REVIEWS the Production of Propene Oxide: Catalytic Processes and Recent Developments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The PO Production Chain and Possibilities for Energy Saving
The PO production chain and possibilities for energy saving Public Summary Report Delft, January 2012 Author(s): Ewout Dönszelmann Ab de Buck Harry Croezen Lonneke Wielders Publication Data Bibliographical data: Ewout Dönszelmann, Ab de Buck, Harry Croezen, Lonneke Wielders The PO production chain and possibilities for energy saving Public Summary Delft, CE Delft, January 2012 Energy saving / Chain Management / Products / Chemical industry / Propylene Oxide / Styrene / Iso-butylene FT: Tert-butyl alcohol (TBA) Publication code: 12.2232.12 CE publications are available from www.cedelft.eu. Commissioned by: Agentschap NL Further information on this study can be obtained from the contact person, Ewout Dönszelmann. © copyright, CE Delft, Delft CE Delft Committed to the Environment CE Delft is an independent research and consultancy organisation specialised in developing structural and innovative solutions to environmental problems. CE Delft’s solutions are characterised in being politically feasible, technologically sound, economically prudent and socially equitable. 2 January 2012 2.232.3 – The PO production chain and possibilities for energy saving Contents 1 Introduction 5 1.1 General background 5 1.2 The project 5 1.3 Approach 6 1.4 Reading guide 6 2 The production chains 7 2.1 The two processes 7 2.2 Expanded polystyrene 9 2.3 Polyols 11 2.4 TBA/iso-butylene applications 13 3 Conclusions, recommendations 17 3.1 Conclusions 17 3.2 Recommendations 17 4 Background of the Long-term Agreement Energy Efficiency ETS enterprises (LEE) 19 References 21 3 January 2012 2.232.3 – The PO production chain and possibilities for energy saving 4 January 2012 2.232.3 – The PO production chain and possibilities for energy saving 1 Introduction 1.1 General background The Dutch Industry and the Dutch government have made long term agreements on energy efficiency (LEE) for companies that are under the European Trading Scheme (ETS). -
Removal of NO and SO2 by Pulsed Corona Discharge Process
Korean J. Chem. Eng., 18(3), 308-316 (2001) Removal of NO and SO2 by Pulsed Corona Discharge Process Young Sun Mok†, Ho Won Lee, Young Jin Hyun, Sung Won Ham*, Jae Hak Kim** and In-Sik Nam** Department of Chemical Engineering, Cheju National University, Ara, Cheju 690-756, Korea *Department of Chemical Engineering, Kyungil University, Hayang, Kyungbuk 712-701, Korea **Department of Chemical Engineering, Pohang University of Science & Technology, Pohang, Kyungbuk 790-784, Korea (Received 6 September 2000 • accepted 9 March 2001) − Abstract Overall examination was made on the removal of NO and SO2 by pulsed corona discharge process. The mechanism for the removal of NO was found to largely depend on the gas composition. In the absence of oxygen, most of the NO removed was reduced to N2; on the other hand, oxidation of NO to NO2 was dominant in the presence of oxygen even when the content was low. Water vapor was an important ingredient for the oxidation of NO2 to nitric acid rather than that of NO to NO2. The removal of NO only slightly increased with the concentration of ammonia while the effect of ammonia on the removal of SO2 was very significant. The energy density (power delivered/feed gas flow rate) can be a measure for the degree of removal of NO. Regardless of the applied voltage and the flow rate of the feed gas stream, the amount of NO removed was identical at the same energy density. The production of N2O increased with the pulse repetition rate, and the presence of NH3 and SO2 enhanced it. -
INF.20 Economic Commission for Europe Inland Transport Committee Definition Of
