile organisms are eradicated and pioneer species begin to grow in high abundances on the devastated substrata. Whereas the Arctic bryozoan fauna displays a low de- gree of endemism due to genera with many species, Antarctic bryozoans show a high degree of en- demism due to a high number of genera with only one or few species. -
The Unique Skeleton of Siliceous Sponges (Porifera; Hexactinellida and Demospongiae) That Evolved first from the Urmetazoa During the Proterozoic: a Review
Biogeosciences, 4, 219–232, 2007 www.biogeosciences.net/4/219/2007/ Biogeosciences © Author(s) 2007. This work is licensed under a Creative Commons License. The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review W. E. G. Muller¨ 1, Jinhe Li2, H. C. Schroder¨ 1, Li Qiao3, and Xiaohong Wang4 1Institut fur¨ Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Duesbergweg 6, 55099 Mainz, Germany 2Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, P. R. China 3Department of Materials Science and Technology, Tsinghua University, 100084 Beijing, P. R. China 4National Research Center for Geoanalysis, 26 Baiwanzhuang Dajie, 100037 Beijing, P. R. China Received: 8 January 2007 – Published in Biogeosciences Discuss.: 6 February 2007 Revised: 10 April 2007 – Accepted: 20 April 2007 – Published: 3 May 2007 Abstract. Sponges (phylum Porifera) had been considered an axial filament which harbors the silicatein. After intracel- as an enigmatic phylum, prior to the analysis of their genetic lular formation of the first lamella around the channel and repertoire/tool kit. Already with the isolation of the first ad- the subsequent extracellular apposition of further lamellae hesion molecule, galectin, it became clear that the sequences the spicules are completed in a net formed of collagen fibers. of sponge cell surface receptors and of molecules forming the The data summarized here substantiate that with the find- intracellular signal transduction pathways triggered by them, ing of silicatein a new aera in the field of bio/inorganic chem- share high similarity with those identified in other metazoan istry started. -
Flatworms/ Rotifers 1) Clade (Clades Are a Group of Related Phylum) Platyzoa A) Platyzoa Consist of 6 Phyla, However Most of T
Flatworms/ Rotifers 1) Clade (clades are a group of related phylum) Platyzoa a) Platyzoa consist of 6 phyla, however most of these phyla are represented by a very small number of species and are debated on where they fall taxonomically. b) These organisms represent the beginning or bilateral symmetry i) For organisms like sponges and Cnidarians it is to their advantage to be radial symmetrical because they can collect food from any angle ii) However now organisms show a distinct head and tail end and better movement to go after food items 2) Phylum Platyhelminthes a) This is the group of flat worms. b) It consist of four classes c) All but one class are parasitic in nature d) Feeding i) Platyhelminthes have an incomplete gut. ii) Most have a mouth, pharynx, and intestine (1) The advancement of having a small intestine increases surface area and thus increases the amount of nutrients absorbed. iii) Many of the non-parasitic species have a pharynx (connection between mouth and intestines) that has the ability to extend out of the mouth in order to gather resources. iv) Parasitic forms have to have some specialized feeding apparatus to extract nutrients from their host without causing too much harm. e) Sense organs i) Here is also an evolutionary advancement in nerve cells (1) The simplest forms are similar to Cnidarians, however, others have in addition one or more longitudinal nerve cords creating a “ladder” style pattern. (2) Towards the superior end there is a cluster of nerves that serves as a rudimentary brain ii) Tactile cells (cells that detect pressure) and chemoreceptors (cells that stimulate in response to a chemical) are abundant all over the body. -
The Boundary Reefs: Glass Sponge (Porifera: Hexactinellidae) Reefs on the International Border Between Canada and the United States
