2 Tesis IDUS Embargo 12 Me

Total Page:16

File Type:pdf, Size:1020Kb

2 Tesis IDUS Embargo 12 Me Cover. Co-expression network of transcripts of Nostoc sp. PCC 7120 with expression changes after removal of combined nitrogen (left). 3D structural model of sRNAs Yfr1 (top right) and NsiR1 (bottom right). Models were generated by RNAComposer (Popenda et al. 2012. Nucleic Acids Research, 40: e112. doi: 10.1093/nar/gks339). Instituto de Bioquímica Vegetal y Fotosíntesis Departamento de Bioquímica Vegetal y Biología Molecular Universidad de Sevilla - Consejo Superior de Investigaciones Científicas TESIS DOCTORAL Global identification of regulatory RNAs in the cyanobacterium Nostoc sp. PCC 7120. Functional characterization of Yfr1 and NsiR1. Trabajo presentado por Manuel Brenes Álvarez para optar al grado de Doctor Manuel Brenes Álvarez, Sevilla, 2019 Director Directora Dr. Agustín Vioque Peña Dra. Alicia María Muro Pastor Catedrático de la Universidad de Sevilla Científica Titular del Consejo Superior de Investigaciones Científicas FUNDING This Doctoral Thesis has been carried out at the Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF, CSIC-US) and has been funded by a FPU predoctoral contract from Ministry of Education, Culture and Sport (FPU014/05123). The work has been funded by projects from Ministry of Economy and Competitiveness (BFU2013-48282-C2-1-P, Non-coding RNAs involved in adaptation to nitrogen stress and cell differentiation in cyanobacteria) and from State Research Agency, Ministry of Economy, Industry and Competitiveness (BFU2016- 74943-C2-1-P, Participation of non-coding RNAs in regulatory circuits controlled by nitrogen availability in cyanobacteria) whose Principal Investigator was Dr. Alicia María Muro Pastor. Both projects were co-financed by the European Regional Development Fund (ERDF). In addition, a three-months stay at the laboratory of Dr. Wolfgang Hess (University of Freiburg, Germany) was funded by a fellowship from Ministry of Education, Culture and Sport (EST16/00088). A mis abuelos AGRADECIMIENTOS En primer lugar, me gustaría agradecer a mis directores, Agustín y Alicia, su paciencia y dedicación en estos años que hemos trabajado juntos. Su pasión por la Ciencia y su constante atención han sido una inspiración y un importante apoyo a lo largo de esta tesis. Al Dr. José Enrique Frías, por su experta ayuda durante la realización de los ensayos de actividad de nitrato y nitrito reductasa. A la Dra. Iris Maldener y la Dra. Rebeca Perez por su ayuda en las tinciones de peptidoglicano naciente. I would like to thank Dr. Wolfgang Hess for allowing me to stay for three months in his laboratory in Freiburg. Thank you for being so kind and helpful, making me feel like home there. Gracias a toda mi familia por su inmenso cariño y apoyo. A mis abuelos, por enseñarme que con trabajo, constancia y esfuerzo todo se consigue. A mis padres, porque sin su educación e inmensa confianza probablemente esta tesis no habría tenido lugar. A mi hermana Mercedes, porque su valentía para enfrentarse a nuevos problemas siempre ha sido un motivo de inspiración. A mis compañeros de laboratorio, Isidro y Elvira, por su ayuda y por hacer mucho más ameno todo mi tiempo en el laboratorio. A Javi, Alejandro, Mari, Diego, Tommy y muchos otros compañeros, por no ser sólo compañeros de trabajo, sino también buenos amigos con los que salir, charlar, desconectar del trabajo y, en resumen, disfrutar de la vida. Por último, quisiera darle las gracias a Ana por apoyarme en todo lo que hago. Gracias por escucharme detenidamente cuando comento mis tribulaciones científicas, incluso aunque el tema te sea completamente desconocido y gracias por enseñarme cómo no debo dejarme abrumar por los problemas. Finalmente, gracias a todas aquellas personas que de un modo u otro han influido en mi desarrollo como persona y en la consecución de este trabajo de tesis. We ought not to hesitate nor to be abashed, but boldly to enter upon our researches concerning animals of every sort and kind, knowing that in not one of them is Nature or Beauty lacking. Aristotle. Parts of animals, I. INDEX INDEX 1. INTRODUCTION ............................................................................................................... 1 1.1 The cyanobacteria .......................................................................................................... 