The History of Cool a Look Back at Pioneering Studies of Quantum Effects at Low Temperatures

Total Page:16

File Type:pdf, Size:1020Kb

The History of Cool a Look Back at Pioneering Studies of Quantum Effects at Low Temperatures books and arts The history of cool A look back at pioneering studies of quantum effects at low temperatures. Cold Wars: A History of Superconductivity by Jean Matricon & Georges Waysand Rutgers University Press: 2003. 304 pp. $65 Philip W. Anderson This book, translated from the French, is a history of the field of cryogenics and of the two specifically quantum forms of matter in bulk — superconductivity and superfluidity (although only the first is mentioned in the subtitle). The authors clearly express their enthusiasm (which I share) for the field and its history: the fascination and mystery that it held for the icons of the quantum revolu- tion, from Albert Einstein through Werner ARCHIVES VISUAL EMILIO SEGRE ONNES LAB./AIP KAMERLINGH Heisenberg to Richard Feynman; the slow and uneven advance of science as it was impeded by personality conflicts, the sav- agery of the Stalinist regime, and the politics of the real Cold War; the clashes of conflict- Super stars? Researchers at Heike Kamerlingh Onnes’ lab in Leiden discovered superconductivity. ing ways of doing research in disparate fields; and even, most recently, a case of the died too early to catch the breakthroughs in University of California, Berkeley, a labora- deliberate manufacture of scientific results high-temperature superconductivity made tory that the authors condemn to ‘also-ran’ on an unprecedented scale. There is a lot of by his followers and students. status in a parenthetical note.) And the rich material here that has been, on the Having said all that,throughout the book authors ignore Matthias’ continuous con- whole, neglected. I kept encountering historical blunders and nection to Bell Labs from before he began This history has more than its share of misapprehensions that left me wondering studying superconductivity. fascinating,larger-than-life figures.It begins how sound the rest of it was. For instance, in The book also provides a false impression with the Dutch entrepreneur Heike Kamer- the space of two pages there are three dubi- of the discovery of the Josephson effect. lingh Onnes, who discovered superconduc- ous historical judgements. To begin with, Brian Josephson’s paper predicting tunnel- tivity. In order to liquefy helium, he created “The history of physics was indelibly marked ling supercurrents was not ten years after in Leiden the Cryogenic Laboratory, the first by WWII,primarily because of the ...Bomb,” BCS theory — a fact that is given some sig- industrial-scale lab for pure scientificresearch write the authors, but more physicists nificance — but five. He was also unable to and the true precursor of today’s CERN, worked on radar than on the bomb, and put his own predictions into experimental Fermilab and Kamiokande. much more technology resulted from it.“Los practice, and had a public argument as to Then there were the Russians: Pyotr Alamos made no contribution to low-tem- their validity with Bardeen in the summer of Kapitsa, Ernest Rutherford’s favourite, who perature physics,”the book says,but research 1962; this was shortly settled by experiments was kidnapped by Stalin from Cambridge, on helium-3 originated at Los Alamos, and done by John Rowell and me at Bell Labs. UK,to carry on his helium research in Russia; Matthias’ laboratory there played an impor- But Josephson makes a late arrival (in Lev Shubnikov, who founded the great tant role later. And the authors declare that, chapter 18 of 22) in Cold Wars,which focuses Kharkov lab but was murdered by Stalin in in contrast to the experimentalists, “it was mainly on the period before and immediately 1938, some 15 years before his wonderful essentially the great pre-war figures who after the Second World War. It is almost experiments demonstrating ‘type II’ super- continued to hold center stage among the worth reading the book just for the distress- conductivity in alloys — the phase that makes theorists.”But the immediate post-war gen- ing story of London, whose books laid out possible high-field magnets such as those eration of theorists was arguably as strong the problems that the post-war generations used in magnetic resonance imaging (MRI) and as numerous as any in history:Feynman, were to solve but who died just before the — were understood; and the brilliant figure Tsung-Dao Lee, Chen Ning Yang, Julian solutions were to become clear. There is also of Lev Landau,Russia’s greatest theorist. Schwinger, Murray Gell-Mann and, among an excellent view of the prickly personality We also meet Fritz London, the under- the condensed-matter types, David Pines, of Landau and of the terrible dangers that recognized genius who was denied recogni- Philippe Nozieres and Walter Kohn. threatened him, Kapitsa and Shubnikov as tion for his great contribution to superfluidity There