INF.20 Economic Commission for Europe Inland Transport Committee Working Party on the Transport of Dangerous Goods 6 March 2012 Joint Meeting of the RID Committee of Experts and the Working Party on the Transport of Dangerous Goods Bern, 19–23 March 2012 Item 5(a) of the provisional agenda Proposals for amendments to RID/ADR/ADN: pending issues Definition of LPG Transmitted by the Government of Switzerland We have observed contradictions in the definition of LPG adopted by the Joint Meeting at its Autumn 2010 session (ECE/TRANS/WP.15/AC.1/120, Annex II) as well as in the German translation we have discussed in Erfurt during the Conference of translation and edition of the German ADR. The actual definitions in each language are the following: ""Gaz de pétrole liquéfié (GPL)", un gaz liquéfié à faible pression contenant un ou plusieurs hydrocarbures légers qui sont affectés aux numéros ONU 1011, 1075, 1965, 1969 ou 1978 seulement et qui est principalement constitué de propane, de propène, de butane, des isomères du butane, de butène avec des traces d’autres gaz d’hydrocarbures. “‘Liquefied Petroleum Gas (LPG)’ means a low pressure liquefied gas composed of one or more light hydrocarbons which are assigned to UN Nos. 1011, 1075, 1965, 1969 or 1978 only and which consists mainly of propane, propene, butane, butane isomers, butene with traces of other hydrocarbon gases. „Flüssiggas (LPG)*: Unter geringem Druck verflüssigtes Gas, das aus einem oder mehreren leichten Kohlenwasserstoffen besteht, die nur der UN-Nummer 1011, 1075, 1965, 1969 oder 1978 zugeordnet sind und das hauptsächlich aus Propan, Propen, Butan, Butan-Isomeren und Buten mit Spuren anderer Kohlenwasserstoffgase besteht.“ One important point is different between French from one side and English and German from the other side, that is that in French the repetition of the “de” in the enumeration of possible gases brings to the conclusion that the main constituent of the LPG is one of the listed gases. -
Plasma-Pd/Γ-Al203 Catalytic System for Methane, Toluene and Propene Oxidation: Effect of Temperature and Plasma Input Power
22nd International Symposium on Plasma Chemistry July 5-10, 2015; Antwerp, Belgium Plasma-Pd/γ-Al203 catalytic system for methane, toluene and propene oxidation: effect of temperature and plasma input power T. Pham Huu1, 2, P. Da Costa3, S. Loganathan1 and A. Khacef1 1 GREMI-UMR 6744, CNRS-Université d'Orléans, 14 rue d’Issoudun, P.O. Box 6744, FR-45067 Orléans Cedex 02, France 2 Institute of Applied Material Science, Vietnam Academy of Science and Technology, 1 Mac Dinh Chi, HCMC, Vietnam 3 Sorbonne Universités, UPMC Paris 6, Institut Jean Le Rond d’Alembert, CNRS UMR 7190, 2 place de la gare de ceinture, FR-78210 Saint Cyr l’école, France Abstract: A pulsed non-thermal plasma and 1 wt% Pd/γ-Al2O3 catalyst was used to investigate the CH4, C3H6, and C7H8 oxidation in air. Effects of temperature and specific input energy on the VOCs conversion were studied. The plasma-catalyst interaction revealed the benefit effect on the VOCs oxidation even at low temperature leading to high CO2 selectivity. The synergistic effect of combining plasma with catalyst in one-stage configuration is observed only for toluene. Keywords: non-thermal plasma, Pd/γ-Al203, synergistic effect, methane, propene, toluene, oxidation 1. Introduction 2. Experimental Volatile organic compounds (VOCs) emitted from The plasma reactor is a cylindrical DBD gives the various industrial and domestic processes are important possibility to combine the catalyst with plasma reactor in sources of air pollution and therefore, become a serious single stage (IPC) or two-stage (PPC) configuration as problem for damaging the human health and the shown in Fig. -
HPPO Process Technology a Novel Route to Propylene Oxide Without Coproducts
sustainability/ Industry perspective GREEN CHEMISTRy FRANZ SCHMIDT, MAIK BERNHARD, HEIKO MORELL, MATTHIAS PASCALy* *Corresponding author Evonik Industries AG, Advanced Intermediates – Innovation, Rodenbacher Chaussee 4, 63457 Hanau-Wolfgang, Germany Matthias Pascaly HPPO Process Technology A novel route to propylene oxide without coproducts KEYWORDS: HPPO process, propylene oxide, hydrogen peroxide, titanium silicalite. The common industrial technologies for the conversion of propylene to propylene oxide have been Abstract compared with a special focus on the direct oxidation using hydrogen peroxide. The HPPO process is an economically and ecologically superior technology since there are no market dependencies of other coproducts and water is the only waste product. The catalyst used in this process is a partly titanium substituted silica based zeolite called TS-1. The article summarizes the most important information concerning the HPPO process. INTRODUCTION approximately 7 Mt/a in the year 2010 at a production