Mineral Resource Appraisal of the Salmon National Forest, Idaho

Total Page:16

File Type:pdf, Size:1020Kb

Mineral Resource Appraisal of the Salmon National Forest, Idaho U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Mineral Resource Appraisal of the Salmon National Forest, Idaho by Rick Johnson1, Terry Close2, and Ed McHugh3 Open-File Report 98-478 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1 U.S. Forest Service, Salmon-Challis National Forest, Salmon, Idaho 2 U.S. Bureau of Mines, Western Field Operations Center, Spokane, Washington 3 National Institute for Safety and Health, Spokane Research Center, Spokane, Washington 1998 PREFACE A January 1987 Interagency Agreement between the U.S. Bureau of Mines, U.S. Geological Survey, and U.S. Forest Service describes the purpose, authority, and operation for a program of forest-wide studies. The program was intended to assist the Forest Service in incorporating mineral resource data in forest plans as specified by the National Forest Management act (1976) and Title 36, Chapter 2, Part 219, Code of Federal Regulations and to augment the Bureau of Mines' mineral information as required by the National Materials and Minerals Policy, Research and Development Act (1980). This study was started during 1993 by the U.S. Bureau of Mines and completed during 1997 under the direction of the U.S. Forest Service. The U.S. Bureau of Mines was abolished by an act of Congress in 1996. This report is based upon available published information, field investigations, and mining company data. 2 ABBREVIATIONS USED IN THIS REPORT lb avoirdupois pound oz troy ounce ft foot in inch m meter cm centimeter ppm parts per million ppb parts per billion % percent ton short ton $ U.S. dollar Au gold Ag silver Cu copper Pb lead Zn zinc Co cobalt Mn manganese Fe iron U3O8 uranium oxide P2O5 phosphorous pentoxide MoS2 molybdenum disulfide ThO2 Thorium dioxide 3 CONTENTS Page Summary 6 Introduction 7 Setting 7 Previous studies 8 Present studies 9 Acknowledgements 10 Mines and prospects 10 Historic production 12 Mineral resources 12 Mining districts 12 Gibbonsville Mining District 13 Indian Creek Mining District 21 Mineral Hill Mining District 22 Mackinaw Mining District 23 Blackbird Mining District 24 Wilson Creek Mining District 25 Yellowjacket Mining District 25 Gravel Range Mining District 26 Eureka Mining District 27 Carmen Creek Mining District 28 Eldorado Mining District 29 Pratt Creek Mining District 29 McDevitt Mining District 30 Junction Mining District 30 Texas Mining District 31 Spring Mountain Mining District 32 Mining claims 33 Bibliography 34 Appendix A. Sample analyses and descriptions, Salmon National Forest, Idaho B. Summary descriptions of mines and prospects in the Salmon National Forest, Idaho ILLUSTRATIONS Plate 1. North Fork Ranger District mines and prospects 2. Salmon Ranger District mines and prospect 3. Cobalt Ranger District mines and prospects 4. Leadore Ranger District mines and prospects 5. Salmon National Forest, areas containing significant mineralization 6. Salmon National Forest mining districts 7. Salmon National Forest lode claims 4 TABLES Table 1. Recorded production, Salmon National Forest, Idaho 14 2. Identified resources, Salmon National Forest, Idaho 19 5 SUMMARY The Salmon National Forest administers 1,776,994 net acres of mountainous terrain located in east-central Idaho. Most of the Forest is in Lemhi County; only a small portion falls within Idaho and Valley Counties. Approximately 426,114 acres of the Frank Church-River of No Return Wilderness extends into the western part of the Forest and mineral entry is severely restricted. Because of its location within the Salmon River drainage, the Forest also is subject to numerous issues surrounding restoration of anadromous fish runs. Mineral production from the Salmon National Forest began during 1866 when placer gold was discovered in Leesburg Basin. Hardrock mining quickly spread throughout the Forest and many deposits containing a wide range of commodities were discovered and developed. Although early records are sketchy, production is estimated to include 940,000 ounces gold, 654,000 ounces silver, 61.9 million pounds copper, 8.9 million pounds lead, 13.9 million pounds cobalt, 208,000 pounds zinc, and 37,000 tons fluorite mill feed. Mineral resources are large, diverse, and occur in many deposit types including exhalative, stockwork, disseminated, vein, replacement, sedimentary, skarn, breccia pipe, porphyry, and placer. The largest cobalt resource in the United States occurs in the Blackbird Mining District. Other resources include gold, silver, copper, lead, molybdenum, phosphate, manganese, iron, fluorite, uranium, thorium, rare earth oxides, and barite. Identified resources at five deposits located along the Blackbird copper-cobalt zone are estimated to be 707 million pounds copper and 160 million pounds cobalt. The deposits are stratabound in fine-grained clastic, volcaniclastic, and tuffaceous rocks of the Middle Proterozoic Yellowjacket Formation. Two gold