The Calculus Integral

Total Page:16

File Type:pdf, Size:1020Kb

The Calculus Integral THE CALCULUS INTEGRAL Brian S. Thomson Simon Fraser University CLASSICALREALANALYSIS.COM This text is intended as an outline for a rigorous course introducing the basic ele- ments of integration theory to honors calculus students or for an undergraduate course in elementary real analysis. Since “all” exercises are worked through in the appendix, the text is particularly well suited to self-study. For further information on this title and others in the series visit our website. www.classicalrealanalysis.com There are PDF files of all of our texts available for download as well as instructions on how to order trade paperback copies. We always allow access to the full content of our books on GOOGLE BOOKS and on the AMAZON Search Inside the Book feature. Cover Image: Sir Isaac Newton And from my pillow, looking forth by light Of moon or favouring stars, I could behold The antechapel where the statue stood Of Newton with his prism and silent face, The marble index of a mind for ever Voyaging through strange seas of Thought, alone. William Wordsworth, The Prelude. Citation: The Calculus Integral, Brian S. Thomson, ClassicalRealAnalysis.com (2010), [ISBN 1442180951] Date PDF file compiled: June 19, 2011 BETA VERSION β1.0 The file or paperback that you are reading should be considered a work in progress. In a classroom setting make sure all participants are using the same beta version. We will add and amend, depending on feedback from our users, until the text appears to be in a stable condition. ISBN: 1442180951 EAN-13: 9781442180956 CLASSICALREALANALYSIS.COM PREFACE There are plenty of calculus books available, many free or at least cheap, that discuss integrals. Why add another one? Our purpose is to present integration theory at an honors calculus level and in an easier manner by defining the definite integral in a very traditional way, but a way that avoids the equally traditional Riemann sums definition. Riemann sums enter the picture, to be sure, but the integral is defined in the way that Newton himself would surely endorse. Thus the fundamental theorem of the calculus starts off as the definition and the relation with Riemann sums becomes a theorem (not the definition of the definite integral as has, most unfortunately, been the case for many years). As usual in mathematical presentations we all end up in the same place. It is just that we have taken a different route to get there. It is only a pedagogical issue of which route offers the clearest perspective. The common route of starting with the definition of the Riemann integral, providing the then necessary detour into improper integrals, and ultimately heading towards the Lebesgue integral is arguably not the best path although it has at least the merit of historical fidelity. Acknowledgments I have used without comment material that has appeared in the textbook [TBB] Elementary Real Analysis, 2nd Edition, B. S. Thomson, J. B. Bruck- ner, A. M. Bruckner, ClassicalRealAnalyis.com (2008). I wish to express my thanks to my co-authors for permission to recycle that material into the idiosyncratic form that appears here and their encouragement (or at least lack of discouragement) in this project. I would also like to thank the following individuals who have offered feedback on the material, or who have supplied interesting exercises or solutions to our exercises: [your name here], ... i ii Note to the instructor Since it is possible that some brave mathematicians will undertake to present integra- tion theory to undergraduates students using the presentation in this text, it would be appropriate for us to address some comments to them. What should I teach the weak calculus students? Let me dispense with this question first. Don’t teach them this material, which is aimed much more at the level of an honor’s calculus course. I also wouldn’t teach them the Riemann integral. I think a reasonable outline for these students would be this: 1. An informal account of the indefinite integral formula F (x)dx = F(x)+C Z ′ just as an antiderivative notation with a justification provided by the mean-value theorem. 2. An account of what it means for a function to be continuous on an interval [a,b]. 3. The definition b F′(x)dx = F(b) F(a) Za − for continuous functions F : [a,b] R that are differentiable at all1 points in → (a,b). The mean-value theorem again justifies the definition. You won’t need improper integrals, e.g., 1 1 1 d dx = 2√x dx = 2 0. Z0 √x Z0 dx − 4. Any properties of integrals that are direct translations of derivative properties. 5. The Riemann sums identity b n f (x)dx = ∑ f (ξ )(x x ) Z i∗ i i 1 a i=1 − − ξ where the points i∗ that make this precise are selected by the mean-value theo- rem. 1. or all but finitely many points iii iv 6. The Riemann sums approximation b n f (x)dx ∑ f (ξ )(x x ) Z i i i 1 a ≈ i=1 − − where the points ξi can be freely selected inside the interval. Continuity of f ξ ξ justifies this since f ( i) f ( i∗) if the points xi and xi 1 are close together. [It ≈ − is assumed that any application of this approximation would be restricted to con- tinuous functions.] That’s all! No other elements of theory would be essential and the students can then focus largely on the standard calculus problems. Integration theory, presented in this skeletal form, is much less mysterious than any account of the Riemann integral would be. On the other hand, for students that are not considered