3 1.1.1 General characteristics ...................................................................................................... 3 1.1.2 Cyanobacterial cell envelope ............................................................................................. 7 1.1.2.1 Synthesis and remodeling of peptidoglycan ................................................................ 7 1.1.2.2 Transporters ................................................................................................................. 9 1.1.3 Metabolic characteristics ................................................................................................. 10 1.1.3.1 Carbon assimilation in cyanobacteria ........................................................................ 11 1.1.3.2 Nitrogen assimilation in cyanobacteria ..................................................................... 11 1.1.4 Adaptation to combined nitrogen deprivation ............................................................... 15 1.1.4.1 General response ....................................................................................................... 15 1.1.4.2 Heterocyst differentiation.......................................................................................... 16 1.2 RNAs regulators in bacteria .......................................................................................... 20 1.2.1 Types of RNA regulators .................................................................................................. 23 1.2.1.1 RNA regulators encoded in cis ................................................................................... 23 1.2.1.2 RNA regulators encoded in trans ............................................................................... 24 1.2.2 Identification of RNA regulators and their targets .......................................................... 27 1.2.3 RNA regulators in cyanobacteria ..................................................................................... 28 1.2.3.1 Identification of RNA regulators in cyanobacteria ..................................................... 28 1.2.3.2 Physiological processes regulated by RNA regulators in cyanobacteria .................... 29 2. OBJECTIVES.................................................................................................................... 33 3. SUMMARY OF RESULTS .................................................................................................. 37 3.1 CHAPTER I: A computational approach for the identification of conserved sRNAs in heterocyst-forming cyanobacteria........................................................... 45 3.2 CHAPTER II: Yfr1, a widely conserved sRNA, regulates the integrity of the cell wall and its remodeling during heterocyst differentiation .................................. 67 3.3 CHAPTER III: A co-expression network to dissect the complex transcriptome of Nostoc sp. PCC 7120 during heterocyst differentiation............................. 103 3.4 CHAPTER IV: NsiR1, a sRNA with multiple copies, regulates heterocyst differentiation . 157 4. GENERAL DISCUSSION .................................................................................................. 209 5. CONCLUSIONS ............................................................................................................. 221 6. GENERAL REFERENCES ................................................................................................. 225 i 1. INTRODUCTION Introduction 1. INTRODUCTION 1.1 The cyanobacteria 1.1.1 General characteristics Cyanobacteria are Gram-negative bacteria that form a monophyletic group inside the eubacteria (Woese, 1987). They are photosynthetic microorganisms with a photosynthetic apparatus similar to that of chloroplast of algae and higher plants (DeRuyter and Fromme, 2008) and are the only prokaryotes able to perform oxygenic photosynthesis. Nowadays, it is widely accepted that chloroplasts from algae and higher plants have evolved from ancient cyanobacteria that established a symbiotic relationship with a phagotrophic eukaryote (Margulis, 1975; Ochoa de Alda et al., 2014). However, there are some differences between the photosynthetic apparatus of cyanobacteria and algae and those of higher plants. For example, in contrast to algae and higher plants, most cyanobacteria do not have chorophyll b (Stanier and Cohen-Bazire, 1977) and contain phycobilisomes as supramolecular