capacity of approximately 8 Mt/a. Based on a total The oxidation of organic compounds is of vital importance market growth of around 5 % per year, the expected for the chemical industry. Besides basic oxidation reactions values for demand and capacity in 2015 are nearly such as bleaching processes (e.g. paper or laundry) also at 9 and 10 Mt/a respectively. The growing markets are in oxidation reactions of chemicals are important: Epoxides Asia and potentially in the Middle East (1). - especially ethylene and propylene oxide – are among the There are several industrial routes to produce propylene major chemicals. Replacement of traditionally used halide- oxide, of which the chlorohydrin process (CH) is the based oxidants (chlorine) by hydrogen peroxide provided a oldest one (2). -
Me2si(Benz[E]Indenyl)
Propene Polymerization Using Homogeneous MAO-Activated Metallocene Catalysts: Me2Si(Benz[e]lndenyI)2ZrClu'MAO vs. Me2Si(2-Me-Benz[e]lndenyI)2ZrClu'MAO STEPHAN JUNGLlNG,t ROLF MULHAUPT,b UDO STEHLlNG/ HANS-HERBERT BRINTZINGER/ DAVID FISCHER/ and FRANZ LANGHAUSER3 'Institut fOr Makromolekulare Chemie and Freiburger Materialforschungszentrum der Albert-Ludwigs-Universitat Freiburg, 0-79104 Freiburg, Germany; 2Fakultat fOr Chemie, Universitat Konstanz, 0-78434 Konstanz, Germany; and 3BASF AG Abteilung ZKP, 0-67056 Ludwigshafen, Germany SYNOPSIS Propene was polymerized at 40°C and 2-bar propene in toluene using methylalumoxane (MAO) activated rac-Me2Si(Benz[elIndenyl)2ZrCI2 (BI) and rac-Me2Si(2-Me Benz[elIndenyl)2ZrCl2 (MBI). Catalyst BI/MAO polymerizes propene with high activity to afford low molecular weight polypropylene, whereas MBI/MAO is less active and produces high molecular weight polypropylene. Variation of reaction conditions such as propene concentration, temperature, concentration of catalyst components, and addition of hydrogen reveals that the lower molecular weight polypropylene produced with BI/MAO results from chain transfer to propene monomer following a 2,1-insertion. A large fraction of both me tallocene catalyst systems is deactivated upon 2,1-insertion. Such dormant sites can be reactivated by H2-addition, which affords active metallocene hydrides. This effect of H2- addition is reflected by a decreasing content of head-to-head enchainment and the formation of polypropylene with n-butyl end groups. Both catalysts show a strong dependence of activity on propene concentration that indicates a formal reaction order of 1. 7 with respect to propene. MBI/MAO shows a much higher dependence of the activity on temperature than BI/MAO. -
Propylene Oxide
This report contains the collective views of an in- ternational group of experts and does not necessarily epresent the decisions or the stated policy of the United Nations Environment Programme, the Interna- tional Labour Organisation, or the World Health lOrganization Environmental Health Criteria 56 PROPYLENE OXIDE Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization World Health Organization --'-- Geneva, 1985 The International Programme on Chemical Safety (IPCS) is a joint venture the United Nations Environment Programme, the International Labour Organis tion, and the World Health Organization. The main objective of the IPCS is carry Out and disseminate evaluations of the effects of chemicals on human hea' and the quality of the environment. Supporting activities include the developm of epidemiological, experimental laboratory, and risk-assessment methods that cou produce internationally comparable results, and the development of manpower the field of toxicology. Other activities carried out by 1PCS include the develo ment of know-how for coping with chemical accidents, coordination of laborato. testing and epidemiological studies, and promotion of research on the mechanisi of th biological action of chemicals ISBN 92 4 154196 2 \Vorld Health Organization 1985 Publications of the World Health Organization enjoy copyright protection in accordance with the provisions of Protocol 2 of the Universal Copyright Conven- tion. For rights -
Ethene, Propene, Butene and Isoprene Emissions from a Ponderosa Pine Forest Measured by Relaxed Eddy Accumulation