marginal, the presentation in the text should lead to a full theory of integration on the real line provided at first that the student is sophisticated enough to handle ε, δ arguments and simple compactness proofs (notably Bolzano-Weierstrass and Cousin lemma proofs). Why the calculus integral? Perhaps the correct question is “Why not the Lebesgue integral?” After all, integration theory on the real line is not adequately described by either the calculus integral or the Riemann integral. The answer that we all seem to have agreed upon is that Lebesgue’s theory is too difficult for beginning students of integration theory. Thus we need a “teaching inte- gral,” one that will present all the usual rudiments of the theory in way that prepares the student for the later introduction of measure and integration. Using the Riemann integral as a teaching integral requires starting with summations and a difficult and awkward limit formulation. Eventually one reaches the fundamental theorem of the calculus. The fastest and most efficient way of teaching integration theory on the real line is, instead, at the outset to interpret the calculus integral b F′(x)dx = F(b) F(a) Za − as a definition. The primary tool is the very familiar mean-value theorem. That theorem leads quickly back to Riemann sums in any case. The instructor must then drop the habit of calling this the fundamental theorem of the calculus. Within a few lectures the main properties of integrals are available and all of the computational exercises are accessible. This is because everything is merely an immediate application of differentiation theorems. There is no need for an “improper” theory of the integral since integration of unbounded functions requires no additional ideas or lectures. There is a long and distinguished historical precedent for this kind of definition. For all of the 18th century the integral was understood only in this sense2 The descriptive definition of the Lebesgue integral, which too can be taken as a starting point, is exactly 2Certainly Newton and his followers saw it in this sense. For Leibnitz and his advocates the integral was a sum of infinitesimals, but that only explained the connection with the derivative. For a lucid account of the thinking of the mathematicians to whom we owe all this theory see Judith V. Grabiner, Who gave v the same: but now requires F to be absolutely continuous and F′ is defined only almost everywhere. The Denjoy-Perron integral has the same descriptive definition but relaxes the condition on F to that of generalized absolute continuity. Thus the narrative of integration theory on the real line can told simply as an interpretation of the integral as meaning merely b F′(x)dx = F(b) F(a). Za − Why not the Riemann integral? Or you may prefer to persist in teaching to your calculus students the Riemann integral and its ugly step-sister, the improper Riemann integral. There are many reasons for ceasing to use this as a teaching integral; the web page, “Top ten reasons for dumping the Riemann integral” which you can find on our site www.classicalrealanalysis.com has a tongue-in-cheek account of some of these. The Riemann integral does not do a particularly good job of introducing integration theory to students. That is not to say that students should be sheltered from the notion of Riemann sums. It is just that a whole course confined to the Riemann integral wastes considerable time on a topic and on methods that are not worthy of such devotion. In this presentation the Riemann sums approximation to integrals enters into the discussion naturally by way of the mean-value theorem of the differential calculus. It does not require several lectures on approximations of areas and other motivating stories. The calculus integral For all of the 18th century and a good bit of the 19th century integration theory, as we understand it, was simply the subject of antidifferentiation.
Recommended publications
  • Notes on Calculus II Integral Calculus Miguel A. Lerma
    Notes on Calculus II Integral Calculus Miguel A. Lerma November 22, 2002 Contents Introduction 5 Chapter 1. Integrals 6 1.1. Areas and Distances. The Definite Integral 6 1.2. The Evaluation Theorem 11 1.3. The Fundamental Theorem of Calculus 14 1.4. The Substitution Rule 16 1.5. Integration by Parts 21 1.6. Trigonometric Integrals and Trigonometric Substitutions 26 1.7. Partial Fractions 32 1.8. Integration using Tables and CAS 39 1.9. Numerical Integration 41 1.10. Improper Integrals 46 Chapter 2. Applications of Integration 50 2.1. More about Areas 50 2.2. Volumes 52 2.3. Arc Length, Parametric Curves 57 2.4. Average Value of a Function (Mean Value Theorem) 61 2.5. Applications to Physics and Engineering 63 2.6. Probability 69 Chapter 3. Differential Equations 74 3.1. Differential Equations and Separable Equations 74 3.2. Directional Fields and Euler’s Method 78 3.3. Exponential Growth and Decay 80 Chapter 4. Infinite Sequences and Series 83 4.1. Sequences 83 4.2. Series 88 4.3. The Integral and Comparison Tests 92 4.4. Other Convergence Tests 96 4.5. Power Series 98 4.6. Representation of Functions as Power Series 100 4.7. Taylor and MacLaurin Series 103 3 CONTENTS 4 4.8. Applications of Taylor Polynomials 109 Appendix A. Hyperbolic Functions 113 A.1. Hyperbolic Functions 113 Appendix B. Various Formulas 118 B.1. Summation Formulas 118 Appendix C. Table of Integrals 119 Introduction These notes are intended to be a summary of the main ideas in course MATH 214-2: Integral Calculus.