light-harvesting complexes (Grossman et al., 1993b). Cyanobacteria played a crucial role in Earth’s history. They are thought to be the first organisms that performed an oxygenic photosynthesis (Buick, 1992). The oldest cyanobacterial fossils were found in sedimentary rocks generated more than 3500 million years ago (Schopf and Packer, 1987) and, although with some controversy, it is now accepted that these first photosynthetic organisms may have appeared between 2350 (Kirschvink and Kopp, 2008) and 3600-3700 million years ago (Garcia-Pichel et al., 2019). The ability to use water as electron donor, and the production of oxygen as a result, contributed to one of the most drastic changes in the Biosphere, the change from an anoxygenic atmosphere to an oxygenic atmosphere, a process known as the Great Oxidation Event
Recommended publications
  • A Comprehensive Database of Bacterial Srna Targets Verified by Experiments
    Downloaded from rnajournal.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press BIOINFORMATICS sRNATarBase: A comprehensive database of bacterial sRNA targets verified by experiments YUAN CAO,1,2,3 JIAYAO WU,1,3 QIAN LIU,1 YALIN ZHAO,1 XIAOMIN YING,1 LEI CHA,1 LIGUI WANG,1 and WUJU LI1 1Center of Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China 2Department of Clinical Laboratory, The 90th Hospital of Jinan, Jinan, Shandong 250031, China ABSTRACT Bacterial sRNAs are an emerging class of small regulatory RNAs, 40;500 nt in length, which play a variety of important roles in many biological processes through binding to their mRNA or protein targets. A comprehensive database of experimentally confirmed sRNA targets would be helpful in understanding sRNA functions systematically and provide support for developing prediction models. Here we report on such a database—sRNATarBase. The database holds 138 sRNA–target interactions and 252 noninteraction entries, which were manually collected from peer-reviewed papers. The detailed information for each entry, such as supporting experimental protocols, BLAST-based phylogenetic analysis of sRNA–mRNA target interaction in closely related bacteria, predicted secondary structures for both sRNAs and their targets, and available binding regions, is provided as accurately as possible. This database also provides hyperlinks to other databases including GenBank, SWISS-PROT, and MPIDB. The database is available from the web page http://ccb.bmi.ac.cn/srnatarbase/. Keywords: sRNA; sRNA targets; database; experimental supports INTRODUCTION throughput experimental technologies and bioinformatics methods (Livny et al. 2006, 2008; Pichon and Felden 2008; Bacterial sRNAs are an emerging class of small regulatory Huang et al.
    [Show full text]
  • Identification of Cyanobacterial Non-Coding Rnas by Comparative
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by MPG.PuRe Open Access Research2005AxmannetVolume al. 6, Issue 9, Article R73 Identification of cyanobacterial non-coding RNAs by comparative comment genome analysis Ilka M Axmann¤*, Philip Kensche¤*†, Jörg Vogel‡, Stefan Kohl*, Hanspeter Herzel† and Wolfgang R Hess*§ Addresses: *Humboldt-University, Department of Biology/Genetics, Chausseestrasse, D-Berlin, Germany. †Humboldt-University, Institute for Theoretical Biology, Invalidenstrasse, Berlin, Germany. ‡Max Planck Institute for Infection Biology, Schumannstrasse, Berlin, Germany. § University Freiburg, Institute of Biology II/Experimental Bioinformatics, Schänzlestrasse, Freiburg, Germany. reviews ¤ These authors contributed equally to this work. Correspondence: Wolfgang R Hess. E-mail: [email protected] Published: 17 August 2005 Received: 30 March 2005 Revised: 1 June 2005 Genome Biology 2005, 6:R73 (doi:10.1186/gb-2005-6-9-r73) Accepted: 20 July 2005 reports The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2005/6/9/R73 © 2005 Axmann et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Identification<p>Thepredictednetic distribution.</p> first and genome-wide oftheir cyanobacterial presence and was systematicnon-coding biochemically screen RNAs verified. for non-coding These ncRN RNAsAs (ncRNAs) may have inregulatory cyanobacteria. functions, Several and ncRNAs each shows were a computationaldistinct phyloge-ly deposited research Abstract Background: Whole genome sequencing of marine cyanobacteria has revealed an unprecedented degree of genomic variation and streamlining.
