Best Practices for Publishing, Retrieving, and Using Spatial Data on The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Implementing OGC Web Map Service Client Applications Using JSP, JSTL and XMLC
Implementing OGC Web Map Service Client Applications Using JSP, JSTL and XMLC Hao Ding , Richard Pascoe & Neville Churcher Department of Computer Science University of Canterbury. Christchurch, New Zealand Phone: +64 3 364-2362 Fax: +64 3 364-2569 Email: [email protected] , {richard, neville}@cosc.canterbury.ac.nz Presented at SIRC 2002 – The 14th Annual Colloquium of the Spatial Information Research Centre University of Otago, Dunedin, New Zealand th December 3-5 2002 ABSTRACT Java technologies are widely used in web application development. In this paper are described three approaches to developing Java-based web applications and our experiences with applying each to the development of client that interact with servers implementing the OGC (Open GIS Consortium) Web Map Service (WMS) specification. Also described is the installation and configuration of open source software that implements the WMS specification. The paper is concluded with some preliminary insights into when one of the three approaches to WMS client implementation is more suited to another. Keywords and phrases: WMS, JSP, JSTL, XMLC, map layer, web map server 1.0 INTRODUCTION Of the many technologies, such as Common Gateway Interface (CGI), Active Server Pages (ASP), JavaServer Pages (JSP), that are used to develop web applications, three are of particular interest to the research presented here. These three technologies or approaches to developing clients that utilise web services are JavaServer Pages (JSP), JSP with the use of tags from the JSP Standard Tag Library (JSTL), and the eXtensible Markup Language Compiler (XMLC). JSP is a more convenient way to write Java servlets, and allows the insertion of Java code directly into static HTML (Hypertext Markup Language) pages. -
Data and Service Discovery in Linked SDI and Linked VGI
Data and Service Discovery in Linked SDI and Linked VGI Virtual Workshop on Geospatial Semantic Architectures Todd Pehle May 7, 2013 Chief Engineer tpehle-at-orbistechnologies.com 1 Agenda • Introduce Example OGC Workflow • Describe Analogous Linked Data Workflow: • Geographic Feature Types in Linked SDI/VGI • Data Discovery with GeoVoID • Service Capabilities with GeoSPARQL Service Descriptions • SPARQL-based Feature Collections • Conclusion 2 Example OGC-based GIS Workflow 1. Discover OGC Catalog 2. Search Catalog by Feature Type/BBOX 3. Discover OGC WFS Service 4. GetCapabilities 5. GetFeature 6. DescribeFeatureType 7. Add WFS Layer(s) to Map 8. Get Feature By ID 3 Feature Types in LOD What constitutes a feature type in Linked Data? • Linked Data is described using RDFS and OWL ontologies giving data a formal semantics • Consensus on a “core” intensional semantics for geographic phenomena remains elusive • Option 1: Wait (a long time) for consensus • Option 2: Minimize ontological commitment and apply definitions driven by extensional alignment (i.e. – no core) 4 Common LOD Feature Type Definitions W3C Basic Geo (Linked VGI) OGC GeoSPARQL (Linked SDI) ? SpatialThing SpatialObject ? Feature Geometry Point ns:City Relations = rdfs:subClassOf 5 Dataset Discovery with VoID and DCAT • VoID Capabilities: • General metadata • Structural • Class/property partitions • Linksets • DCAT Capabilities: • Interoperability of Catalogs • Non-RDF Catalogs Source: http://docs.ckan.org/en/latest/geospatial.html • Often stored in data portal like CKAN • Offers BBOX dataset queries • Has extension support for CSW • Flexible discovery via centralized catalogs AND socialized links (VoID Repos, URI backlinks, etc.) 6 Geospatial Data Discovery with GeoVoID Goals: • Enable discovery of geographic feature data and services in LOD via: • Feature Type Discovery • Feature Type Spatial Extents • Dataset Spatial Extents • Thematic Attribution Schema Discovery (maybe) • GeoSPARQL Endpoint Discovery • Reuse and extend existing LOD vocabs vs. -
Development of an Extension of Geoserver for Handling 3D Spatial Data Hyung-Gyu Ryoo Pusan National University
Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings Volume 17 Boston, USA Article 6 2017 Development of an extension of GeoServer for handling 3D spatial data Hyung-Gyu Ryoo Pusan National University Soojin Kim Pusan National University Joon-Seok Kim Pusan National University Ki-Joune Li Pusan National University Follow this and additional works at: https://scholarworks.umass.edu/foss4g Part of the Databases and Information Systems Commons Recommended Citation Ryoo, Hyung-Gyu; Kim, Soojin; Kim, Joon-Seok; and Li, Ki-Joune (2017) "Development of an extension of GeoServer for handling 3D spatial data," Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings: Vol. 17 , Article 6. DOI: https://doi.org/10.7275/R5ZK5DV5 Available at: https://scholarworks.umass.edu/foss4g/vol17/iss1/6 This Paper is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings by an authorized editor of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Development of an extension of GeoServer for handling 3D spatial data Optional Cover Page Acknowledgements This research was supported by a grant (14NSIP-B080144-01) from National Land Space Information Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government and BK21PLUS, Creative Human Resource Development Program for IT Convergence. This paper is available in Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings: https://scholarworks.umass.edu/foss4g/vol17/iss1/6 Development of an extension of GeoServer for handling 3D spatial data Hyung-Gyu Ryooa,∗, Soojin Kima, Joon-Seok Kima, Ki-Joune Lia aDepartment of Computer Science and Engineering, Pusan National University Abstract: Recently, several open source software tools such as CesiumJS and iTowns have been developed for dealing with 3-dimensional spatial data. -
Opengis Web Feature Services for Editing Cadastral Data
OpenGIS Web Feature Services for editing cadastral data Analysis and practical experiences Master of Science thesis T.J. Brentjens Section GIS Technology Geodetic Engineering Faculty of Civil Engineering and Geosciences Delft University of Technology OpenGIS Web Feature Services for editing cadastral data Analysis and practical experiences Master of Science thesis Thijs Brentjens Professor: prof. dr. ir. P.J.M. van Oosterom (Delft University of Technology) Supervisors: drs. M.E. de Vries (Delft University of Technology) drs. C.W. Quak (Delft University of Technology) drs. C. Vijlbrief (Kadaster) Delft, April 2004 Section GIS Technology Geodetic Engineering Faculty of Civil Engineering and Geosciences Delft University of Technology The Netherlands Het Kadaster Apeldoorn The Netherlands i ii Preface Preface This thesis is the result of the efforts I have put in my graduation research project between March 2003 and April 2004. I have performed this research part-time at the section GIS Technology of TU Delft in cooperation with the Kadaster (the Dutch Cadastre), in order to get the Master of Science degree in Geodetic Engineering. Typing the last words for this thesis, I have been realizing more than ever that this thesis marks the end of my time as a student at the TU Delft. However, I also realize that I have been working to this point with joy. Many people are “responsible” for this, but I’d like to mention the people who have contributed most. First of all, there are of course people who were directly involved in the research project. Peter van Oosterom had many critical notes and - maybe even more important - the ideas born out of his enthusiasm improved the entire research. -
A Survey of Geospatial Semantic Web for Cultural Heritage
heritage Review A Survey of Geospatial Semantic Web for Cultural Heritage Ikrom Nishanbaev 1,* , Erik Champion 1 and David A. McMeekin 2 1 School of Media, Creative Arts, and Social Inquiry, Curtin University, Perth, WA 6845, Australia; [email protected] 2 School of Earth and Planetary Sciences, Curtin University, Perth, WA 6845, Australia; [email protected] * Correspondence: [email protected] Received: 23 April 2019; Accepted: 16 May 2019; Published: 20 May 2019 Abstract: The amount of digital cultural heritage data produced by cultural heritage institutions is growing rapidly. Digital cultural heritage repositories have therefore become an efficient and effective way to disseminate and exploit digital cultural heritage data. However, many digital cultural heritage repositories worldwide share technical challenges such as data integration and interoperability among national and regional digital cultural heritage repositories. The result is dispersed and poorly-linked cultured heritage data, backed by non-standardized search interfaces, which thwart users’ attempts to contextualize information