deposits in the Forest are currently being mined and a third is in the permitting stage. The Beartrack deposit occurs along the fault contact between Yellowjacket quartzite and Proterozoic quartz monzonite and is being mined by conventional open pit methods. The ore is crushed, put on leachpads, and sprinkled with a dilute solution containing cyanide. Gold is recovered from the pregnant solution by carbon adsorption methods. Reserves remaining at the deposit at the end of 1996 totalled 25.6 million tons grading 0.033 ounce gold per ton. Gold mineralization at the Yellowjacket mine occurs in quartz veins and lenses in quartzitic and slightly calcareous beds. The ore is also mined by conventional open pit methods; gold is recovered in a 350 ton per day gravity/flotation mill. Oxide ore reserves contain about 22,000 ounces gold and exploration in progress is expected to develop resources in the primary ore. Proven and probable reserves at the Humbug deposit, currently in the permitting stage, are 16.5 million tons grading 0.037 ounce gold per ton. The gold occurs in quartz veins and siliceous zones in dark grey siltite and argillite of the Apple Creek Formation. As a result of this study, 26 areas have been delineated that contain significant mineralization. Future exploration and development will most likely be concentrated in those areas which 6 contain either precious metal or copper-cobalt deposits. INTRODUCTION This report describes the results of an investigation of mineral resources in the Salmon National Forest. The work was undertaken at the request of the U.S. Forest Service (USFS) and includes an examination of individual mines, prospects, claims, and mineralized zones. Results of this investigation are intended to: 1) help the USFS define areas in which to expect future mining and exploration activity, and 2) assist the USFS incorporate mineral resource data into Forest plans as specified by the National Forest Management Act (1976). Setting The Salmon National Forest administers 1,776,994 net acres of mountainous terrain located in east-central Idaho. It adjoins four other national forests, the Beaverhead on the east (Montana), the Bitterroot on the north (Montana), the Payette on the west, and the Challis on the south. The Challis and Salmon have been administratively combined to form the Salmon-Challis National Forest. Most of the Salmon Forest is in Lemhi County; only a small portion falls within Idaho and Valley Counties. Evergreen trees including lodgepole pine, ponderosa pine, whitebark pine, limber pine, Douglas fir, subalpine fir, and spruce cover most of the Forest. The lower areas generally contain sage, mountain mahogany, and grasses. Winters are cold and long with snow at high elevations lasting well into June and sometimes early July. Elevations range from less than 3,000 feet along the Salmon River to more than 11,000 feet in the Lemhi Range. The area is underlain by numerous rock types which vary greatly in age. The largest portion of the Forest is underlain by Precambrian sedimentary and metamorphic rocks including augen gneiss, quartzite, argillite, and siltite. Paleozoic sedimentary rocks are exposed in the Lemhi, Beaverhead, and Salmon River Mountains while granitic rocks of the Cretaceous Idaho Batholith extend into the west part of the Forest. Tertiary volcanic rocks, including andesite, basalt, dacite, and rhyolite are widespread. Locally, small stocks of granitic rocks intrude both the Precambrian and Paleozoic rocks. Geologic structures are complex and have played an important role in localizing the mineral deposits. Approximately 426,114 acres of the Frank Church-River of No Return Wilderness extend into the western part of the Forest and mineral entry is severely restricted. The rest of the Forest, about 1,351,000 acres or 76 percent, is open to mineral entry. Much of the Forest is drained by the Salmon and Middle Fork Salmon Rivers. The Lemhi River drains the eastern part of the Forest. Because of its location within the Salmon River drainage, the Forest is subject to numerous issues surrounding restoration of anadromous fish runs. 7 Previous Studies Information available about the geology, mineral resources, and mining history in the Salmon National Forest is voluminous. The authors listed below are only a few of the many who have contributed. The Idaho Bureau of Mines and Geology has conducted numerous studies in the area and has contributed much to the literature. Anderson (1943a, 1943b, 1943c, 1947, 1953, 1954, 1956, 1957, 1958a, 1958b, 1959, 1960, 1961a, 1961b, 1963, 1964) has contributed an unusually large amount. His reports include discussions of the cobalt deposits in the Blackbird District, antimony and fluorspar deposits near Meyers Cove, gold-copper-lead deposits in the Yellowjacket District, thorite and rare earth oxide deposits in the Lemhi Pass area, geology and mineral resources of several quadrangles, and much more. Reports by Bennett (1977, 1980, 1986b) contain information on general geology, geochemistry, and structural relationships.
