Microsatellite Evidence for Obligate Autogamy, but Abundant Genetic Variation in the Herbaceous Monocarp Lobelia Inflata (Campanulaceae)

Total Page:16

File Type:pdf, Size:1020Kb

Microsatellite Evidence for Obligate Autogamy, but Abundant Genetic Variation in the Herbaceous Monocarp Lobelia Inflata (Campanulaceae) doi: 10.1111/jeb.12734 Microsatellite evidence for obligate autogamy, but abundant genetic variation in the herbaceous monocarp Lobelia inflata (Campanulaceae) P. W. HUGHES* & A. M. SIMONS† *Max Planck Institute for Plant Breeding Research, Cologne, Germany †Department of Biology, Carleton University, Ottawa, ON, Canada Keywords: Abstract autogamy; Although high levels of self-fertilization (>85%) are not uncommon in nat- lineage selection; ure, organisms reproducing entirely through selfing are extremely rare. Pre- Lobelia inflata; dominant selfers are expected to have low genetic diversity because genetic self-fertilization; variation is distributed among rather than within lineages and is readily lost semelparity. through genetic drift. We examined genetic diversity at 22 microsatellite loci in 105 individuals from a population of the semelparous herb Lobelia inflata L. and found (i) no evidence of heterozygosity through outcrossing, yet (ii) high rates of genetic polymorphism (2–4 alleles per locus). Furthermore, this genetic variation among lineages was associated with phenotypic traits (e.g. flower colour, size at first flower). Coupled with previous work characteriz- ing the fitness consequences of reproductive timing, our results suggest that temporal genotype-by-environment interaction may maintain genetic varia- tion and, because genetic variation occurs only among lineages, this simple system offers a unique opportunity for future tests of this mechanism. ization present in a species with a mixed mating system Introduction (Johnston & Schoen, 1996; Dudash et al., 1997; Crnok- The fitness consequences of self-fertilization (selfing) rak & Barrett, 2002) have been the subject of considerable attention in evo- Although 10–20% of species are predominantly lutionary ecology (Lande & Schemske, 1985; Schemske (>50%) selfing (Barrett, 2002), only a small minority & Lande, 1985; Barrett & Eckert, 1990; Hereford, are highly (>95%) selfing (Wright et al., 2013). In these 2010). Self-fertilization is favoured over outcrossing species, reproductive assurance is cited as the main evo- when fitness gains due to reproductive assurance, lutionary mechanism favouring extreme selfing over a transmission advantage, isolation from maladaptive mixed mating system (Takebayashi & Morrell, 2001; genes, or density-dependent interactions outweigh neg- Wright et al., 2013; Zhang et al., 2014). However, ative effects associated with inbreeding depression or Wright et al. (2013) also note that ‘marker-based esti- gamete discounting (Jain, 1976; Lande & Schemske, mates of self-fertilization rates suggest that very few if 1985; Schemske & Lande, 1985; Barrett & Eckert, 1990; any plant species are completely selfing’ – that is, obli- Goodwillie et al., 2005). Inbreeding depression may gate selfing is extremely rare or unknown in nature. have slight-to-severe fitness consequences and may Extant mating-system models generally assume that – vary in intensity (Eckert & Barrett, 1994; Husband & in the absence of gene flow among lineages within a Schemske, 1996; Willis, 1999; Armbruster & Reed, population – genetic diversity will gradually erode for 2005). The strength of inbreeding depression is several reasons. As the effective population size of self- negatively associated with the proportion of self-fertil- ers is half that of outcrossers, the effects of genetic drift may be strong (Lande & Schemske, 1985; Schemske & Lande, 1985; Jarne & Charlesworth, 1993; Charles- Correspondence: Patrick William Hughes, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany. worth & Charlesworth, 1995). Alternative alleles are Tel.:+49 1762 7663 089; fax: +49 221 5062 413; e-mail: ‘captured’ within lineages and cannot be recombined; [email protected] thus, both drift and selective purging of deleterious ª 2015 EUROPEAN SOCIETY FOR EVOLUTIONARY BIOLOGY. J. EVOL. BIOL. JOURNAL OF EVOLUTIONARY BIOLOGY ª 2015 EUROPEAN SOCIETY FOR EVOLUTIONARY BIOLOGY 1 2 P. W. HUGHES AND A. M. SIMONS alleles will result in low genetic diversity (Husband & selection on lineages with distinct phenotypes (Winton Schemske, 1996; Dudash et al., 1997; Crnokrak & et al., 2006; Tatarenkov et al., 2007; Leys et al., 2014). Barrett, 2002). This leads to the speculation that selfing Moreover, models of genetic variation in predominantly may be irreversible and is therefore an ‘evolutionary selfing species have predicted that relatively high levels dead end’ (Darwin, 1877; Schoen & Brown, 1991; Bar- of genetic variation can be maintained by fluctuating rett & Harder, 1996; Takebayashi & Morrell, 2001; Igic selection (Ellner & Sasaki, 1996; Brys et al., 2011). & Busch, 2013) and may explain