from distributed repositories. A recently introduced geospatial semantic web is being adopted by a great many new and existing digital cultural heritage repositories to overcome these challenges. However, no one has yet conducted a conceptual survey of the geospatial semantic web concepts for a cultural heritage audience. A conceptual survey of these concepts pertinent to the cultural heritage field is, therefore, needed. Such a survey equips cultural heritage professionals and practitioners with an overview of all the necessary tools, and free and open source semantic web and geospatial semantic web platforms that can be used to implement geospatial semantic web-based cultural heritage repositories. -
A Pilot for Testing the OGC Web Services Integration of Water-Related Information and Models
RiBaSE: A Pilot for Testing the OGC Web Services Integration of Water-related Information and Models Lluís Pesquer Mayos, Simon Jirka, Grumets Research Group CREAF 52°North Initiative for Geospatial Open Source Software Edicifi C, Universitat Autònoma de Barcelona GmbH 08193 Bellaterra, Spain 48155 Münster, Germany [email protected] [email protected] Christoph Stasch, Joan Masó Pau, Grumets Research Group CREAF 52°North Initiative for Geospatial Open Source Software Edicifi C, Universitat Autònoma de Barcelona GmbH Bellaterra, Spain 48155 Münster, Germany [email protected] [email protected] David Arctur, Center for Research in Water Resources, University of Texas at Austin 10100 Burnet Rd Bldg 119, Austin, TX USA [email protected] Abstract—The design of an interoperability experiment to The OGC is an international industry consortium of demonstrate how current ICT-based tools and water data can companies, government agencies and universities participating work in combination with geospatial web services is presented. in a consensus process to develop publicly available interface This solution is being tested in three transboundary river basins: standards. Some successful examples of OGC standards for Scheldt, Maritsa and Severn. The purpose of this experiment is to general spatial purposes are, for example, the Web Map assess the effectiveness of OGC standards for describing status Service (WMS) for providing interoperable pictorial maps and dynamics of surface water in river basins, to demonstrate over the web and the Keyhole Markup Language (KML) as a their applicability and finally to increase awareness of emerging data format for virtual globes. On the other hand, hydrological standards as WaterML 2.0. -
Developing Geosparql Applications with Oracle Spatial and Graph
Developing GeoSPARQL Applications with Oracle Spatial and Graph Matthew Perry, Ana Estrada, Souripriya Das, Jayanta Banerjee Oracle, One Oracle Drive, Nashua, NH 03062, USA Abstract. Oracle Spatial and Graph – RDF Semantic Graph, an option for Ora- cle Database 12c, is the only mainstream commercial RDF triplestore that sup- ports the OGC GeoSPARQL standard for spatial data on the Semantic Web. This demonstration will give an overview of the GeoSPARQL implementation in Oracle Spatial and Graph and will show how to load, index and query spatial RDF data. In addition, this demonstration will discuss complimentary tools such as Oracle Map Viewer. 1 Introduction The Open Geospatial Consortium (OGC) published the GeoSPARQL standard in 2012 [1]. This standard defines, among other things, a vocabulary for representing geospatial data in RDF and an extension of the W3C SPARQL query language [4] that allows spatial processing. Oracle Database has provided support for RDF data with the Spatial and Graph op- tion since 2005. GeoSPARQL has been supported since 2013, beginning with version 12c Release 1 [2]. Oracle Spatial and Graph is the only mainstream commercial RDF triplestore that supports significant components of the OGC GeoSPARQL standard. A demonstration of Oracle’s technology will give an overview of the current state-of- the-art for managing linked geospatial data. The remainder of this paper describes major components of OGC GeoSPARQL and then discusses the architecture of Oracle Spatial and Graph. This is followed by a description of key features of Oracle Spatial and Graph that will be demonstrated. 2 The OGC GeoSPARQL Standard The OGC GeoSPARQL standard defines a number of components ranging from top-level OWL classes to a set of rules for query transformations. -
Open Geospatial Consortium: 2D Or Not 2D?