NOAA Technical Memorandum NMFS-AFSC-264 The Boundary Reefs: Glass Sponge (Porifera: Hexactinellidae) Reefs on the International Border Between Canada and the United States by R. P. Stone, K. W. Conway, D. J. Csepp, J. V. Barrie U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center January 2014 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center. This document should be cited as follows: Stone, R. P., K. W. Conway, D. J. Csepp, and J. V. Barrie. 2013. The boundary reefs: glass sponge (Porifera: Hexactinellida) reefs on the international border between Canada and the United States. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-264, 31 p. Document available: http://www.afsc.noaa.gov/Publications/AFSC-TM/NOAA-TM-AFSC-264.pdf Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-264 The Boundary Reefs: Glass Sponge (Porifera: Hexactinellidae) Reefs on the International Border Between Canada and the United States by R. -
Formation of Giant Spicules in the Deep-Sea Hexactinellid Monorhaphis Chuni (Schulze 1904): Electron-Microscopic and Biochemical Studies
Cell Tissue Res (2007) 329:363–378 DOI 10.1007/s00441-007-0402-x REGULAR ARTICLE Formation of giant spicules in the deep-sea hexactinellid Monorhaphis chuni (Schulze 1904): electron-microscopic and biochemical studies Werner E. G. Müller & Carsten Eckert & Klaus Kropf & Xiaohong Wang & Ute Schloßmacher & Christopf Seckert & Stephan E. Wolf & Wolfgang Tremel & Heinz C. Schröder Received: 25 November 2006 /Accepted: 19 February 2007 / Published online: 4 April 2007 # Springer-Verlag 2007 Abstract The siliceous sponge Monorhaphis chuni (Hexa- spicules; it harbors the axial filament and is surrounded by ctinellida) synthesizes the largest biosilica structures on an axial cylinder (100–150 μm) of electron-dense homo- earth (3 m). Scanning electron microscopy has shown that geneous silica. During dissolution of the spicules with these spicules are regularly composed of concentrically hydrofluoric acid, the axial filament is first released arranged lamellae (width: 3–10 μm). Between 400 and 600 followed by the release of a proteinaceous tubule. Two lamellae have been counted in one giant basal spicule. An major proteins (150 kDa and 35 kDa) have been visualized, axial canal (diameter: ~2 μm) is located in the center of the together with a 24-kDa protein that cross-reacts with antibodies against silicatein. The spicules are surrounded by a collagen net, and the existence of a hexactinellidan Carsten Eckert was previously with the Museum für Naturkunde, collagen gene has been demonstrated by cloning it from Invalidenstrasse 43, 10115 Berlin, Germany. Aphrocallistes vastus. During the axial growth of the The collagen sequence from Aphrocallistes vastus reported here, viz., spicules, silicatein or the silicatein-related protein is [COL_APHRO] APHVACOL (accession number AM411124), has been deposited in the EMBL/GenBank data base. -
An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department. -
Still Enigmatic: Innate Immunity in the Ctenophore Mnemiopsis Leidyi
Integrative and Comparative Biology Integrative and Comparative Biology, volume 59, number 4, pp. 811–818 doi:10.1093/icb/icz116 Society for Integrative and Comparative Biology SYMPOSIUM Still Enigmatic: Innate Immunity in the Ctenophore Mnemiopsis leidyi Downloaded from https://academic.oup.com/icb/article-abstract/59/4/811/5524668 by University of Texas at Arlington user on 05 November 2019 Nikki Traylor-Knowles,* Lauren E. Vandepas†,‡ and William E. Browne§ *Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, FL 33149, USA; †Benaroya Research Institute, 1201 9th Avenue, Seattle, WA 98101, USA; ‡Department of Biology, University of Washington, Seattle, WA 98195, USA; §Department of Biology, University of Miami, Cox Science Building, 1301 Memorial Drive, Miami, FL 33146, USA From the symposium “Chemical responses to the biotic and abiotic environment by early diverging metazoans revealed in the post-genomic age” presented at the annual meeting of the Society for Integrative and Comparative Biology, January 3–7, 2019 at Tampa, Florida. 1E-mail: [email protected] Synopsis Innate immunity is an ancient physiological response critical for protecting metazoans from invading patho- gens. It is the primary pathogen defense mechanism among invertebrates. While innate immunity has been studied extensively in diverse invertebrate taxa, including mollusks, crustaceans, and cnidarians, this system has not been well characterized in ctenophores. The ctenophores comprise an exclusively marine, non-bilaterian lineage that diverged early during metazoan diversification. The phylogenetic position of ctenophore lineage suggests that characterization of the ctenophore innate immune system will reveal important features associated with the early evolution of the metazoan innate immune system.