    [Show full text]
  • A Brief Tour of Vector Calculus
    A BRIEF TOUR OF VECTOR CALCULUS A. HAVENS Contents 0 Prelude ii 1 Directional Derivatives, the Gradient and the Del Operator 1 1.1 Conceptual Review: Directional Derivatives and the Gradient........... 1 1.2 The Gradient as a Vector Field............................ 5 1.3 The Gradient Flow and Critical Points ....................... 10 1.4 The Del Operator and the Gradient in Other Coordinates*............ 17 1.5 Problems........................................ 21 2 Vector Fields in Low Dimensions 26 2 3 2.1 General Vector Fields in Domains of R and R . 26 2.2 Flows and Integral Curves .............................. 31 2.3 Conservative Vector Fields and Potentials...................... 32 2.4 Vector Fields from Frames*.............................. 37 2.5 Divergence, Curl, Jacobians, and the Laplacian................... 41 2.6 Parametrized Surfaces and Coordinate Vector Fields*............... 48 2.7 Tangent Vectors, Normal Vectors, and Orientations*................ 52 2.8 Problems........................................ 58 3 Line Integrals 66 3.1 Defining Scalar Line Integrals............................. 66 3.2 Line Integrals in Vector Fields ............................ 75 3.3 Work in a Force Field................................. 78 3.4 The Fundamental Theorem of Line Integrals .................... 79 3.5 Motion in Conservative Force Fields Conserves Energy .............. 81 3.6 Path Independence and Corollaries of the Fundamental Theorem......... 82 3.7 Green's Theorem.................................... 84 3.8 Problems........................................ 89 4 Surface Integrals, Flux, and Fundamental Theorems 93 4.1 Surface Integrals of Scalar Fields........................... 93 4.2 Flux........................................... 96 4.3 The Gradient, Divergence, and Curl Operators Via Limits* . 103 4.4 The Stokes-Kelvin Theorem..............................108 4.5 The Divergence Theorem ...............................112 4.6 Problems........................................114 List of Figures 117 i 11/14/19 Multivariate Calculus: Vector Calculus Havens 0.
    [Show full text]
  • Differentiation Rules (Differential Calculus)
    Differentiation Rules (Differential Calculus) 1. Notation The derivative of a function f with respect to one independent variable (usually x or t) is a function that will be denoted by D f . Note that f (x) and (D f )(x) are the values of these functions at x. 2. Alternate Notations for (D f )(x) d d f (x) d f 0 (1) For functions f in one variable, x, alternate notations are: Dx f (x), dx f (x), dx , dx (x), f (x), f (x). The “(x)” part might be dropped although technically this changes the meaning: f is the name of a function, dy 0 whereas f (x) is the value of it at x. If y = f (x), then Dxy, dx , y , etc. can be used. If the variable t represents time then Dt f can be written f˙. The differential, “d f ”, and the change in f ,“D f ”, are related to the derivative but have special meanings and are never used to indicate ordinary differentiation. dy 0 Historical note: Newton used y,˙ while Leibniz used dx . About a century later Lagrange introduced y and Arbogast introduced the operator notation D. 3. Domains The domain of D f is always a subset of the domain of f . The conventional domain of f , if f (x) is given by an algebraic expression, is all values of x for which the expression is defined and results in a real number. If f has the conventional domain, then D f usually, but not always, has conventional domain. Exceptions are noted below.