are also errors in personal details they laboured well in advance of their West- — the realization that it was a Bose–Einstein that in many cases subtly alter the emphases ern colleagues from 1935 to 1955. condensate — by Landau. There is John in the story. Bardeen was not a “student of In describing the controversies about the Bardeen,who,with Leon Cooper and Robert Slater”, he was a junior fellow at Harvard, theory of liquid helium’s superfluid phase, Schrieffer, proposed the BCS theory of and no other source has him seriously influ- the authors include the contributions of superconductivity, but only after first win- enced by John Slater. Ted Geballe was not an Feynman but not the penetrating insights ning a Nobel prize for the transistor. And “early student” of Matthias; rather, Geballe from the early 1950s of Lars Onsager, which finally we come across the charismatic Bernd was his department head and mentor at in my opinion are of equal status. The Matthias, the ‘alchemist’ guru of what the Bell Labs, and the relationship was two-way. story of Bardeen’s “relentless pursuit” of the authors call the “age of materials”.Matthias (Geballe was, incidentally, trained at the solution to superconductivity is well told, NATURE | VOL 426 | 6 NOVEMBER 2003 | www.nature.com/nature © 2003 Nature Publishing Group 17 books and arts as is the description of the nature of the BCS ally, a lot. Far too often the history of science on population cycles may find that it does theory (with a debt here to Victor Weisskopf, confines itself to bare facts — when it pays not cover the literature as fully as they might whose explanation is quoted). attention to them at all. I like in a book with ambitions of providing The story thereafter becomes sketchy Philip W. Anderson is in the Department of a synthesis of the field. I preferred the indeed,and misses many vital points.I might Physics, Princeton University, Princeton, second part of the book, which covers both suggest that the authors’ relative unfamili- New Jersey 08544-0708, USA. phenomenological (time series-based) and arity with the anglophone world, and their mechanistic modelling — the latter more weakness in theory, begin here to warp the fully than the former. coverage. There is emphasis on Pierre-Gilles The section on case examples is good de Gennes’group in France,with its remark- for the systems that Turchin has worked on able collective ethos and a significant num- The rise and fall himself, but is rather shallow for some of the ber of detailed applications of the BCS ideas other systems described, a good exception to its credit, but does this work stand out of populations being the chapter on grouse.However,I think so much relative to many things that at the Complex Population Dynamics: A that this book contributes profoundly to time seemed more important? And I cannot Theoretical/Empirical Synthesis the literature, in particular with its emphasis let pass the authors’ failure to note that by Peter Turchin on integrating statistical analysis, theoretical although Alex Müller’s great discovery of Princeton University Press: 2003. 456 pp. modelling and experiments, rather than high-temperature superconductivity in the $75, £52 (hbk); $29.95, £19.95 (pbk) relying solely on experimental work. I fully cuprates was unquestionably motivated by Nils Chr. Stenseth agree with Turchin’s conclusion that eco- bipolaron theory (not an original concept logical investigations of population cycles of Benoy Chakraverty, by the way), that People have been fascinated and puzzled for and similar phenomena should start with theory is nonetheless generally thought to centuries by the profound variations from statistical data analysis, aimed at describing be wrong. This is far from the first time since one year to the next in the abundance of the patterns to be explained, and end with Christopher Columbus that a wrong concept lemmings and populations of hares and experimental work to discriminate between motivated a great discovery. lynxes. The archbishop of Uppsala, for alternative mechanistic explanations. In this In the discussion of the state of theory in example, wrote about the phenomenon as respect the book may have a huge impact this field, my words in a 2001 article for a long ago as the fifteenth century. And on the field, not necessarily because every- Nobel symposium are quoted out of context, hunters and other rural people such as the body agrees with Turchin’s conclusions, but misreading or misunderstanding the mes- Sami of northern Scandinavia have their because he provides examples of what a sage that the article was meant to convey, own theories to explain the burgeoning research programme ought to look like. namely, that the source of high-temperature populations of lemmings, for instance, in Turchin’s book covers many of the same superconductivity is not a mystery, and that some years. But it was the Oxford zoologist elements as Population Cycles (Oxford Uni- theory has not been pointless and futile.