Recommended publications
  • Iidentilica2tion and Occurrence of Uranium and Vanadium Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus
    IIdentilica2tion and occurrence of uranium and Vanadium Identification and Occurrence of Uranium and Vanadium Minerals From the Colorado Plateaus c By A. D. WEEKS and M. E. THOMPSON A CONTRIBUTION TO THE GEOLOGY OF URANIUM GEOLOGICAL S U R V E Y BULL E TIN 1009-B For jeld geologists and others having few laboratory facilities.- This report concerns work done on behalf of the U. S. Atomic Energy Commission and is published with the permission of the Commission. UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1954 UNITED STATES DEPARTMENT OF THE- INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan. Director Reprint, 1957 For sale by the Superintendent of Documents, U. S. Government Printing Ofice Washington 25, D. C. - Price 25 cents (paper cover) CONTENTS Page 13 13 13 14 14 14 15 15 15 15 16 16 17 17 17 18 18 19 20 21 21 22 23 24 25 25 26 27 28 29 29 30 30 31 32 33 33 34 35 36 37 38 39 , 40 41 42 42 1v CONTENTS Page 46 47 48 49 50 50 51 52 53 54 54 55 56 56 57 58 58 59 62 TABLES TABLE1. Optical properties of uranium minerals ______________________ 44 2. List of mine and mining district names showing county and State________________________________________---------- 60 IDENTIFICATION AND OCCURRENCE OF URANIUM AND VANADIUM MINERALS FROM THE COLORADO PLATEAUS By A. D. WEEKSand M. E. THOMPSON ABSTRACT This report, designed to make available to field geologists and others informa- tion obtained in recent investigations by the Geological Survey on identification and occurrence of uranium minerals of the Colorado Plateaus, contains descrip- tions of the physical properties, X-ray data, and in some instances results of chem- ical and spectrographic analysis of 48 uranium arid vanadium minerals.
    [Show full text]
  • Geochemistry, Mineralogy and Microbiology of Cobalt in Mining-Affected Environments
    minerals Article Geochemistry, Mineralogy and Microbiology of Cobalt in Mining-Affected Environments Gabriel Ziwa 1,2,*, Rich Crane 1,2 and Karen A. Hudson-Edwards 1,2 1 Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK; [email protected] (R.C.); [email protected] (K.A.H.-E.) 2 Camborne School of Mines, University of Exeter, Penryn TR10 9FE, UK * Correspondence: [email protected] Abstract: Cobalt is recognised by the European Commission as a “Critical Raw Material” due to its irreplaceable functionality in many types of modern technology, combined with its current high-risk status associated with its supply. Despite such importance, there remain major knowledge gaps with regard to the geochemistry, mineralogy, and microbiology of cobalt-bearing environments, particu- larly those associated with ore deposits and subsequent mining operations. In such environments, high concentrations of Co (up to 34,400 mg/L in mine water, 14,165 mg/kg in tailings, 21,134 mg/kg in soils, and 18,434 mg/kg in stream sediments) have been documented. Co is contained in ore and mine waste in a wide variety of primary (e.g., cobaltite, carrolite, and erythrite) and secondary (e.g., erythrite, heterogenite) minerals. When exposed to low pH conditions, a number of such minerals are 2+ known to undergo dissolution, typically forming Co (aq). At circumneutral pH, such aqueous Co can then become immobilised by co-precipitation and/or sorption onto Fe and Mn(oxyhydr)oxides. This paper brings together contemporary knowledge on such Co cycling across different mining environments.