    [Show full text]
  • Leonhard Euler: His Life, the Man, and His Works∗
    SIAM REVIEW c 2008 Walter Gautschi Vol. 50, No. 1, pp. 3–33 Leonhard Euler: His Life, the Man, and His Works∗ Walter Gautschi† Abstract. On the occasion of the 300th anniversary (on April 15, 2007) of Euler’s birth, an attempt is made to bring Euler’s genius to the attention of a broad segment of the educated public. The three stations of his life—Basel, St. Petersburg, andBerlin—are sketchedandthe principal works identified in more or less chronological order. To convey a flavor of his work andits impact on modernscience, a few of Euler’s memorable contributions are selected anddiscussedinmore detail. Remarks on Euler’s personality, intellect, andcraftsmanship roundout the presentation. Key words. LeonhardEuler, sketch of Euler’s life, works, andpersonality AMS subject classification. 01A50 DOI. 10.1137/070702710 Seh ich die Werke der Meister an, So sehe ich, was sie getan; Betracht ich meine Siebensachen, Seh ich, was ich h¨att sollen machen. –Goethe, Weimar 1814/1815 1. Introduction. It is a virtually impossible task to do justice, in a short span of time and space, to the great genius of Leonhard Euler. All we can do, in this lecture, is to bring across some glimpses of Euler’s incredibly voluminous and diverse work, which today fills 74 massive volumes of the Opera omnia (with two more to come). Nine additional volumes of correspondence are planned and have already appeared in part, and about seven volumes of notebooks and diaries still await editing! We begin in section 2 with a brief outline of Euler’s life, going through the three stations of his life: Basel, St.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Calculus Formulas and Theorems
    Formulas and Theorems for Reference I. Tbigonometric Formulas l. sin2d+c,cis2d:1 sec2d l*cot20:<:sc:20 +.I sin(-d) : -sitt0 t,rs(-//) = t r1sl/ : -tallH 7. sin(A* B) :sitrAcosB*silBcosA 8. : siri A cos B - siu B <:os,;l 9. cos(A+ B) - cos,4cos B - siuA siriB 10. cos(A- B) : cosA cosB + silrA sirrB 11. 2 sirrd t:osd 12. <'os20- coS2(i - siu20 : 2<'os2o - I - 1 - 2sin20 I 13. tan d : <.rft0 (:ost/ I 14. <:ol0 : sirrd tattH 1 15. (:OS I/ 1 16. cscd - ri" 6i /F tl r(. cos[I ^ -el : sitt d \l 18. -01 : COSA 215 216 Formulas and Theorems II. Differentiation Formulas !(r") - trr:"-1 Q,:I' ]tra-fg'+gf' gJ'-,f g' - * (i) ,l' ,I - (tt(.r))9'(.,') ,i;.[tyt.rt) l'' d, \ (sttt rrJ .* ('oqI' .7, tJ, \ . ./ stll lr dr. l('os J { 1a,,,t,:r) - .,' o.t "11'2 1(<,ot.r') - (,.(,2.r' Q:T rl , (sc'c:.r'J: sPl'.r tall 11 ,7, d, - (<:s<t.r,; - (ls(].]'(rot;.r fr("'),t -.'' ,1 - fr(u") o,'ltrc ,l ,, 1 ' tlll ri - (l.t' .f d,^ --: I -iAl'CSllLl'l t!.r' J1 - rz 1(Arcsi' r) : oT Il12 Formulas and Theorems 2I7 III. Integration Formulas 1. ,f "or:artC 2. [\0,-trrlrl *(' .t "r 3. [,' ,t.,: r^x| (' ,I 4. In' a,,: lL , ,' .l 111Q 5. In., a.r: .rhr.r' .r r (' ,l f 6. sirr.r d.r' - ( os.r'-t C ./ 7. /.,,.r' dr : sitr.i'| (' .t 8. tl:r:hr sec,rl+ C or ln Jccrsrl+ C ,f'r^rr f 9.
    [Show full text]
  • Reconciling Situation Calculus and Fluent Calculus
    Reconciling Situation Calculus and Fluent Calculus Stephan Schiffel and Michael Thielscher Department of Computer Science Dresden University of Technology stephan.schiffel,mit @inf.tu-dresden.de { } Abstract between domain descriptions in both calculi. Another ben- efit of a formal relation between the SC and the FC is the The Situation Calculus and the Fluent Calculus are successful possibility to compare extensions made separately for the action formalisms that share many concepts. But until now two calculi, such as concurrency. Furthermore it might even there is no formal relation between the two calculi that would allow to formally analyze the relationship between the two allow to translate current or future extensions made only for approaches as well as between the programming languages one of the calculi to the other. based on them, Golog and FLUX. Furthermore, such a formal Golog is a programming language for intelligent agents relation would allow to combine Golog and FLUX and to ana- that combines elements from classical programming (condi- lyze which of the underlying computation principles is better tionals, loops, etc.) with reasoning about actions. Primitive suited for different classes of programs. We develop a for- statements in Golog programs are actions to be performed mal translation between domain axiomatizations of the Situ- by the agent. Conditional statements in Golog are composed ation Calculus and the Fluent Calculus and present a Fluent of fluents. The execution of a Golog program requires to Calculus semantics for Golog programs. For domains with reason about the effects of the actions the agent performs, deterministic actions our approach allows an automatic trans- lation of Golog domain descriptions and execution of Golog in order to determine the values of fluents when evaluating programs with FLUX.