the rarity of very high Therefore, if – through autogamous self-fertilization – selfing rates in nature. L. inflata forms genetically identical lineages, temporal In a comparison of predominantly inbreeding and out- fluctuations in fitness among reproductive phenotypes breeding plant species, allelic diversity of inbreeders was may preserve the diversity of genetic lineages, and found to be less than half that of outcrossers, although therefore of alleles, through time. For L. inflata, fitness the variance in allelic diversity among selfing popula- variance within populations may be related to flower- tions was higher (Schoen & Brown, 1991). There are also ing phenology and reproductive effort, as abiotic condi- numerous examples of organisms showing lower allelic tions vary over the course of the season (Hughes & diversity in selfing than in outcrossing populations or Simons, 2014a,c). congeners (e.g. Jarne & Charlesworth, 1993; Dudash To date, obligate autogamy in L. inflata has been an et al., 1997). For example, lower genetic diversity has assumption, based only on circumstantial evidence: been observed in highly selfing populations of Arabidopsis anthesis is extremely brief, and fruit development occurs thaliana than in populations with a higher degree of almost immediately after the initiation of flower forma- outcrossing (Abbot & Gomes, 1989). However, high tion (Simons & Johnston, 2000; Hughes & Simons, levels of within-population allelic diversity have also 2014a,c). Moreover, in each flower the short stigma is been found within predominantly selfing populations of completely enclosed by a tube of anthers, and pollen groups including fungi (Winton et al., 2006), legumes does not appear to disperse outside flowers. Given the (Siol et al., 2007), proteaceous trees (Ayre et al., 1994), rarity of complete selfing in nature, in this study we col- ginger (Zhang & Li, 2008), brittle stars (Boissin et al., lected further evidence concerning the true selfing rate 2008), snails (Viard et al., 1996; Trouve et al., 2003) and of L. inflata. We also assessed the phenotypic conse- killifish (Tatarenkov et al., 2007). quences of a high degree of selfing, as this should be There is thus no simple relationship between mating associated with the formation of genetic lineages, and system and intrapopulation genetic diversity, and little that there is substantial variation in key fitness traits – is known about how genetic diversity is maintained in especially flowering phenology – in field populations of highly selfing species, despite the fact that the partition- L. inflata (Simons & Johnston, 2003; Hughes & Simons, ing of genetic variation in species with mixed mating 2014c). Accordingly, we performed two main analyses. systems is an important and well-studied question in First, we assessed the degree of autogamous selfing and evolutionary ecology (Stebbins, 1974; Barrett & Eckert, genetic structure of a wild population of L. inflata using 1990; Holsinger, 1991; Kalisz et al., 2004; Goodwillie microsatellite marker diversity found in specimens sam- et al., 2005). pled from a field site. Second, to determine whether In this study, we determined the selfing rate and genetic lineages were associated with variation in flow- assessed the degree of genetic diversity in the mono- ering phenology, we evaluated the degree of variation carpic herb Lobelia inflata L. (Campanulaceae). Lobelia in phenotype that was associated with variation among inflata has been assumed to be obligately (autoga- genetic lineages. Low levels of heterozygosity in a field mously) self-fertilizing in previous studies; because a population despite high allelic diversity would support closed corolla tube prevents pollen release (and instead the hypothesis that selfing is predominant in L. inflata; deposits it on the stigma of the same flower), it is not the detection of high levels of heterozygosity would clear how outcrossing may occur in this species (Ames, instead be consistent with outcrossing. Results revealing 1901; Simons & Johnston, 2000; Hughes & Simons, abundant genetic variation among completely selfing 2014b,c). However, the distribution of phenotypic vari- lineages would require an explanation. We propose that ation among lineages in L. inflata is suggestive of consistent differences in reproductive trait values among genetic variation (Hughes et al., 2014), despite the fact lineages could be explained by temporally variable selec- that studies of outcrossing congeners show limited alle- tion in which the rank order of genotypic fitness is envi- lic diversity at genotyped loci (Antonelli, 2008; Geleta ronment-dependent. & Bryngelsson, 2012). Self-fertilization may result in multigenerational genetic lineages, as each parent pro- Materials and methods duces homozygous and genotypically identical off- spring. The null expectation in self-perpetuating genetic Source population
Recommended publications
  • A Comparison of Pollinator Limitation, Self-Compatibility, and Inbreeding Depression.In Populations of Campanula Rotundifolia L