Recommended publications
  • 2007 Abstracts Und Curricula Bewusstsein Und Quantencomputer
    BEWUSSTSEIN UND QUANTENCOMPUTER CONSCIOUSNESS AND QUANTUMCOMPUTERS ______________________________________________________________ 7. SCHWEIZER BIENNALE ZU WISSENSCHAFT, TECHNIK + ÄSTHETIK THE 7th SWISS BIENNIAL ON SCIENCE, TECHNICS + AESTHETICS 20. / 21. Januar 2007 / January 20 - 21, 2007 Verkehrshaus der Schweiz, Luzern Swiss Museum of Transport, Lucerne Veranstalter: Neue Galerie Luzern, www.neugalu.ch Organized by: New Gallery Lucerne, www.neugalu.ch ______________________________________________________________ A B S T R A C T S Samstag, 20. Januar 2007 / Saturday, January 20, 2007 Verkehrshaus der Schweiz / Swiss Museum of Transport Keynote 12.15 - 12.45 BRIAN JOSEPHSON Quantenphysik Cambridge / UK IS QUANTUM MECHANICS OR COMPUTATION MORE FUNDAMENTAL? IST DIE QUANTENMECHANIK ODER DAS RECHNEN FUNDAMENTALER? Is quantum mechanics as currently conceived the ultimate theory of nature? In his book "Atomic Physics and Human Knowledge", Niels Bohr argued that because of the uncertainty principle quantum methodology might not be applicable to the study of the ultimate details of life. Delbruck disagreed, claiming that biosystems are robust to quantum disturbances, an assertion that is only partially valid rendering Bohr's argument still significant, even though normally ignored. The methods of the quantum physicist and of the biological sciences can be seen to involve two alternative approaches to the understanding of nature that can usefully complement each other, neither on its own containing the full story. That full story, taking into
    [Show full text]
  • R. Stephen Berry 1931–2020
    R. Stephen Berry 1931–2020 A Biographical Memoir by Stuart A. Rice and Joshua Jortner ©2021 National Academy of Sciences. Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. RICHARD STEPHEN BERRY April 9, 1931–July 26, 2020 Elected to the NAS, 1980 We have prepared this memoir to bear witness to the life of R. Stephen (Steve) Berry, with emphasis on the view that a memorial is about reminding ourselves and others of more than his many and varied contributions to science; it is also to remind us of his personal warmth and freely offered friendship, of his generous support for all of us in a variety of situations, and of his loyalty to his friends and the institutions he served. The record of an individ- ual’s accomplishment is commonly taken to define his/ her legacy. Using that protocol, creative scientists are fortunate in that their contributions are visible, and those contributions endure, or not, on their own merits. Steve Berry was one of the most broadly ranging and influen- tial scientists in the world. His seminal experimental and By Stuart A. Rice theoretical contributions are distinguished by a keen eye and Joshua Jortner for new concepts and innovative and practical analyses. These contributions, which are remarkable in both scope and significance, have helped to shape our scientific perception. They have had, and continue to have, great influence on the development of chemistry, biophysics materials science, the science and technology related to the use, production, and conservation of energy, the societal applications of science and technology, and national and international science policy.