    [Show full text]
  • 4.1 AP Calc Antiderivatives and Indefinite Integration.Notebook November 28, 2016
    4.1 AP Calc Antiderivatives and Indefinite Integration.notebook November 28, 2016 4.1 Antiderivatives and Indefinite Integration Learning Targets 1. Write the general solution of a differential equation 2. Use indefinite integral notation for antiderivatives 3. Use basic integration rules to find antiderivatives 4. Find a particular solution of a differential equation 5. Plot a slope field 6. Working backwards in physics Intro/Warm­up 1 4.1 AP Calc Antiderivatives and Indefinite Integration.notebook November 28, 2016 Note: I am changing up the procedure of the class! When you walk in the class, you will put a tally mark on those problems that you would like me to go over, and you will turn in your homework with your name, the section and the page of the assignment. Order of the day 2 4.1 AP Calc Antiderivatives and Indefinite Integration.notebook November 28, 2016 Vocabulary First, find a function F whose derivative is . because any other function F work? So represents the family of all antiderivatives of . The constant C is called the constant of integration. The family of functions represented by F is the general antiderivative of f, and is the general solution to the differential equation The operation of finding all solutions to the differential equation is called antidifferentiation (or indefinite integration) and is denoted by an integral sign: is read as the antiderivative of f with respect to x. Vocabulary 3 4.1 AP Calc Antiderivatives and Indefinite Integration.notebook November 28, 2016 Nov 28­9:38 AM 4 4.1 AP Calc Antiderivatives and Indefinite Integration.notebook November 28, 2016 ∫ Use basic integration rules to find antiderivatives The Power Rule: where 1.
    [Show full text]
  • Basic Calculus I Fall 2007 Class 11 Monday September 24 Introduction to Continuity
    Math 110 Basic Calculus I Fall 2007 Class 11 Monday September 24 Introduction to Continuity An informal definition of continuity of a function is that if it’s graph can be drawn without picking up your drawing implement, then it is continuous at all the iput values that are graphed. DEFINITION: Continuity at a point A function f(x) is said to be continuous at a point x = a if ALL of the following statements are true: 1. f(a) is defined 2. lim f(x) exists x→a 3. lim f(x)=f(a) x→a If a function is not continuous at a point we say that it has a discontinuity at x = a. EXAMPLE Let’s think about the different ways that this defnition can fail for a function: 1. f(x) may be undefined at the point x = a 2. The value of f(a) and the value of the limit of f(x)asx approaches a may be different 3. The limit of f(x)asx approaches a may not exist because the one sided limits are different 4. The limit of f(x)asx approaches a may not exist for other reasons than those given in (3) GroupWork Let’s provide algebraic examples of functions which correspond to each of the “Discontinuity Scenarios” described above and draw a picture of each of the scenarios which depict the way a function can be discontinous at a apoint. DEFINITION: Continuity on an open interval If a function f(x) is continuous at every point in an open interval (a, b) we say that f(x) is continuous on the interval (a, b).
