Intratumor Heterogeneity: Novel Approaches for Resolving Genomic Architecture and Clonal Evolution Ravi G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chromothripsis in Human Breast Cancer
Author Manuscript Published OnlineFirst on September 24, 2020; DOI: 10.1158/0008-5472.CAN-20-1920 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Title: Chromothripsis in human breast cancer Michiel Bolkestein1*, John K.L. Wong2*, Verena Thewes2,3*, Verena Körber4, Mario Hlevnjak2,5, Shaymaa Elgaafary3,6, Markus Schulze2,5, Felix K.F. Kommoss7, Hans-Peter Sinn7, Tobias Anzeneder8, Steffen Hirsch9, Frauke Devens1, Petra Schröter2, Thomas Höfer4, Andreas Schneeweiss3, Peter Lichter2,6, Marc Zapatka2, Aurélie Ernst1# 1Group Genome Instability in Tumors, DKFZ, Heidelberg, Germany. 2Division of Molecular Genetics, DKFZ; DKFZ-Heidelberg Center for Personalized Oncology (HIPO) and German Cancer Consortium (DKTK), Heidelberg, Germany. 3National Center for Tumor Diseases (NCT), University Hospital and DKFZ, Heidelberg, Germany. 4Division of Theoretical Systems Biology, DKFZ, Heidelberg, Germany. 5Computational Oncology Group, Molecular Diagnostics Program at the National Center for Tumor Diseases (NCT) and DKFZ, Heidelberg, Germany. 6Molecular Diagnostics Program at the National Center for Tumor Diseases (NCT) and DKFZ, Heidelberg, Germany. 7Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany. 8Patients' Tumor Bank of Hope (PATH), Munich, Germany. 9Institute of Human Genetics, Heidelberg University, Heidelberg, Germany. *these authors contributed equally Running title: Chromothripsis in human breast cancer #corresponding author: Aurélie Ernst DKFZ, Im Neuenheimer Feld 580, 69115 Heidelberg, Germany 0049 6221 42 1512 [email protected] The authors have no conflict of interest to declare. 1 Downloaded from cancerres.aacrjournals.org on September 25, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on September 24, 2020; DOI: 10.1158/0008-5472.CAN-20-1920 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. -
Breast Cancer's Somatic Mutation Landscape Points to DNA Damage
Editorial Into the eye of the storm: breast cancer’s somatic mutation landscape points to DNA damage and repair Joanne Ngeow1,2, Emily Nizialek1,2,3, Charis Eng1,2,3,4,5 1Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA; 2Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA; 3Department of Genetics and Genome Sciences, and CASE Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106, USA; 4Stanley Shalom Zielony Institute of Nursing Excellence, Cleveland Clinic, Cleveland, Ohio 44195, USA; 5Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA Corresponding to: Charis Eng, MD, PhD. Genomic Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, Ohio 44195, USA. Email: [email protected]. Submitted Apr 05, 2013. Accepted for publication Apr 25, 2013. doi: 10.3978/j.issn.2218-676X.2013.04.15 Scan to your mobile device or view this article at: http://www.thetcr.org/article/view/1116/html Distinguishing the handful of somatic mutations expected hotspots and result in a catastrophic mutational event. to initiate and maintain cancer growth, so-called driver The authors call this “kataegis” (from the Greek for mutations, from mutations that play no role in cancer thunderstorm): although never described before, kataegis development, passenger mutations, remains a major hurdle was remarkably common occurring, to some extent, in the for understanding the mechanisms of cancer and the design of genomes of 13 of the 21 breast cancers. Within areas of more effective treatments. Recognizing this, National Cancer kataegis, one of the more commonly seen cancer somatic Institute’s “Provocative Questions” Project (1) specifically mutation signature is an overrepresentation of C-to-T highlights the urgent need to better discriminate between and C-to-G at the TpCpX dinucleotide. -
Intra-Tumor Heterogeneity from a Cancer Stem Cell Perspective Pramudita R