    [Show full text]
  • Cobalt Mineral Ecology
    American Mineralogist, Volume 102, pages 108–116, 2017 Cobalt mineral ecology ROBERT M. HAZEN1,*, GRETHE HYSTAD2, JOSHUA J. GOLDEN3, DANIEL R. HUMMER1, CHAO LIU1, ROBERT T. DOWNS3, SHAUNNA M. MORRISON3, JOLYON RALPH4, AND EDWARD S. GREW5 1Geophysical Laboratory, Carnegie Institution, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A. 2Department of Mathematics, Computer Science, and Statistics, Purdue University Northwest, Hammond, Indiana 46323, U.S.A. 3Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721-0077, U.S.A. 4Mindat.org, 128 Mullards Close, Mitcham, Surrey CR4 4FD, U.K. 5School of Earth and Climate Sciences, University of Maine, Orono, Maine 04469, U.S.A. ABSTRACT Minerals containing cobalt as an essential element display systematic trends in their diversity and distribution. We employ data for 66 approved Co mineral species (as tabulated by the official mineral list of the International Mineralogical Association, http://rruff.info/ima, as of 1 March 2016), represent- ing 3554 mineral species-locality pairs (www.mindat.org and other sources, as of 1 March 2016). We find that cobalt-containing mineral species, for which 20% are known at only one locality and more than half are known from five or fewer localities, conform to a Large Number of Rare Events (LNRE) distribution. Our model predicts that at least 81 Co minerals exist in Earth’s crust today, indicating that at least 15 species have yet to be discovered—a minimum estimate because it assumes that new minerals will be found only using the same methods as in the past. Numerous additional cobalt miner- als likely await discovery using micro-analytical methods.
    [Show full text]
  • The Production History and Geology of the Hacks, Ridenour, Riverview and Chapel Breccia Pipes, Northwestern Arizona
    DEPARTMENT OF THE INTERIOR U. S. GEOLOGICAL SURVEY The production history and geology of the Hacks, Ridenour, Riverview and Chapel breccia pipes, northwestern Arizona BY William L. Chenoweth Open-File Report 88-0648 1988 This report was prepared under contract to the U.S. Geological Survey and was funded by the Bureau of Indian Affairs in cooperation with the Hualapai Tribe. It has not been reviewed for conformity with USGS editorial standards and stratigraphic nomenclature. (Any use of trade names is for descriptive purposes only and does not imply endorsement by the USGS.) Consulting geologist Grand Junction, Colorado CONTENTS Page Abstract....................................................... 1 Introduction................................................... 1 Scope and purpose......................................... 4 Acknowledgements.......................................... 4 Exploration and mining history................................. 4 Summary of the AEC's raw materials programs.................... 6 Description of deposits........................................ 7 Hacks Mine................................................ 7 Ridenour Mine............................................. 22 Riverview Mine............................................ 33 Chapel prospect........................................... 37 Summary........................................................ 40 References cited............................................... 42 Appendix....................................................... 47 Geochemical data ,
    [Show full text]
  • MINERAL POTENTIAL REPORT for the Lands Now Excluded from Grand Staircase-Escalante National Monument
    United States Department ofthe Interior Bureau of Land Management MINERAL POTENTIAL REPORT for the Lands now Excluded from Grand Staircase-Escalante National Monument Garfield and Kane Counties, Utah Prepared by: Technical Approval: flirf/tl (Signature) Michael Vanden Berg (Print name) (Print name) Energy and Mineral Program Manager - Utah Geological Survey (Title) (Title) April 18, 2018 /f-P/2ft. 't 2o/ 8 (Date) (Date) M~zr;rL {Signature) 11 (Si~ ~.u.. "'- ~b ~ t:, "4 5~ A.J ~txM:t ;e;,E~ 't"'-. (Print name) (Print name) J.-"' ,·s h;c.-+ (V\ £uA.o...~ fk()~""....:r ~~/,~ L{ ( {Title) . Zo'{_ 2o l~0 +(~it71 ~ . I (Date) (Date) This preliminary repon makes information available to the public that may not conform to UGS technical, editorial. or policy standards; this should be considered by an individual or group planning to take action based on the contents ofthis report. Although this product represents the work of professional scientists, the Utah Department of Natural Resources, Utah Geological Survey, makes no warranty, expressed or implied, regarding it!I suitability for a panicular use. The Utah Department ofNatural Resources, Utah Geological Survey, shall not be liable under any circumstances for any direct, indirect, special, incidental, or consequential damages with respect to claims by users ofthis product. TABLE OF CONTENTS SUMMARY AND CONCLUSIONS ........................................................................................................... 4 Oil, Gas, and Coal Bed Methane ...........................................................................................................