    [Show full text]
  • Seed-Based INTARNA Prediction Combined with GFP-Reporter System Identifies Mrna Targets of the Small RNA Yfr1 Andreas S
    Vol. 26 no. 1 2010, pages 1–5 BIOINFORMATICS DISCOVERY NOTE doi:10.1093/bioinformatics/btp609 Sequence analysis Seed-based INTARNA prediction combined with GFP-reporter system identifies mRNA targets of the small RNA Yfr1 Andreas S. Richter1, Christian Schleberger2, Rolf Backofen1,∗ and Claudia Steglich3,∗ 1Bioinformatics Group, University of Freiburg, Georges-Köhler-Allee 106, Freiburg D-79110, 2Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Stefan-Meier-Str. 19 and 3Genetics & Experimental Bioinformatics, University of Freiburg, Schänzlestr. 1, Freiburg D-79104, Germany Received on July 20, 2009; revised on September 18, 2009; accepted on October 11, 2009 Advance Access publication October 22, 2009 Associate Editor: Ivo Hofacker ABSTRACT the ecologically important cyanobacterium Prochlorococcus. Motivation: Prochlorococcus possesses the smallest genome of This photoautotrophically dwelling organism often accounts for up all sequenced photoautotrophs. Although the number of regulatory to 50% of the organic biomass in the oligotrophic areas of the open proteins in the genome is very small, the relative number of small oceans, and is thus a crucial component of the food web (Goericke regulatory RNAs is comparable with that of other bacteria. The and Welschmeyer, 1993; Vaulot et al., 1995). A recent systematic compact genome size of Prochlorococcus offers an ideal system to survey of sRNAs in Prochlorococcus MED4 revealed a large number search for targets of small RNAs (sRNAs) and to refine existing target of potential regulatory RNAs comparable with those found in other prediction algorithms. bacteria (Steglich et al., 2008). This finding was very surprising, as Results: Target predictions for the cyanobacterial sRNA Yfr1 Prochlorococcus has experienced an evolutionary streamlining of were carried out with INTARNA in Prochlorococcus MED4.
    [Show full text]
  • The Streptococcus Suis Transcriptional Landscape Reveals Adaptation Mechanisms in Pig Blood and Cerebrospinal Fluid
    Downloaded from rnajournal.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press The Streptococcus suis transcriptional landscape reveals adaptation mechanisms in pig blood and cerebrospinal fluid ZONGFU WU,1,2,3,7 CHUNYAN WU,4,7 JING SHAO,1,2,3,7 ZHENZHEN ZHU,4,7 WEIXUE WANG,1,2,3 WENWEI ZHANG,4 MIN TANG,1,2,3 NA PEI,4 HONGJIE FAN,1,2,3,5 JIGUANG LI,4 HUOCHUN YAO,1,2,3 HONGWEI GU,6 XUN XU,4,8 and CHENGPING LU1,2,3,8 1College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China 2Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China 3OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China 4BGI-Shenzhen, Shenzhen 518083, China 5Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China 6Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China ABSTRACT Streptococcus suis (SS) is an important pathogen of pigs, and it is also recognized as a zoonotic agent for humans. SS infection may result in septicemia or meningitis in the host. However, little is known about genes that contribute to the virulence process and survival within host blood or cerebrospinal fluid (CSF). Small RNAs (sRNA) have emerged as key regulators of virulence in several bacteria, but they have not been investigated in SS. Here, using a differential RNA-sequencing approach and RNAs from SS strain P1/7 grown in rich medium, pig blood, or CSF, we present the SS genome-wide map of 793 transcriptional start sites and 370 operons.
    [Show full text]
  • NON-CODING Rnas
    CHAPTER 1 NON-CODING RNAs Alexander Donatha, Sven Findeißa, Jana Hertela, Manja Marza, Wolfgang Ottoa, Christine Schulzc, Peter F Stadlera,b,c,d, and Stefan Wirtha aBioinformatics Group, Department of Computer Science; and Interdisciplinary Center for Bioinformatics, University of Leipzig, H¨artelstrasse 16-18, D-01407, Leipzig, Germany bInstitute for Theoretical Chemistry, University of Vienna, W¨ahringerstraße 17, A-1090 Wien, Austria cFraunhofer Institute for Cell Therapy und Immunology, Perlickstrasse 1, D-04103 Leipzig, Germany d Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA 1.1 INTRODUCTION The advent of high-throughput techniques that allow comprehensive unbiased studies of transcription has lead to a dramatic change in our understanding of genome organization. A decade ago, the genome was seen as a linear arrangement of separated individual genes which are predominantly protein-coding, with a small set of ancient non-coding “house- keeping” RNAs such as tRNA and rRNA dating all the way back to an RNA-World. How- ever, in contrast to this simple views more recent studies reveal a much more complex genomic picture. The ENCODE Pilot Project [239], the mouse cDNA project FANTOM [151], and a series of other large scale transcriptome studies, e.g. [202], leave no doubt that the mammalian transcriptome is characterized by a complex mosaic of overlapping, bi-directional transcripts and a plethora of non-protein coding transcripts arising from the same locus, Fig. 1.1. This newly discovered complexity is not unique to mammals. Similar high-throughput studies in invertebrate animals [152, 93] and plants [135] demonstrate the generality of the mammalian genome organization among higher eukaryotes.