Prasetyanti and Medema Molecular Cancer (2017) 16:41 DOI 10.1186/s12943-017-0600-4 REVIEW Open Access Intra-tumor heterogeneity from a cancer stem cell perspective Pramudita R. Prasetyanti1,2 and Jan Paul Medema1,2,3* Abstract Tumor heterogeneity represents an ongoing challenge in the field of cancer therapy. Heterogeneity is evident between cancers from different patients (inter-tumor heterogeneity) and within a single tumor (intra-tumor heterogeneity). The latter includes phenotypic diversity such as cell surface markers, (epi)genetic abnormality, growth rate, apoptosis and other hallmarks of cancer that eventually drive disease progression and treatment failure. Cancer stem cells (CSCs) have been put forward to be one of the determining factors that contribute to intra-tumor heterogeneity. However, recent findings have shown that the stem-like state in a given tumor cell is a plastic quality. A corollary to this view is that stemness traits can be acquired via (epi)genetic modification and/or interaction with the tumor microenvironment (TME). Here we discuss factors contributing to this CSC heterogeneity and the potential implications for cancer therapy. Keywords: Tumor heterogeneity, Cancer stem cell, Stemness, Tumor microenvironment Background tumor and microenvironment heterogeneity determine A tumor is a heterogeneous population of cells, containing the fitness of the tumor and as such, are likely to be transformed cancer cells, supportive cells and tumor- crucial factors in treatment success. infiltrating cells. This intra-tumor heterogeneity is further Two models have been proposed to account for hetero- enhanced by clonal variation and microenvironmental geneity within a tumor. In the clonal evolution model, influences on cancer cells, which also do not represent a stochastic mutations in individual tumor cells serve as homogeneous set of cells. -
Mutator Catalogues and That the Proportion of CG Muta- Types
RESEARCH HIGHLIGHTS carcinoma. Moreover, the authors of APOBEC3B mRNA were generally GENOMICS found that 60–90% of mutations in higher, indicating that this is the these tumours affected CG base pairs, major mutator across the 13 cancer Mutator catalogues and that the proportion of CG muta- types. Using carcinogenic mutation tions correlated with the expression catalogues (such as the Cancer Gene of APOBEC3B across cancer types. Census and COSMIC) the authors Because APOBECs target cytosines found that APOBEC-signature within specific sequence contexts, mutations were prevalent in a subset the authors examined the cytosine of genes considered to be drivers of mutation signatures and found, for cancer, indicating that APOBEC- example, that those signatures in mediated mutation may initiate bladder and cervical cancers were and/or drive carcinogenesis. similar, and were biased towards the Taking a broader approach, optimum APOBEC3B motif (which Alexandrov and colleagues sought STOCKBYTE is TCA). The authors also found that to assess the mutational landscape bladder, cervical, head and neck, of >7,000 cancers, using exome and breast cancer, as well as lung and whole-genome sequence The sequencing of cancer genomes adenocarcinoma and lung squamous data. Their analyses revealed 21 has confirmed the complexity of cell carcinoma, all of which had distinct mutational signatures APOBEC3B is the somatic mutations that occur in the strongest APOBEC3B-specific that occurred, to different extents a mutator in tumours. However, there seem to cytosine mutation signatures, had the and in different combinations, be some patterns in the mutation highest levels of cytosine mutation across 30 cancer types. The most several types spectra, such as preference for muta- clustering. -
A Population Genetics Perspective on the Determinants of Intra-Tumor Heterogeneity☆
BBACAN-88143; No. of pages: 18; 4C: 2, 6, 8, 9, 10 Biochimica et Biophysica Acta xxx (2017) xxx–xxx Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbacan A population genetics perspective on the determinants of intra-tumor heterogeneity☆ Zheng Hu, Ruping Sun, Christina Curtis ⁎ Departments of Medicine and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA article info abstract Article history: Cancer results from the acquisition of somatic alterations in a microevolutionary process that typically occurs Received 16 December 2016 over many years, much of which is occult. Understanding the evolutionary dynamics that are operative at differ- Received in revised form 1 March 2017 ent stages of progression in individual tumors might inform the earlier detection, diagnosis, and treatment of can- Accepted 2 March 2017 cer. Although these processes cannot be directly observed, the resultant spatiotemporal