    [Show full text]
  • Southafrican
    S O U T H A F R I C A N WATER QUALITY GUIDELINES VOLUME 4 AGRICULTURAL USE : IRRIGATION Department of Water Affairs and Forestry Second Edition 1996 SOUTH AFRICAN WATER QUALITY GUIDELINES Volume 4: Agricultural Water Use: Irrigation Second Edition, 1996 I would like to receive future versions of this document (Please supply the information required below in block letters and mail to the given address) Name:................................................................................................................................. Organisation:...................................................................................................................... Address:............................................................................................................................. ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ Postal Code:...................................................................................................................... Telephone No.:.................................................................................................................. E-Mail:...............................................................................................................................
    [Show full text]
  • Mallardite from the Jokoku Mine, Hokkaido, Japan
    J. Japan, Assoc. Min.P etr. Econ. Geol. 74, 406-412, 1979 MALLARDITE FROM THE JOKOKU MINE, HOKKAIDO, JAPAN MATSUO NAMBU, KATSUTOSHI TANIDA and TsUYOSHI KITAMURA Research Institute of Mineral Dressing and Metallurgy, Tohoku University, Katahira, Sendai 980, Japan and EIhHI KATO J6koku Mine, Chugai Co. Ltd., Kaminokuni, Hiyama, Hokkaido 049-06, Japan Mallardite, MnSO4.7H2O, reported only from its original locality, the Lucky Boy mine, Utah (Carnot, 1879), was found from the Jokoku mine, Hokkaido, Japan. The mineral occurs as efflorescences which are composed of aggregates of minute fibers or prismatic crystals on the walls of mine passages. X-ray powder diffraction pattern shows that it is monoclinic with a0=14.15, b0=6.50, c0=11.06A, ƒÀ=105•‹36', Z=4 and space group P21/c seems probable from the analogy with melanterite and bieberite. Wet chemical analysis leads to an emperical formula of (Mn0.90, Mg0.11)1.01S1.00O4,00•E6.8H2O, showing the material to be very close to the ideall formula MnSO4•E7H2O. The mineral is colorless with vitreous luster, and transparent to translucent. Powdered material is white in color. It is readily soluble in cold water. Specific gravity is 1.838 (calc.). Optically biaxial possitive with large optic axial angle. Extinction angle is Z•Èc=44•‹. Refractive indices measured by the immersion method are ƒ¿=1.462, ƒÀ=1.465, ƒÁ =1.474, and ƒÁ-ƒ¿=0.012, all •}0.003. Studies on the stability relation among synthetic manganese sulfate hydrates (Cottrell, 1900) and the field evidence in adits where the material was collected indicate that mallardite is formed at temperatures below about 10•Ž and under high relative humidity.