    [Show full text]
  • The Development of the Science of Superconductivity and Superfluidity
    Universal Journal of Physics and Application 1(4): 392-407, 2013 DOI: 10.13189/ujpa.2013.010405 http://www.hrpub.org Superconductivity and Superfluidity-Part I: The development of the science of superconductivity and superfluidity in the 20th century Boris V.Vasiliev ∗Corresponding Author: [email protected] Copyright ⃝c 2013 Horizon Research Publishing All rights reserved. Abstract Currently there is a common belief that the explanation of superconductivity phenomenon lies in understanding the mechanism of the formation of electron pairs. Paired electrons, however, cannot form a super- conducting condensate spontaneously. These paired electrons perform disorderly zero-point oscillations and there are no force of attraction in their ensemble. In order to create a unified ensemble of particles, the pairs must order their zero-point fluctuations so that an attraction between the particles appears. As a result of this ordering of zero-point oscillations in the electron gas, superconductivity arises. This model of condensation of zero-point oscillations creates the possibility of being able to obtain estimates for the critical parameters of elementary super- conductors, which are in satisfactory agreement with the measured data. On the another hand, the phenomenon of superfluidity in He-4 and He-3 can be similarly explained, due to the ordering of zero-point fluctuations. It is therefore established that both related phenomena are based on the same physical mechanism. Keywords superconductivity superfluidity zero-point oscillations 1 Introduction 1.1 Superconductivity and public Superconductivity is a beautiful and unique natural phenomenon that was discovered in the early 20th century. Its unique nature comes from the fact that superconductivity is the result of quantum laws that act on a macroscopic ensemble of particles as a whole.
    [Show full text]
  • “Kings of Cool” Superconductivity Who Are These People? SUPERCONDUCTORS
    “““Kings of Cool” Superconductivity Who are these people? SUPERCONDUCTORS An Introduction by Prof George Walmsley Normal conductor eg copper • Current, I. • Voltage drop, V. • Resistance, R = ? • Ans: V/I = R eg 2 Volts/1 Amp = 2 Ohms I Copper I V Normal conductor eg copper • Source of resistance: • Electron collides with lattice ion to produce heat (phonon). Copper lattice Lower Temperature • What happens when we cool a metal? • Ans 1: The electrons slow down and current is reduced maybe to zero. R→∞ • Ans 2: The lattice stops vibrating and resistance disappears. R=0 How do we cool things? • Commonly used liquid refrigerants: Element Boiling Pt Oxygen 90K Nitrogen 77K Hydrogen 20K Helium 4.2K Thomas Andrews, Chemist • 9 Dec 1813 – 26 Nov 1885 • John (Flax spinner, Comber) [ggfather] • Michael (Linen, Ardoyne) [gfather] • Thomas (Linen merchant) [father] • Studied under James Thomson, RBAI • 1828 Univ of Glasgow, Thos Thomson • 1830 Paris, Dumas • 1830-34 Trinity College Dublin • 1835 MD U of Edinburgh • 1835-45 Prof of Chemistry RBAI • 1845 Vice-President, Queen’s College • 1847 Prof of Chemistry, Queen’s College • 1869 Bakerian Lecture on CO 2 • 1871 Visit by Dr Janssen of Leiden • Photo: Paris 1875 Andrews’ Isotherms • Note critical temperature NORMAL CONDUCTOR: Electrical properties Normal metal eg copper Resistance and (resistivity, ρ) >0 As temperature falls ρ falls smoothly too: ρ 0 100 200 273.15 Temperature/K SUPERCONDUCTOR: Electrical properties Superconductor eg mercury, lead Resistivity ( ρ) >0 like normal metal down to critical
    [Show full text]
  • Aleksei A. Abrikosov 1928–2017
    Aleksei A. Abrikosov 1928–2017 A Biographical Memoir by M. R. Norman ©2018 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. ALEKSEI ALEKSEEVICH ABRIKOSOV June 25, 1928–March 29, 2017 Elected to the NAS, 2000 Shortly after the 2003 announcement that Aleksei Abrikosov had won the Nobel Prize in Physics, a number of colleagues took Alex to lunch at a nearby Italian restau- rant. During lunch, one of the Russian visitors exclaimed that Alex should get a second Nobel Prize, this time in Literature for his famous “AGD” book with Lev Gor’kov and Igor Dzyaloshinskii (Methods of Quantum Field Theory in Statistical Physics.) Somewhat taken aback, I looked closely at this individual and realized that he was deadly serious. Although I could imagine the reaction of the Nobel Literature committee to such a book (for a lay person, perhaps analogous to trying to read Finnegan’s Wake), I had to admit that my own copy of this book is quite dog-eared, having been put to good use over the By M. R. Norman years. In fact, you know you have made it in physics when your book gets a Dover edition. One of the most charming pictures I ever saw was a rare drawing in color that Alexei Tsvelik did (commissioned by Andrei Varlamov for Alex’s 50th birthday) that was proudly displayed in Alex’s home in Lemont, IL. It showed Alex with his fingers raised in a curled fashion as in the habit of medieval Popes.