patterns of genetic Available online xxxx variation amongst tumor cells encode their evolutionary histories. Such intra-tumor heterogeneity is pervasive not only at the genomic level, but also at the transcriptomic, phenotypic, and cellular levels. Given the implica- tions for precision medicine, the accurate quantification of heterogeneity within and between tumors has be- come a major focus of current research. In this review, we provide a population genetics perspective on the determinants of intra-tumor heterogeneity and approaches to quantify genetic diversity. We summarize evi- dence for different modes of evolution based on recent cancer genome sequencing studies and discuss emerging evolutionary strategies to therapeutically exploit tumor heterogeneity. -
Chromoanagenesis: Cataclysms Behind Complex Chromosomal Rearrangements Franck Pellestor1,2
Pellestor Molecular Cytogenetics (2019) 12:6 https://doi.org/10.1186/s13039-019-0415-7 REVIEW Open Access Chromoanagenesis: cataclysms behind complex chromosomal rearrangements Franck Pellestor1,2 Abstract Background: During the last decade, genome sequencing projects in cancer genomes as well as in patients with congenital diseases and healthy individuals have led to the identification of new types of massive chromosomal rearrangements arising during single chaotic cellular events. These unanticipated catastrophic phenomenon are termed chromothripsis, chromoanasynthesis and chromoplexis., and are grouped under the name of “chromoanagenesis”. Results: For each process, several specific features have been described, allowing each phenomenon to be distinguished from each other and to understand its mechanism of formation and to better understand its aetiology. Thus, chromothripsis derives from chromosome shattering followed by the random restitching of chromosomal fragments with low copy-number change whereas chromoanasynthesis results from erroneous DNA replication of a chromosome through serial fork stalling and template switching with variable copy-number gains, and chromoplexy refers to the occurrence of multiple inter-and intra-chromosomal translocations and deletions with little or no copy- number alterations in prostate cancer. Cumulating data and experimental models have shown that chromothripsis and chromoanasynthesis may essentially result from lagging chromosome encapsulated in micronuclei or telomere attrition andend-to-endtelomerefusion. -
Heterogeneity in Breast Cancer and the Problem of Relevance of findings
53 Mini review Heterogeneity in breast cancer and the problem of relevance of findings ∗ M. Aubele a, and M. Werner b these events has not been established. Furthermore, the a GSF – National Research Center for Environment relationship between histological progression and ge- and Health, Institute of Pathology, Neuherberg, netic events in breast cancer is not yet well defined. Germany This review discusses the cytogenetic and molecular b Technische Universität München, Klinikum rechts genetic findings published within the last years, the der Isar, Institute of Pathology, Munich, Germany problem of correlating molecular-biological data with histology, and, consequently, the difficulties in devel- Received 15 August 1999 oping a model for breast cancer progression. Accepted 16 November 1999 Many attempts are made to identify critical genetic events re- 2. Evidences for intratumoural heterogeneity sponsible for the development and progression of breast can- cer. There is increasing evidence that breast cancer is a het- Intratumour phenotypic heterogeneity is one of the erogeneous disease, both, phenotypically as well as with re- characteristics of breast carcinoma, and genetic mech- spect to its molecular biologically. It is, therefore, extremely anisms are likely to contribute to it [39]. Heteroge- difficult to establish a diagnostically and prognostically rel- neous molecular findings in different parts of a tumour evant tumourigenesis model. Emerging new techniques such may reflect concomitant or successive clonal develop- as microarrays, will provide us with a wealth of additional ment. No studies have yet been carried out to make a data over the next years. The precise sampling of tumour ma- comprehensive analysis of known genetic alterations. -
Somatic Mutation Distributions in Cancer Genomes Vary with Three-Dimensional Chromatin Structure