    [Show full text]
  • Non-Coding Rnas in Prochlorococcus
    University of Plymouth PEARL https://pearl.plymouth.ac.uk Faculty of Health: Medicine, Dentistry and Human Sciences School of Biomedical Sciences 2008-08-29 The challenge of regulation in a minimal photoautotroph: non-coding RNAs in Prochlorococcus. Steglich, C http://hdl.handle.net/10026.1/8406 10.1371/journal.pgen.1000173 PLoS Genet All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. The Challenge of Regulation in a Minimal Photoautotroph: Non-Coding RNAs in Prochlorococcus Claudia Steglich1*, Matthias E. Futschik2, Debbie Lindell3, Bjoern Voss1, Sallie W. Chisholm4, Wolfgang R. Hess1 1 Faculty of Biology, University of Freiburg, Freiburg, Germany, 2 Institute of Theoretical Biology, Humboldt University, Berlin, Germany, 3 Faculty of Biology, Technion – Israel Institute of Technology, Haifa, Israel, 4 Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America Abstract Prochlorococcus, an extremely small cyanobacterium that is very abundant in the world’s oceans, has a very streamlined genome. On average, these cells have about 2,000 genes and very few regulatory proteins. The limited capability of regulation is thought to be a result of selection imposed by a relatively stable environment in combination with a very small genome. Furthermore, only ten non-coding RNAs (ncRNAs), which play crucial regulatory roles in all forms of life, have been described in Prochlorococcus.
    [Show full text]
  • The Novel Regulatory Ncrna, Nfis, Optimizes Nitrogen Fixation Via Base Pairing with the Nitrogenase Gene Nifk Mrna in Pseudomonas Stutzeri A1501
    The novel regulatory ncRNA, NfiS, optimizes nitrogen fixation via base pairing with the nitrogenase gene nifK mRNA in Pseudomonas stutzeri A1501 Yuhua Zhana,1, Yongliang Yana,1, Zhiping Denga, Ming Chena, Wei Lua, Chao Lua, Liguo Shanga, Zhimin Yanga, Wei Zhanga, Wei Wanga, Yun Lia,QiKea, Jiasi Lua, Yuquan Xua, Liwen Zhanga, Zhihong Xieb, Qi Chenga, Claudine Elmerichc, and Min Lina,2 aNational Key Facility for Crop Gene Resources and Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; bKey Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; and cInstitut Pasteur, Paris 75724 Cedex 15, France Edited by Eva Kondorosi, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary, and approved June 8, 2016 (received for review March 29, 2016) Unlike most Pseudomonas, the root-associated bacterium Pseudo- gene transfer (HGT) in these three strains (17–20). A recent in monas stutzeri A1501 fixes nitrogen after the horizontal acquisi- silico analysis revealed that the island is also conserved in other tion of a nitrogen-fixing (nif) island. A genome-wide search for available genomes of nitrogen-fixing P. stutzeri (ref. 21 and ref- small noncoding RNAs (ncRNAs) in P. stutzeri A1501 identified erences therein). The regulation of nif gene transcription in most the novel P. stutzeri-specific ncRNA NfiS in the core genome, whose diazotrophs depends on the sigma factor RpoN/global nitrogen synthesis was significantly induced under nitrogen fixation or sorbitol activator NtrC/nif-specific activator NifA regulatory cascade stress conditions. The expression of NfiS was RNA chaperone Hfq- (22).