    [Show full text]
  • Harry H. Wasserman 1920–2013
    Harry H. Wasserman 1920–2013 A Biographical Memoir by Jerome A. Berson and Samuel J. Danishefsky ©2015 National Academy of Sciences. Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. HARRY HERSCHAL WASSERMAN December 1, 1920–December 29, 2013 Elected to the NAS, 1987 Harry Wasserman—a warm, charming, multi-talented man and a keenly creative chemist—served on the faculty of Yale University for more than 50 years. Harry grew up in and around Boston, MA, in a family that often struggled to pay the rent. On weekends, he and his brothers would earn a few dollars sifting sand on nearby Revere Beach for lost coins. He earned high marks at Cambridge & Latin high school and was awarded a Cambridge scholarship to the Massachusetts Institute of Technology, which he entered in 1937 at age 16. He earned a B.S. in chemistry from MIT in 1941. While in college, Harry considered a University. Yale Photography courtesy career as an artist, and he studied with Boston painter and sculptor John Wilson, but science, particularly chemistry, drew him away from a full-time commitment to art. He By Jerome A. Berson continued to follow both muses throughout his life. After and Samuel J. Danishefsky MIT, Harry began graduate studies at Harvard University under the mentorship of the organic chemist Robert Burns Woodward, a future Nobel laureate, Harry interrupted his graduate studies in 1943 to serve in the 503rd Army Air Force in Africa and the Middle East.
    [Show full text]
  • CP Violation's Early Days
    CERN Courier July/August 2014 Anniversary Temperature is our business CP violation’s early days Mineral Insulated Cable Reliable, Highly accurate cabling capable of A brief look back at a discovery that surprised operating in extreme environments. the world of particle physics 50 years ago. MgO and SiO2 Cables. RF Coaxial Cables. Multiconductor Transmission Cables. In the summer of 1964, at the International Conference on High- Welded and hermetically sealed connections. Energy Physics (ICHEP) in Dubna, Jim Cronin presented the results Capable of operating in and measuring temperatures of an experiment studying neutral kaons at Brookhaven National of up to 1,260oC. Laboratory. In particular, it had shown that the long-lived neutral Capable of operating in the following atmospheres - kaon can decay into two pions, which implied the violation of CP oxidising, reducing, neutral and vacuum. symmetry – a discovery that took the physics community by sur- prise. The news was greeted with some scepticism and met a barrage of questions. Everyone wanted to be satisfi ed that nothing had been overlooked, and that all other possibilities had been considered care- The experiment that discovered CP violation at Brookhaven was fully and ruled out. People need not have worried. Cronin, together set up in a neutral beamline, directed inside the ring of the Innovation at Okazaki: Cabling, Temperature Sensors & Heaters | okazaki-mfg.com with Val Fitch, visiting French physicist René Turlay and graduate Alternating Gradient Synchrotron. Visible here are the two student Jim Christenson, had spent months asking themselves the spectrometer magnets positioned at 22° to the beam. Spark CERN_125x193:Mise en page 1 18/09/12 17:17 Page 1 same questions, testing and cross-checking their results thoroughly.
    [Show full text]
  • Proposed Changes to the SI , Their Impact on Fundamental Constants and Other SI Units
    Proposed changes to the SI , their impact on fundamental constants and other SI units . < < >> >>>> >> Fundamental Constants Edwin Williams Planck constant, h,e LNE, Guest Scientist & NIST LNE CCM is asking: What system is best for the CCM and your metrology Community? The new SI in which we scale our system by fixing the values of e, h, NA and k provides: A system that is favorable to the mass community. Agreement with other measurements of h and NA. A system more stable over time and more suitable for the expression of the values of the fundamental constants. (P. Mohr) What is needed to implement the new system? Educate your community. Implement the changes required to be consistent with new values of h and NA . When? 2011 If 1ppm discrepancy resolved. Atomic mass and quantum electric standards are more stable, long term, than macroscopic mass standards What is the purpose of SI Provide a basis for a practical measurement system so that both science and industry can prosper We are being asked to simply choose the scales against which all measurements are made We still have the same metric system but it won’t drift and the scales will be clearer (have less uncertainty) Scientists can only disprove theories never prove them. The SI assumes that our present knowledge is valid but it is understood that the sciences upon which it is based must be tested. The SI simply provides a system where we can compare results from around the world. The adjustment of the fundamental constants is the most stringent test we make of the system.