ARTICLES https://doi.org/10.1038/s41588-020-0708-0 Somatic mutation distributions in cancer genomes vary with three-dimensional chromatin structure Kadir C. Akdemir 1 ✉ , Victoria T. Le2, Justin M. Kim1,3, Sarah Killcoyne 4,5, Devin A. King6, Ya-Ping Lin7, Yanyan Tian8,9, Akira Inoue1, Samirkumar B. Amin 10, Frederick S. Robinson 11, Manjunath Nimmakayalu12, Rafael E. Herrera6, Erica J. Lynn8, Kin Chan13,14, Sahil Seth 11,15, Leszek J. Klimczak16, Moritz Gerstung 5, Dmitry A. Gordenin 13, John O’Brien 7, Lei Li8,17, Yonathan Lissanu Deribe1,18, Roel G. Verhaak 10, Peter J. Campbell19, Rebecca Fitzgerald 4, Ashby J. Morrison 6, Jesse R. Dixon 2 ✉ and P. Andrew Futreal 1 ✉ Somatic mutations in driver genes may ultimately lead to the development of cancer. Understanding how somatic mutations accumulate in cancer genomes and the underlying factors that generate somatic mutations is therefore crucial for develop- ing novel therapeutic strategies. To understand the interplay between spatial genome organization and specific mutational processes, we studied 3,000 tumor–normal-pair whole-genome datasets from 42 different human cancer types. Our analyses reveal that the change in somatic mutational load in cancer genomes is co-localized with topologically-associating-domain boundaries. Domain boundaries constitute a better proxy to track mutational load change than replication timing measure- ments. We show that different mutational processes lead to distinct somatic mutation distributions where certain processes generate mutations in active domains, and others generate mutations in inactive domains. Overall, the interplay between three-dimensional genome organization and active mutational processes has a substantial influence on the large-scale mutation-rate variations observed in human cancers. -
The Role of Tumour Heterogeneity and Clonal Cooperativity in Metastasis, Immune Evasion and Clinical Outcome Deborah R
Caswell and Swanton BMC Medicine (2017) 15:133 DOI 10.1186/s12916-017-0900-y REVIEW Open Access The role of tumour heterogeneity and clonal cooperativity in metastasis, immune evasion and clinical outcome Deborah R. Caswell1* and Charles Swanton1,2 Abstract Background: The advent of rapid and inexpensive sequencing technology allows scientists to decipher heterogeneity within primary tumours, between primary and metastatic sites, and between metastases. Charting the evolutionary history of individual tumours has revealed drivers of tumour heterogeneity and highlighted its impact on therapeutic outcomes. Discussion: Scientists are using improved sequencing technologies to characterise and address the challenge of tumour heterogeneity, which is a major cause of resistance to therapy and relapse. Heterogeneity may fuel metastasis through the selection of rare, aggressive, somatically altered cells. However, extreme levels of chromosomal instability, which contribute to intratumour heterogeneity, are associated with improved patient outcomes, suggesting a delicate balance between high and low levels of genome instability. Conclusions: We review evidence that intratumour heterogeneity influences tumour evolution, including metastasis, drug resistance, and the immune response. We discuss the prevalence of tumour heterogeneity, and how it can be initiated and sustained by external and internal forces. Understanding tumour evolution and metastasis could yield novel therapies that leverage the immune system to control emerging tumour neo-antigens. -
APOBEC-Induced Mutations in Human Cancers Are Strongly Enriched on the Lagging DNA Strand During Replication
Downloaded from genome.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Research APOBEC-induced mutations in human cancers are strongly enriched on the lagging DNA strand during replication Vladimir B. Seplyarskiy,1,2,3 Ruslan A. Soldatov,1,2 Konstantin Y. Popadin,4,5 Stylianos E. Antonarakis,4,5 Georgii A. Bazykin,1,2,3 and Sergey I. Nikolaev4,5,6 1Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia, 127051; 2Lomonosov Moscow State University, Moscow, Russia, 119991; 3Pirogov Russian National Research Medical University, Moscow, Russia, 117997; 4Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland; 5Institute of Genetics and Genomics in Geneva, 1211 Geneva, Switzerland; 6Service of Genetic