    [Show full text]
  • Advances and Gaps in the Knowledge of Thermodynamics and Crystallography of Acid Mine Drainage Sulfate Minerals
    MINERALOGY CHIMIA 2010, 64, No. 10 699 doi:10.2533/chimia.2010.699 Chimia 64 (2010) 699–704 © Schweizerische Chemische Gesellschaft Advances and Gaps in the Knowledge of Thermodynamics and Crystallography of Acid Mine Drainage Sulfate Minerals Juraj Majzlan* Abstract: Acidic and metal-rich waters produced by sulfide decomposition at mining sites are termed acid mine drainage (AMD). They precipitate a number of minerals, very often sulfates. The recent advances in thermodyna- mic properties and crystallography of these sulfates are reviewed here. There is a reasonable amount of data for the divalent (Mg, Ni, Co, Fe2+, Cu, Zn) sulfates and these data may be combined with and optimized by tempe- rature-relative humidity brackets available in the literature. For the sulfates with Fe3+, most data exist for jarosite; for other minerals and phases in this system, a few calorimetric studies were reported. No data whatsoever are available for the Fe2+-Fe3+ sulfates. A significant advance is the development of the Pitzer model for Fe3+-sulfate solutions and its confrontation with the available thermodynamic and solubility data. In summary, our knowledge about the thermodynamic properties of the AMD sulfates is unsatisfactory and fragmented. Keywords: Acid mine drainage Introduction population matches the quantities of the relatively recently.[12,13] A sizeable body of overall natural mass flow.[4] The mining of data accumulated during the last ten years, The ever-increasing demand for metals ores and salts does not dominate the an- partially because of interest in AMD, par- dictates the steady increase in the exploi- thropogenic mass flow but cannot be ne- tially because sulfate minerals have been tation of ore deposits, and, to a smaller glected.
    [Show full text]
  • Determination of Goslarite–Bianchite Equilibria by the Humidity-Buffer Technique at 0.1 Mpa" (2005)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2005 Determination of Goslarite–Bianchite Equilibria by the Humidity- Buffer Technique at 0.1 MPa I-Ming Chou 954 National Center, U.S. Geological Survey, Reston, Virginia 20192, U.S.A., [email protected] Robert R. Seal II 954 National Center, U.S. Geological Survey, Reston, Virginia 20192, U.S.A. Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Part of the Earth Sciences Commons Chou, I-Ming and Seal II, Robert R., "Determination of Goslarite–Bianchite Equilibria by the Humidity-Buffer Technique at 0.1 MPa" (2005). USGS Staff -- Published Research. 336. https://digitalcommons.unl.edu/usgsstaffpub/336 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Chemical Geology 215 (2005) 517–523 www.elsevier.com/locate/chemgeo Determination of goslarite–bianchite equilibria by the humidity-buffer technique at 0.1 MPa I-Ming Chou*, Robert R. Seal II 954 National Center, U.S. Geological Survey, Reston, VA 20192, USA Accepted 1 June 2004 Abstract Goslarite–bianchite equilibria were determined along four humidity-buffer curves at 0.1 MPa and between 27 and 36 8C. Results, based on tight reversals along each humidity buffer, can be represented by ln K (F0.005)=19.643À7015.38/T, where K is the equilibrium constant and T is temperature in K.
    [Show full text]
  • THE ATOMIC STRUCTURE and HYDROGEN BONDING of DEUTERATED MELANTERITE, Feso4•7D2O
    457 The Canadian Mineralogist Vol. 45, pp. 457-469 (2007) DOI : 10.2113/gscanmin.45.3.457 THE ATOMIC STRUCTURE AND HYDROGEN BONDING OF DEUTERATED MELANTERITE, FeSO4•7D2O Jennifer L. ANDERSON§ and Ronald C. PETERSON Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada Ian P. SWAINSON Neutron Program for Materials Research, National Research Laboratory, Chalk River, Ontario K0J 1J0, Canada Abstract The atomic structure of synthetic, deuterated melanterite (FeSO4•7D2O), a 14.0774(9), b 6.5039(4), c 11.0506(7) Å, ␤ 105.604(1)°, space group P21/c, Z = 4, has been refi ned from the combined refi nement of 2.3731(1) Å and 1.3308 Å neutron powder-diffraction data to a Rwp(tot) = 3.01% and Rp(tot) = 2.18%. Both the short- and long-wavelength data were required to obtain a satisfactory fi t in the Rietveld refi nement. The results of this study confi rm the previously proposed H-bonding scheme for melanterite. Small but signifi cant variations of the Fe–O bond lengths are attributed to details of the hydrogen bonds to the oxygen atoms of the Fe octahedra. We draw comparisons between the monoclinic and orthorhombic heptahydrate sulfate minerals associated with mine wastes and relate differences in the structure to strengths and weaknesses in their H-bond networks. Keywords: deuterated melanterite, hydrogen bonding, mine waste, sulfate minerals, crystal structure, neutron diffraction, epsomite. Sommaire Nous avons affi né la structure cristalline de la mélanterite deutérée synthétique, (FeSO4•7D2O), a 14.0774(9), b 6.5039(4), c 11.0506(7) Å, ␤ 105.604(1)°, groupe spatial P21/c, Z = 4, en utilisant une combinaison de données obtenues par diffraction de neutrons à 2.3731(1) Å et à 1.3308 Å, jusqu’à un résidu Rwp(tot) de 3.01% et Rp(tot) de 2.18%.