    [Show full text]
  • Superconducting Quantum Interference Devices
    Superconducting Quantum Interference Devices John Clarke University of California, Berkeley Wallenberg Centre for Quantum Technology Summer School Säröhus, Sweden 22 – 26 August 2019 Superconducting Quantum Interference Devices • History • The Josephson Tunnel Junction: Characteristics and Noise • The dc SQUID: Characteristics and Noise • Practical Low-Tc dc SQUIDs and SQUID Amplifiers • The Ubiquitous 1/f Noise • Epilogue SQUID Applications • Brief Topics • Cosmology • Shedding Light on Dark Energy • Cold Dark Matter: The Hunt for the Axion • Ultra Low Field Magnetic Resonance Imaging • Epilogue Discussion Superconducting Quantum Interference Devices • History • The Josephson Tunnel Junction: Characteristics and Noise • The dc SQUID: Characteristics and Noise • Practical Low-Tc dc SQUIDs and SQUID Amplifiers • The Ubiquitous 1/f Noise • Epilogue A Little Personal History: How Did I Get Into SQUIDs? King’s College Chapel, Cambridge English Gothic 1446 - 1515 St. Bene’t’s Church Anglo-Saxon 1000 – 1050 AD The Perse School The Perse School was founded in 1615 by Dr Stephen Perse who left money in his will to educate 100 boys from Cambridge and nearby villages at no cost. The school was originally located on “Free School Lane”. Perse Outside the shop that was once my grandfather’s picture-framing shop Grandad’s shop Perse Entrance to the Cavendish Laboratory Through the gate… The Royal Society Mond Laboratory Grandad’s shop Mond Perse 1 October 1964 Eric Gill 1933 Thesis advisor: Brian Pippard Royal Society Mond Laboratory Thesis research
    [Show full text]
  • Physics and Spirituality: the Next Grand Unification?
    Phys Educ 22 119871 Prlnted In thc UK Physics and spirituality: the next grand unification? current framework) seem to lie outside the scope of Brian Josephson science in its present form. At the present time we can see the emergence of something which, while not being exactly a consensus of opinion, at any rate In what light should a scientist regard the assertions forms a collection of mutually consistent ideas as to of a religion, or of religions in general? One extreme the general form of a possible new understanding of position is the atheistic one of regarding the asser- nature,and of what might constituteappropriate tions of religion as falsehoods. Such a position can means of investigating nature. that goes beyond and besustained only by regardingthe experiences is more flexible than is thecurrent conventional which individualsconsider as validating their reli- framework. These ideas are not well represented in gious beliefs as being explicable in other ways and, the standard literature-probably, in the last analy- in the absence of an adequate research programme sis, because they represent the same kind of threat tosupport it, must be consideredmore as falling to current scientific dogmas as scientific discoveries withinthe field of opinionthan as within that of havepresented to religious dogmas in thepast. science. (There has even been a suggestion, in the editorial Thealternative to this atheistic position is that pages of a prestigious scientific journal, that a par- there exists an aspect of reality-that we may for ticular book should be burnt because it propagated convenience calltranscendental-which embraces dangerous ideas.) the subject matterof religion (or as somemay prefer It will be my task in what follows to explain the to term it, the spiritual aspect of life) and which is ways in which current scientific orthodoxiesare not at present encompassed by science.