    [Show full text]
  • Leonhard Euler - Wikipedia, the Free Encyclopedia Page 1 of 14
    Leonhard Euler - Wikipedia, the free encyclopedia Page 1 of 14 Leonhard Euler From Wikipedia, the free encyclopedia Leonhard Euler ( German pronunciation: [l]; English Leonhard Euler approximation, "Oiler" [1] 15 April 1707 – 18 September 1783) was a pioneering Swiss mathematician and physicist. He made important discoveries in fields as diverse as infinitesimal calculus and graph theory. He also introduced much of the modern mathematical terminology and notation, particularly for mathematical analysis, such as the notion of a mathematical function.[2] He is also renowned for his work in mechanics, fluid dynamics, optics, and astronomy. Euler spent most of his adult life in St. Petersburg, Russia, and in Berlin, Prussia. He is considered to be the preeminent mathematician of the 18th century, and one of the greatest of all time. He is also one of the most prolific mathematicians ever; his collected works fill 60–80 quarto volumes. [3] A statement attributed to Pierre-Simon Laplace expresses Euler's influence on mathematics: "Read Euler, read Euler, he is our teacher in all things," which has also been translated as "Read Portrait by Emanuel Handmann 1756(?) Euler, read Euler, he is the master of us all." [4] Born 15 April 1707 Euler was featured on the sixth series of the Swiss 10- Basel, Switzerland franc banknote and on numerous Swiss, German, and Died Russian postage stamps. The asteroid 2002 Euler was 18 September 1783 (aged 76) named in his honor. He is also commemorated by the [OS: 7 September 1783] Lutheran Church on their Calendar of Saints on 24 St. Petersburg, Russia May – he was a devout Christian (and believer in Residence Prussia, Russia biblical inerrancy) who wrote apologetics and argued Switzerland [5] forcefully against the prominent atheists of his time.
    [Show full text]
  • Gottfried Wilhelm Leibniz (1646-1716)
    Gottfried Wilhelm Leibniz (1646-1716) • His father, a professor of Philosophy, died when he was small, and he was brought up by his mother. • He learnt Latin at school in Leipzig, but taught himself much more and also taught himself some Greek, possibly because he wanted to read his father’s books. • He studied law and logic at Leipzig University from the age of fourteen – which was not exceptionally young for that time. • His Ph D thesis “De Arte Combinatoria” was completed in 1666 at the University of Altdorf. He was offered a chair there but turned it down. • He then met, and worked for, Baron von Boineburg (at one stage prime minister in the government of Mainz), as a secretary, librarian and lawyer – and was also a personal friend. • Over the years he earned his living mainly as a lawyer and diplomat, working at different times for the states of Mainz, Hanover and Brandenburg. • But he is famous as a mathematician and philosopher. • By his own account, his interest in mathematics developed quite late. • An early interest was mechanics. – He was interested in the works of Huygens and Wren on collisions. – He published Hypothesis Physica Nova in 1671. The hypothesis was that motion depends on the action of a spirit ( a hypothesis shared by Kepler– but not Newton). – At this stage he was already communicating with scientists in London and in Paris. (Over his life he had around 600 scientific correspondents, all over the world.) – He met Huygens in Paris in 1672, while on a political mission, and started working with him.
    [Show full text]
  • Appendix: TABLE of INTEGRALS
    -~.I--­ Appendix: TABLE OF INTEGRALS 148. In the following table, the constant of integration, C, is omitted but should be added to the result of every integration. The letter x represents any variable; u represents any function of x; the remaining letters represent arbitrary constants, unless otherwise indicated; all angles are in radians. Unless otherwise mentioned, loge u = log u. Expressions Containing ax + b 1. I(ax+ b)ndx= 1 (ax+ b)n+l, n=l=-1. a(n + 1) dx 1 2. = -loge<ax + b). Iax+ b a 3 I dx =_ 1 • (ax+b)2 a(ax+b)· 4 I dx =_ 1 • (ax + b)3 2a(ax + b)2· 5. Ix(ax + b)n dx = 1 (ax + b)n+2 a2 (n + 2) b ---,,---(ax + b)n+l n =1= -1, -2. a2 (n + 1) , xdx x b 6. = - - -2 log(ax + b). I ax+ b a a 7 I xdx = b 1 I ( b) • (ax + b)2 a2(ax + b) + -;}i og ax + . 369 370 • Appendix: Table of Integrals 8 I xdx = b _ 1 • (ax + b)3 2a2(ax + b)2 a2(ax + b) . 1 (ax+ b)n+3 (ax+ b)n+2 9. x2(ax + b)n dx = - - 2b--'------'-- I a2 n + 3 n + 2 2 b (ax + b) n+ 1 ) + , ni=-I,-2,-3. n+l 2 10. I x dx = ~ (.!..(ax + b)2 - 2b(ax + b) + b2 10g(ax + b)). ax+ b a 2 2 2 11. I x dx 2 =~(ax+ b) - 2blog(ax+ b) _ b ). (ax + b) a ax + b 2 2 12 I x dx = _1(10 (ax + b) + 2b _ b ) • (ax + b) 3 a3 g ax + b 2(ax + b) 2 .
    [Show full text]