Atmos. Chem. Phys., 17, 13417–13438, 2017 https://doi.org/10.5194/acp-17-13417-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Ethene, propene, butene and isoprene emissions from a ponderosa pine forest measured by relaxed eddy accumulation Robert C. Rhew1, Malte Julian Deventer1,*, Andrew A. Turnipseed2,*, Carsten Warneke3,4, John Ortega5, Steve Shen1, Luis Martinez6, Abigail Koss3,4, Brian M. Lerner3,4,a, Jessica B. Gilman3,4, James N. Smith5,b, Alex B. Guenther7, and Joost A. de Gouw3 1Department of Geography and Berkeley Atmospheric Sciences Center, University of California Berkeley, Berkeley, CA 94720-4740, USA 22B Technologies, Boulder CO 80301, USA 3Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder CO 80309, USA 4NOAA Earth System Research Laboratory, Boulder, CO 80305, USA 5Atmospheric Chemistry Observations and Modeling (ACOM), National Center for Atmospheric Research, Boulder, CO 80301, USA 6Ernest F. Hollings Undergraduate Scholarship program, NOAA, Boulder, CO 80305, USA 7Department of Earth System Science, University of California Irvine, Irvine, CA 92697-3100, USA anow at: Aerodyne Research Inc., Billerica, MA 01821-3976, USA bnow at: Department of Chemistry, University of California Irvine, Irvine, CA 92697-2025, USA *These authors contributed equally to this work. Correspondence to: Robert C. Rhew ([email protected]) Received: 21 April 2017 – Discussion started: 4 May 2017 Revised: 9 September 2017 – Accepted: 28 September 2017 – Published: 10 November 2017 Abstract. Alkenes are reactive hydrocarbons that influence tober flux, based on measurements and modeling, averaged local and regional atmospheric chemistry by playing impor- 62, 52, 24 and 18 µg m−2 h−1 for ethene, propene, butene tant roles in the photochemical production of tropospheric and isoprene, respectively. -
SDS # : 001046 Supplier's Details : Airgas USA, LLC and Its Affiliates 259 North Radnor-Chester Road Suite 100 Radnor, PA 19087-5283 1-610-687-5253
SAFETY DATA SHEET Propylene Section 1. Identification GHS product identifier : Propylene Chemical name : Propylene Other means of : propylene; 1-Propene; propylene in gaseous state, impure; propylene liquefied, impure; identification propene, pure; propylene, pure; Methylethene; Methylethylene; prop-1-ene; 1-Propylene; R 1270 Product type : Gas. Product use : Synthetic/Analytical chemistry. Synonym : propylene; 1-Propene; propylene in gaseous state, impure; propylene liquefied, impure; propene, pure; propylene, pure; Methylethene; Methylethylene; prop-1-ene; 1-Propylene; R 1270 SDS # : 001046 Supplier's details : Airgas USA, LLC and its affiliates 259 North Radnor-Chester Road Suite 100 Radnor, PA 19087-5283 1-610-687-5253 24-hour telephone : 1-866-734-3438 Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : FLAMMABLE GASES - Category 1 substance or mixture GASES UNDER PRESSURE - Liquefied gas GHS label elements Hazard pictograms : Signal word : Danger Hazard statements : Extremely flammable gas. Contains gas under pressure; may explode if heated. May displace oxygen and cause rapid suffocation. May form explosive mixtures with air. Precautionary statements General : Read and follow all Safety Data Sheets (SDS’S) before use. Read label before use. Keep out of reach of children. If medical advice is needed, have product container or label at hand. Close valve after each use and when empty. Use equipment rated for cylinder pressure. Do not open valve until connected to equipment prepared for use. Use a back flow preventative device in the piping. Use only equipment of compatible materials of construction. Always keep container in upright position. -
Methylbenzene Hydrocarbon Pool in Methanol-To-Olefins Conversion Over
Journal of Catalysis 332 (2015) 127–137 Contents lists available at ScienceDirect Journal of Catalysis journal homepage: www.elsevier.com/locate/jcat Methylbenzene hydrocarbon pool in methanol-to-olefins conversion over zeolite H-ZSM-5 ⇑ Chao Wang a, Jun Xu a, , Guodong Qi a, Yanjun Gong b, Weiyu Wang a, Pan Gao a, Qiang Wang a, ⇑ Ningdong Feng a, Xiaolong Liu a, Feng Deng a, a State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China b State Key Laboratory of Heavy Oil Processing, CNPC Key Laboratory of Catalysis, China University of Petroleum – Beijing, Beijing 102249, People’s Republic of China article info abstract Article history: The formation and reactivity of a methylbenzenes (MBs) hydrocarbon pool in the induction period of the