    [Show full text]
  • The Essential Gene Set of a Photosynthetic Organism PNAS PLUS
    The essential gene set of a photosynthetic organism PNAS PLUS Benjamin E. Rubina, Kelly M. Wetmoreb, Morgan N. Priceb, Spencer Diamonda, Ryan K. Shultzabergerc, Laura C. Lowea, Genevieve Curtina, Adam P. Arkinb,d, Adam Deutschbauerb, and Susan S. Goldena,1 aDivision of Biological Sciences, University of California, San Diego, La Jolla, CA 92093; bPhysical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; cKavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92093; and dDepartment of Bioengineering, University of California, Berkeley, CA 94720 Contributed by Susan S. Golden, September 29, 2015 (sent for review July 16, 2015; reviewed by Caroline S. Harwood and William B. Whitman) Synechococcus elongatus PCC 7942 is a model organism used for Tn-seq–like system in Chlamydomonas reinhardtii; however, the studying photosynthesis and the circadian clock, and it is being mutant library currently lacks sufficient saturation to determine developed for the production of fuel, industrial chemicals, and gene essentiality (12). To date, the essential genes for photo- pharmaceuticals. To identify a comprehensive set of genes and autotrophs have only been estimated by indirect means, such as intergenic regions that impacts fitness in S. elongatus, we created by comparative genomics (13). The absence of experimentally a pooled library of ∼250,000 transposon mutants and used sequencing determined essential gene sets in photosynthetic organisms, de- to identify the insertion locations. By analyzing the distribution and spite their importance to the environment and industrial pro- survival of these mutants, we identified 718 of the organism’s 2,723 duction, is largely because of the difficulty and time required for genes as essential for survival under laboratory conditions.
    [Show full text]
  • Freiburg RNA Tools: a Web Server Integrating Intarna, Exparna and Locarna
    Freiburg RNA Tools: a web server integrating IntaRNA, ExpaRNA and LocARNA The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Smith, C. et al. “Freiburg RNA Tools: a Web Server Integrating INTARNA, EXPARNA and LOCARNA.” Nucleic Acids Research 38.Web Server (2010): W373–W377. Web. As Published http://dx.doi.org/10.1093/nar/gkq316 Publisher Oxford University Press Version Final published version Citable link http://hdl.handle.net/1721.1/72078 Terms of Use Creative Commons Attribution Non-Commercial Detailed Terms http://creativecommons.org/licenses/by-nc/2.5 Published online 5 May 2010 Nucleic Acids Research, 2010, Vol. 38, Web Server issue W373–W377 doi:10.1093/nar/gkq316 Freiburg RNA Tools: a web server integrating INTARNA, EXPARNA and LOCARNA Cameron Smith1, Steffen Heyne1, Andreas S. Richter1, Sebastian Will1,2 and Rolf Backofen1,* 1Bioinformatics Group, University of Freiburg, Freiburg 79110, Germany and 2Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Received February 2, 2010; Revised March 31, 2010; Accepted April 17, 2010 ABSTRACT GENERAL OVERVIEW The Freiburg RNA tools web server integrates three The central purpose of the web server is to provide RNA tools for the advanced analysis of RNA in a common analysis tools that have been developed by the Freiburg web-based user interface. The tools INTARNA, Bioinformatics Group. To this end, the web server integrates three tools for different analysis tasks in a EXPARNA and LOCARNA support the prediction of common framework. RNA–RNA interaction, exact RNA matching and Each tool accepts a set of sequences in FASTA format alignment of RNA, respectively.