    [Show full text]
  • 3.7 Decades of Quantum Computing
    3.7 Decades of Quantum Computing Edward (Denny) Dahl D‐Wave Systems April 3, 2019 Simulating Physics with Computers – Richard Feynman International Journal of Theoretical Physics, Vol. 21, Nos. 6/7, 1982 Copyright © D‐Wave Systems Inc. 2 Q: How do you build a qubit? A: Carefully Superconducting loops Trapped ions Topological matter RF SQUIDS Ytterbium atoms & lasers Majorana fermions Kamerlingh Onnes Wolfgang Paul Kang Wang Nobel prize ‐ 1913 Hans Dehmelt Shoucheng Zhang Nobel prize – 1989 Nobel prize – ???? Brian Josephson Nobel prize – 1973 Copyright © D‐Wave Systems Inc. 3 Standard model of quantum computing gates This example quantum circuit has nine qubits and so the wavefunction is a complex vector of size 2 512. Each gate acts on this wavefunction as a unitary matrix of size 512 x 512. Measurement projects the qubit vector onto a subspace. time Copyright © D‐Wave Systems Inc. 4 Shor’s algorithm Peter Shor’s algorithm (1994) relies heavily on number theory and the Quantum Fourier Transform, which is 3‐qubit QFT: essentially an FFT 11 111111 (Fast Fourier 1 Transform) as 1 1 1 1 implemented on a 2 1 1 1 1 gate model quantum 1 computer. 1 1 1 Copyright © D‐Wave Systems Inc. 5 Waves and noise Copyright © D‐Wave Systems Inc. 6 Error correction • Classical computing has error correction – E.g., SECDED is Single Error Correct Double Error Detect • Peter Shor (1995) showed that certain kinds of errors in a Gate Model Quantum Computer could be corrected: – Shor code: 1 logical qubit requires 9 physical qubits – Steane code: 1 logical qubit requires 7 physical qubits – CSS codes: 1 logical qubit requires 5 physical qubits • General purpose error correcting codes (required for factoring, chemistry, etc.) take many more qubits: – Gottesman: 1 logical qubit requires >100 physical qubits – Fowler: with 112 orbitals requires 27,000,000 physical qubits – O’Gorman: 1000‐bit Shor requires 173,000,000 physical qubits Copyright © D‐Wave Systems Inc.
    [Show full text]
  • KITCHEN CHEMISTRY Bijeta Roynath & Prasanta Kumar Sahoo
    Test Your Knowledge KITCHEN CHEMISTRY Bijeta Roynath & Prasanta Kumar Sahoo 1. The common cooking fuel, Liquefied Petroleum Gas 10. Which of the following could be produced by the gas (LPG), is a mixture of two hydrocarbons. These are: stove? (a) Methane and Butane (b) Propane and Butane (a) Nitrogen Oxides (b) Sulphur dioxides (c) Oxygen and Hydrogen (d) Hexane and Propane (c) Carbon monoxide (d) Dihydrogen oxide 2. Hydrocarbons in LPG are colourless and odourless. 11. Which of the following chemical is found in dish- Therefore, a strong smelling agent added to LPG washing detergent? cylinders to detect leakage is: (a) Carbon monoxide (b) Chlorine (a) Ethyl mercaptan (b) Nitrous oxide (c) Sulphur dioxide (d) Lithium (c) Hydrogen sulfide (d) Chloroform 12. Proteins help build our body and carbohydrates 3. Chemical irritant produced during chopping an provide energy to the body. The protein and onion (Allium cepa) which makes our eye weepy is: carbohydrate found in milk are: (a) Allinase (b) Sulfoxide (a) Albumin and maltose (b) Pepsin and sucrose (c) Syn-propanethial-S-oxide (d) Allyl mercaptan (c) Collagen and fructose (d) Casein and lactose 4. The powerful anti-inflammatory and antioxidant 13. Salt readily absorbs water from the surroundings. properties of haldi or turmeric (Curcuma longa) are Sprinkling salt on salad releases water from it after due to presence of: few seconds. The process is: (a) Curcumin (b) Gingerol (a) Osmosis (b) Adsorption (c) Cymene (d) Capsaicin (c) Dehydration (d) Oxidation 5. The active ingredient in chilli peppers (Capsicum) 14. Washing hands before eating prevents illness which produces heat and burning sensation in the by killing germs.
    [Show full text]