    [Show full text]
  • Cornish Mineral Reference Manual
    Cornish Mineral Reference Manual Peter Golley and Richard Williams April 1995 First published 1995 by Endsleigh Publications in association with Cornish Hillside Publications © Endsleigh Publications 1995 ISBN 0 9519419 9 2 Endsleigh Publications Endsleigh House 50 Daniell Road Truro, Cornwall TR1 2DA England Printed in Great Britain by Short Run Press Ltd, Exeter. Introduction Cornwall's mining history stretches back 2,000 years; its mineralogy dates from comparatively recent times. In his Alphabetum Minerale (Truro, 1682) Becher wrote that he knew of no place on earth that surpassed Cornwall in the number and variety of its minerals. Hogg's 'Manual of Mineralogy' (Truro 1825) is subtitled 'in wich [sic] is shown how much Cornwall contributes to the illustration of the science', although the manual is not exclusively based on Cornish minerals. It was Garby (TRGSC, 1848) who was the first to offer a systematic list of Cornish species, with locations in his 'Catalogue of Minerals'. Garby was followed twenty-three years later by Collins' A Handbook to the Mineralogy of Cornwall and Devon' (1871; 1892 with addenda, the latter being reprinted by Bradford Barton of Truro in 1969). Collins followed this with a supplement in 1911. (JRIC Vol. xvii, pt.2.). Finally the torch was taken up by Robson in 1944 in the form of his 'Cornish Mineral Index' (TRGSC Vol. xvii), his amendments and additions were published in the same Transactions in 1952. All these sources are well known, but the next to appear is regrettably much less so. it would never the less be only just to mention Purser's 'Minerals and locations in S.W.
    [Show full text]
  • General Index
    GENERAL INDEX General Index The following abbreviations appear after page numbers. m A map of the locality or a map on which the locality In the case of special issues, the letter precedes the page ( ) Reported from this locality; no further information appears number. b Book review n Brief descriptive note, as in “What’s New in T Tsumeb (vol. 8, no. 3) c Crystal morphology information Minerals?” M Michigan Copper Country (vol. 23, no. 2) d Crystal drawing p Photograph or other illustration Y Yukon Phosphates (vol. 23, no. 4) ff Continues on following non-consecutive pages, or q Quantitative data (x-ray data, chemical analysis, G Greenland (vol. 24, no. 2) referenced frequently throughout lengthy article physical properties, etc.) H History of Mineral Collecting (vol. 25, no. 6) g Geologic information s Specimen locality attribution only; no information h Historical information about the locality itself ABELSONITE Santo Domingo mine, Batopilas district, af- Austria United States ter argentite cubes 17:75p, 17:78 Knappenwand, Salzburg 17:177p; “byssolite,” Utah Guanajuato in apatite 17:108p Uintah County (crystalline) 8:379p Reyes mine: 25:58n; after argentite 7:187, Brazil 7: 18: ABERNATHYITE 188p; after cubic argentite 433n; ar- Bahia borescent, on polybasite 18:366–367n; Brumado district (crystals to 25 cm; some Vs. chernikovite (formerly hydrogen autunite) crystals to 2.5 cm 14:386; 7 cm crystal curved) 9:204–205p 19:251q 17:341n Canada France Namibia British Columbia Lodéve, Herault 18:365n Tsumeb (disseminated) 8:T18n Ice River complex (tremolite-actinolite, green ACANTHITE Norway fibrous) 12:224 Australia Kongsberg (after argentite; some after silver Québec Queensland wires, crystals) 17:33c B.C.
    [Show full text]