    [Show full text]
  • Genetic Responses of Metabolically Active Limnospira Indica Strain PCC 8005 Exposed to Γ-Radiation During Its Lifecycle
    microorganisms Article Genetic Responses of Metabolically Active Limnospira indica Strain PCC 8005 Exposed to γ-Radiation during Its Lifecycle Anu Yadav 1,2 , Laurens Maertens 1,3, Tim Meese 4, Filip Van Nieuwerburgh 4 , Mohamed Mysara 1, Natalie Leys 1 , Ann Cuypers 2 and Paul Jaak Janssen 1,* 1 Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; [email protected] (A.Y.); [email protected] (L.M.); [email protected] (M.M.); [email protected] (N.L.) 2 Environmental Biology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium; [email protected] 3 Research Unit in Biology of Microorganisms (URBM), Narilis Institute, University of Namur, 5000 Namur, Belgium 4 Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium; [email protected] (T.M.); fi[email protected] (F.V.N.) * Correspondence: [email protected]; Tel.: +32-14-332-129 Abstract: Two morphotypes of the cyanobacterial Limnospira indica (formerly Arthrospira sp.) strain PCC 8005, denoted as P2 (straight trichomes) and P6 (helical trichomes), were subjected to chronic −1 gamma radiation from spent nuclear fuel (SNF) rods at a dose rate of ca. 80 Gy·h for one mass doubling period (approximately 3 days) under continuous light with photoautotrophic metabolism Citation: Yadav, A.; Maertens, L.; fully active. Samples were taken for post-irradiation growth recovery and RNA-Seq transcriptional Meese, T.; Van Nieuwerburgh, F.; analysis at time intervals of 15, 40, and 71.5 h corresponding to cumulative doses of ca. 1450, 3200, and Mysara, M.; Leys, N.; Cuypers, A.; 5700 Gy, respectively.
    [Show full text]
  • PDF Hosted at the Radboud Repository of the Radboud University Nijmegen
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The version of the following full text has not yet been defined or was untraceable and may differ from the publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/47556 Please be advised that this information was generated on 2021-09-23 and may be subject to change. Open Access Research Identification of cyanobacterial non-coding RNAs by comparative genome analysis Ilka M AxmannK*, Philip KenscheK*+, Jorg Vogel*, Stefan Kohl*, Hanspeter Herzel+ and Wolfgang R Hess*§ Addresses: *Humboldt-University, Department of Biology/Genetics, Chausseestrasse, D-Berlin, Germany. +Humboldt-University, Institute for Theoretical Biology, Invalidenstrasse, Berlin, Germany. *Max Planck Institute for Infection Biology, Schumannstrasse, Berlin, Germany. §University Freiburg, Institute of Biology II/Experimental Bioinformatics, Schanzlestrasse, Freiburg, Germany. k These authors contributed equally to this work. Correspondence: Wolfgang R Hess. E-mail: [email protected] Published: 17 August 2005 Received: 30 March 2005 Revised: I June 2005 Genome Biology 2005, 6:R73 (doi:I0.I l86/gb-2005-6-9-r73) Accepted: 20 July 2005 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2005/6/9/R73 © 2005 Axmann et a/.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original w ork is properly cited. A bstract Background: W hole genome sequencing of marine cyanobacteria has revealed an unprecedented degree o f genomic variation and streamlining.
    [Show full text]
  • A Motif-Based Search in Bacterial Genomes
    BMC Genomics BioMed Central Research article Open Access A motif-based search in bacterial genomes identifies the ortholog of the small RNA Yfr1 in all lineages of cyanobacteria Björn Voß1, Gregor Gierga1, Ilka M Axmann2 and Wolfgang R Hess*1 Address: 1University of Freiburg, Faculty of Biology, Experimental Bioinformatics, Schänzlestr. 1, D-79104 Freiburg, Germany and 2Humboldt University Berlin, Institute for Theoretical Biology, Invalidenstrasse 43, D-10115 Berlin, Germany Email: Björn Voß - [email protected]; Gregor Gierga - [email protected]; Ilka M Axmann - [email protected]; Wolfgang R Hess* - [email protected] * Corresponding author Published: 17 October 2007 Received: 29 March 2007 Accepted: 17 October 2007 BMC Genomics 2007, 8:375 doi:10.1186/1471-2164-8-375 This article is available from: http://www.biomedcentral.com/1471-2164/8/375 © 2007 Voß et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Non-coding RNAs (ncRNA) are regulators of gene expression in all domains of life. They control growth and differentiation, virulence, motility and various stress responses. The identification of ncRNAs can be a tedious process due to the heterogeneous nature of this molecule class and the missing sequence similarity of orthologs, even among closely related species. The small ncRNA Yfr1 has previously been found in the Prochlorococcus/Synechococcus group of marine cyanobacteria.
    [Show full text]