® Open Geospatial Consortium: 2D or Not 2D? Chris Little, Co-Chair Met Ocean DWG Marie-Françoise Voidrot-Martinez, Météo-France, Co-Chair EGOWS at FMI, Helsinki, Finland 2016-09-20/22 © 2010 Open Geospatial Consortium, Inc. 0. Introduction 1. What is OGC? 2. Who is OGC? 3. How does OGC work? 4. What is OGC doing? 5. Current issues, futures & possibilities? 6. Questions & (maybe) Answers? ® OGC © 2010 Open Geospatial Consortium, Inc. 1. What is OGC? • See also http://www.opengeospatial.org ® OGC © 2010 Open Geospatial Consortium, Inc. 3 What is OGC? • International, non-profit, consortium • Develops standards for geospatial OGC Membership Distribution data & services, >25 years 9 % Commercial • Funded by ~500 members 6 % Government • 38 adopted standards 43 % Academic • Consensus process 24 % • Docs freely available Research • 100s of implementations Not For Profit • Alliance partnerships with 30+ 18 % standards & professional organizations • Broad user community worldwide • Several standards fast tracked in ISO (and WMO!) OGC® What is OGC’s Vision? Vision: A world in which everyone benefits from the use of geospatial information and supporting technologies. Mission: Global forum for collaboration of developers and users of spatial data products and services and to advance the development of international standards for geospatial interoperability Strategic Goals: Goal 1 - Provide free and openly available standards to the market that are of tangible value to Members and have measurable benefits for users. Goal 2 - Lead worldwide in the creation and establishment of standards that enable global infrastructures for delivery and integration of geospatial content and services into business and civic processes. Goal 3 - Facilitate the adoption of open, spatially enabled reference architectures in enterprise environments worldwide. -
Project No. 249024 NETMAR Open Service Network for Marine
Project No. 249024 NETMAR Open service network for marine environmental data Instrument: CA IP NOE Please tick 9STREP ICT - Information and Communication Technologies Theme D2.1 Review of projects, initiatives & technologies addressing system architectures for distributed Environmental Information Systems (EIS) Reference: D2.1_Review_of_projects_initiatives_and_technologies_r1_20100618 Due date of deliverable (as in Annex 1): M0 + 3 Actual submission date: 18 June 2010 Start date of project: 1 February 2010 Duration: 3 years Coastal and Marine Resources Centre (CMRC), University College Cork, National University of Ireland Revision 1 Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013) Dissemination Level PU Public X Restricted to other programme participants (including PP the Commission Services) Restricted to a group specified by the consortium RE (including the Commission Services) Confidential, only for members of the consortium CO (including the Commission Services) NETMAR Open service network for marine environmental data Project Reference: 249024 Contract Type: Collaborative Project Start/End Date: 01/03/2010 - 31/01/2013 Duration: 36 months Coordinator: Prof. Stein Sandven Nansen Environmental and Remote Sensing Center Thormøhlensgate 47, Bergen, Norway Tel.: +47-55205800 Fax. +47 55 20 58 01 E-mail: [email protected] Acknowledgements The work described in this report has been partially funded by the European Commission under the Seventh Framework Programme, Theme ICT 2009.6.4 ICT for environmental services and climate change adaptation. Consortium The NETMAR Consortium is comprised of: • Nansen Environmental and Remote Sensing Center (NERSC), Norway (coordinator). Project Coordinator: Prof. Stein Sandven ([email protected]) Deputy Coordinator: Dr. Torill Hamre ([email protected]) Quality Control Manager: Mr. -
MASARYK UNIVERSITY Faculty of Science Department of Geography
MASARYK UNIVERSITY Faculty of Science Department of Geography Zdeněk HYNEK APPLICATION OF WEB TECHNOLOGIES FOR DATA MAINTENANCE WHILE USING WEB INTERFACE Diploma Thesis Thesis Advisor: RNDR. Tomáš Řezník, Ph.D. Brno 2011 Author's first and last name: Zdeněk Hynek Diploma thesis name: Application of Web technologies for data maintenance while using Web interface Field of study: Geographical Cartography and Geoinformatics Thesis Advisor: RNDr. Tomáš Řezník, Ph.D. Graduation year : 2011 Anotace Diplomová práce představuje webovou aplikaci pro on-line editaci prostorových dat. V teoretické části podává práce základní přehled použitých technologií, relevantních mezinárodních standardů a teoretických konceptů na jejichž základě byla aplikace vyvinuta. Aplikace byla testována v rámci terénního experimentu v listopadu 2008 v rámci výzkumného záměru Dynamická vizualizace v krizovém managementu řešeného v rámci Laboratoře