Medicine, University Hospitals of Geneva, 1211 Geneva, Switzerland APOBEC3A and APOBEC3B, cytidine deaminases of the APOBEC family, are among the main factors causing mutations in human cancers. APOBEC deaminates cytosines in single-stranded DNA (ssDNA). A fraction of the APOBEC-induced mu- tations occur as clusters (“kataegis”) in single-stranded DNA produced during repair of double-stranded breaks (DSBs). However, the properties of the remaining 87% of nonclustered APOBEC-induced mutations, the source and the genomic distribution of the ssDNA where they occur, are largely unknown. By analyzing genomic and exomic cancer databases, we show that >33% of dispersed APOBEC-induced mutations occur on the lagging strand during DNA replication, thus un- raveling the major source of ssDNA targeted by APOBEC in cancer. Although methylated cytosine is generally more mu- tation-prone than nonmethylated cytosine, we report that methylation reduces the rate of APOBEC-induced mutations by a factor of roughly two. -
Learning Mutational Signatures and Their Multidimensional Genomic
ARTICLE https://doi.org/10.1038/s41467-021-23551-9 OPEN Learning mutational signatures and their multidimensional genomic properties with TensorSignatures ✉ Harald Vöhringer1, Arne Van Hoeck 2, Edwin Cuppen2,3 & Moritz Gerstung 1,4 We present TensorSignatures, an algorithm to learn mutational signatures jointly across different variant categories and their genomic localisation and properties. The analysis of 1234567890():,; 2778 primary and 3824 metastatic cancer genomes of the PCAWG consortium and the HMF cohort shows that all signatures operate dynamically in response to genomic states. The analysis pins differential spectra of UV mutagenesis found in active and inactive chromatin to global genome nucleotide excision repair. TensorSignatures accurately characterises transcription-associated mutagenesis in 7 different cancer types. The algorithm also extracts distinct signatures of replication- and double strand break repair-driven mutagenesis by APOBEC3A and 3B with differential numbers and length of mutation clusters. Finally, Ten- sorSignatures reproduces a signature of somatic hypermutation generating highly clustered variants at transcription start sites of active genes in lymphoid leukaemia, distinct from a general and less clustered signature of Polη-driven translesion synthesis found in a broad range of cancer types. In summary, TensorSignatures elucidates complex mutational foot- prints by characterising their underlying processes with respect to a multitude of genomic variables. 1 European Molecular Biology Laboratory, European -
Exploring the Mechanisms of Gastrointestinal Cancer Development Using Deep Sequencing Analysis
Cancers 2015, 7, 1037-1051; doi:10.3390/cancers7020823 cancersOPEN ACCESS ISSN 2072-6694 www.mdpi.com/journal/cancers Review Exploring the Mechanisms of Gastrointestinal Cancer Development Using Deep Sequencing Analysis Tomonori Matsumoto, Takahiro Shimizu, Atsushi Takai and Hiroyuki Marusawa * Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; E-Mails: [email protected] (T.M.); [email protected] (T.S.); [email protected] (A.T.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +81-75-751-4319; Fax: +81-75-751-4303. Academic Editors: Camile S. Farah and William Chi-shing Cho Received: 21 April 2015 / Accepted: 8 June 2015 / Published: 15 June 2015 Abstract: Next-generation sequencing (NGS) technologies have revolutionized cancer genomics due to their high throughput sequencing capacity. Reports of the gene mutation profiles of various cancers by many researchers, including international cancer genome research consortia, have increased over recent years. In addition to detecting somatic mutations in tumor cells, NGS technologies enable us to approach the subject of carcinogenic mechanisms from new perspectives. Deep sequencing, a method of optimizing the high throughput capacity of NGS technologies, allows for the detection of genetic aberrations in small subsets of premalignant and/or tumor cells in noncancerous chronically inflamed tissues. Genome-wide NGS data also make it possible to clarify the mutational signatures of each cancer tissue by identifying the precise pattern of nucleotide alterations in the cancer genome, providing new information regarding the mechanisms of tumorigenesis.