Received 17 July 2015 methanol-to-olefins (MTO) reaction over zeolite H-ZSM-5 was investigated and the mechanistic link of Revised 30 September 2015 MBs to ethene and propene was revealed. Time evolution analysis of the formed MBs and 12C/13C Accepted 2 October 2015 methanol-switching experiments indicate that in the induction period bulkier compounds such as Available online 2 November 2015 tetraMB and pentaMB have higher reactivity than their lighter counterparts such as p/m-diMB and triMB. By correlating the distribution of MBs trapped on H-ZSM-5 with ethene and propene, we found Keywords: that tetraMB and pentaMB favor the formation of propene, while p/m-diMB and triMB mainly contribute Olefins to the formation of ethene. -
Pesticides EPA 738-R-06-029 Environmental Protection and Toxic Substances August 2006 Agency (7508P)
United States Prevention, Pesticides EPA 738-R-06-029 Environmental Protection and Toxic Substances August 2006 Agency (7508P) Reregistration Eligibility Decision for Propylene Oxide Reregistration Eligibility Decision (RED) Document for Propylene Oxide List B Case Number 2560 Approved by: Date: July 31, 2006 Debra Edwards, Ph. D. Director Special Review and Reregistration Division Page 2 of 192 Table of Contents Propylene Oxide Reregistration Eligibility Decision Team ...................................................... 5 Glossary of Terms and Abbreviations ........................................................................................ 6 Abstract.......................................................................................................................................... 8 I. Introduction ............................................................................................................................... 9 II. Chemical Overview................................................................................................................ 10 A. Chemical Identity................................................................................................................10 B. Use and Usage Profile .........................................................................................................11 C. Tolerances............................................................................................................................11 III. Propylene Oxide Risk Assessments ................................................................................... -
Highly Active Catalysts for the Dehydration of Isopropanol
catalysts Article Highly Active Catalysts for the Dehydration of Isopropanol Martyna Murat * , ZdenˇekTišler , Josef Šimek and José M. Hidalgo-Herrador Unipetrol VýzkumnˇeVzdˇelávací Centrum, a.s., 400 01 Ústí nad Labem, Revoluˇcní 1521/84, Czech Republic; [email protected] (Z.T.); [email protected] (J.Š.); [email protected] (J.M.H.-H.) * Correspondence: [email protected]; Tel.: +420-471-122-235 Received: 28 May 2020; Accepted: 24 June 2020; Published: 26 June 2020 Abstract: Due to the high costs and low selectivity associated with the production of propylene, new routes for its synthesis are being sought. Dehydration has been widely investigated in this field, but, thus far, no study has produced efficient results for isopropanol. Vanadium-zirconia catalysts have been shown to be effective for the dehydration of ethanol. Therefore, we investigated the activity of such catalysts in the dehydration of isopropanol. The catalysts were synthetized on a SBA-15 base, supplemented with zirconia or combined zirconia and vanadium. Tests were conducted in a continuous flow reactor at 150–300 ◦C. Samples were analyzed using a gas chromatograph. The most active catalyst showed 96% conversion with 100% selectivity to propylene. XRD, SEM and Raman spectroscopy analyses revealed that as the vanadium content increases, the pore size of the catalyst decreases and both isopropanol conversion and propylene selectivity are reduced. Thus, without the addition of vanadium, the Zr-SBA-15 catalyst appears to be suitable for the dehydration of isopropanol to propylene. Keywords: isopropanol; propylene; dehydration; catalysis; SBA-15; vanadium; zirconia 1. Introduction Propylene is the second most-used raw material in plastics processing and the global demand for it is expected to reach 140 MMT in 2020 [1].