geoinformatiky a kartografie. Na základě výsledku experimentu je aplikace stručně zhodnocena a jsou načrtnuty možnosti dalšího vývoje. Annotation The thesis deals with development of an exemplary web application for on-line editing of geo-spatial data. The written part presents overview of technologies used, international standards involved and theoretical concepts which laid foundation for the development of application. The application has been tested during the field experiment testing in November 2008 as part of the Dynamic Geovisualization in the Crisis management research project at Laboratory on Geoinformatics and Cartography. Based on the experiment results, the brief evaluation of application's functionality and usability is made, together with prospects for further development. Klíčová slova: Webové služby, WMS, WFS, OGC, Krizový management Keywords: Web services, WMS, WFS, OGC, Crisis Management I hereby affirm that I have written the thesis by myself under the guidance of RNDr. -
Proof of Concept and State of the Art in FOSS Geospatial Technology
Field Information Geospatial-database System (FIGS) for the United Nations Office for Coordination of Humanitarian Affairs (OCHA) Proof of concept and state of the art in FOSS Geospatial Technology Report by Sean Ahearn, Ph.D., Hunter College - CUNY David Almeida, Hunter College CUNY Software Engineer, TTSI Mark Gahegan, Ph.D. Pennsylvania State University To Mr. Suha Ulgen Technical Coordinator Field Information Support Project Office for the Coordination of Humanitarian Affairs One UN Plaza DC1-1368 New York, NY 10017 March 2006 FIGS Working Group Document: Proof of Concept and state of the art in FOSS 1 Geospatial Technology 3/15/2006 Table of Contents Page number Executive Summary 5 1.0 Introduction 7 2.0 Purpose of broader project 9 2.1 Phase 1: Proof of Concept and state of the art in FOSS Geospatial Technology 9 2.2 FIGS Development 9 2.3 Phase 3: FIGS Field Implementation 11 3.0 Background 11 4.0 Phase I: Proof of Concept and state of the 12 art in FOSS Geospatial Technology 4.1.1 Initial overview of the use of geospatial 12 technology for disaster relief management. 4.1.2 Introduction: Humanitarian Information Centers (HIC) 13 4.1.3 Tsunami (South-east Asia) 16 4.1.4 Earthquake (Pakistan-India) 17 4.2 Within the context of these emergencies, conduct a 20 preliminary data needs assessment and establish functionality requirements for geospatial query, analysis and cartographic output. 4.2.1 Current software systems used 21 4.2.2 Required functionality of Geospatial environment 21 4.2.3 Critical information needs 22 4.2.4 Operational conditions 24 4.3 Assemble, integrate and test Free Open Source Software 24 (FOSS) systems for storage, maintenance, access and analysis of geospatial information. -
Geosparql Query Tool a Geospatial Semantic Web Visual Query Tool
GeoSPARQL Query Tool A Geospatial Semantic Web Visual Query Tool Ralph Grove1, James Wilson2, Dave Kolas3 and Nancy Wiegand4 1Department of Computer Science, James Madison University, Harrisonburg, Virginia, U.S.A. 2Department of Integrated Science and Technology, James Madison University, Harrisonburg, Virginia, U.S.A. 3Raytheon BBN Technologies, Columbia, Maryland, U.S.A. 4Space Science and Engineering Center, University of Wisconsin, Madison, Wisconsin, U.S.A. Keywords: Semantic Web, Geographic Information Systems, GeoSPARQL, SPARQL, RDF. Abstract: As geospatial data are becoming more widely used through mobile devices and location sensitive applications, the potential value of linked open geospatial data in particular has grown, and a foundation is being developed for the Semantic Geospatial Web. Protocols such as GeoSPARQL and stSPARQL extend SPARQL in order to take advantage of spatial relationships inherent in geospatial data. This paper presents GeoQuery, a graphical geospatial query tool that is based on Semantic Web technologies. GeoQuery presents a map-based user interface to geospatial search functions and geospatial operators. Rather than using a proprietary geospatial database, GeoQuery enables queries against any GeoSPARQL endpoint by translating queries expressed via its graphical user interface into GeoSPARQL queries, allowing geographic information scientists and other Web users to query linked data without knowing GeoSPARQL syntax. 1 INTRODUCTION Tool (GeoQuery)1, a graphical geospatial query tool that is based on Semantic Web technologies. The Semantic Web has the potential to greatly GeoQuery translates queries expressed through its increase the usability of publicly available data by graphical user interface into GeoSPARQL queries, allowing access to open data sets in linked format which can then be executed against any over the Web.