    m A Comparison of Pollinator Limitation, Self-compatibility, and Inbreeding Depression.in Populations of Campanula rotundifolia L. (Campanulaceae) at Elevational Extremes Final Report Submitted to: The City of Boulder Open Space and Mountain Parks Research/Monitoring Program Robin A. Bingham and Keri L. Howe Department of Environmental, Population and Organismic Biology The University of Colorado Boulder, Colorado Abstract Campanula rotundifolia is a widespread herbaceous perennial that exists along an elevational gradient in Colorado. Alpine populations of this and other insect pollinated species may suffer from pollinator limitation due to the harsh environment of high elevations. Limited gene flow due to low levels of pol1inator.activitymay increase rates of selfing and biparental inbreeding in alpine populations. This could result in highly inbred populations that have been purged of deleterious recessive alleles and, therefore, may exhibit less inbreeding depression than primarily outcrossed populations of the same species from lower elevations. We determined the levels of inbreeding depression and self-compatibility in high and low-elevation populations of C. rotundifolia. Hand self- and outcross-pollinations were performed on plants at high and low elevations. Seed set was determined to assess levels of self-compatibility. Seeds were weighed, germinated, and grown in a common garden to determine levels of inbreeding depression. Plants in la all populations were found to be self-compatible, and capable of autogamous seed set. Although visitation rates in the high-elevation population were significantly lower that in low elevation populations, there was no evidence for pollinator limitation in alpine populations. Low-elevation seedlings exhibited significant inbreeding depression for all parameters measured, while the high-elevation seedlings did not.
    [Show full text]
  • Reproductive Assurance Through Autogamous Self-Pollination Across Diverse Sexual and Breeding Systems
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ePrints@ATREE REVIEW ARTICLE Reproductive assurance through autogamous self-pollination across diverse sexual and breeding systems K. R. Shivanna* Ashoka Trust for Research in Ecology and the Environment, Royal Enclave, Srirampura, Jakkur Post, Bengaluru 560 064, India the development of functional pollen grains and ovules, Pollination becomes a constraint when conspecific plants and/or their pollinators become scarce. Many and terminating in seed development. Pollination, deposi- plant species have evolved autogamous self-pollination tion of the pollen grains from the anther onto the stigma, as a means of reproductive assurance (RA) under is one of the most critical requirements and determines, to pollination-uncertain environments. So far RA has a large extent, reproductive success of the species. As been studied and discussed largely with reference to plants are stationary, they have to depend on external self-compatible species producing bisexual flowers. agents for pollination services. Nearly 90% of the plants RA seems to have evolved across all other sexual and depend on animals for pollination and the remaining on breeding systems – monoecy, dioecy and self-incom- wind or water1. Pollination success depends not only on patibility (SI). Both monoecy and dioecy produce the number but also the type of pollen grains deposited on bisexual flowers (andro/gyno-monoecy, andro/gyno- the stigma. This number has to be adequate to initiate dioecy and polygamous conditions) which may fruit development and pollen grains have to be of com- provide RA. Similarly, most of the SI species are leaky and do set some seeds upon self-pollination.
    [Show full text]
  • Evolutionary Pathways to Self-Fertilization in a Tristylous Plant
    Review BlackwellOxford,NPHNew0028-646X1469-8137©293710.1111/j.1469-8137.2009.02937.xJune0546???556???ResearchXX The 2009Phytologist Authors UK Review Publishing (2009). Ltd Journal compilation © New Phytologist (2009) Research reviewXX Evolutionary pathways to self- fertilization in a tristylous plant species Author for correspondence: Spencer C. H. Barrett, Rob W. Ness and Mario Vallejo-Marín Spencer C. H. Barrett Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, Tel: +1 416 978 5603 Email: [email protected] Ontario, Canada, M5S 3B2 Received: 23 April 2009 Accepted: 20 May 2009 Summary New Phytologist (2009) 183: 546–556 Evolutionary transitions from outcrossing to selfing occur commonly in heterostylous doi: 10.1111/j.1469-8137.2009.02937.x genera. The morphological polymorphisms that characterize heterostyly provide opportunities for different pathways for selfing to evolve. Here, we investigate the Key words: developmental instability, origins and pathways by which selfing has evolved in tristylous Eichhornia paniculata Eichhornia, herkogamy, heterostyly, multiple by providing new evidence based on morphology, DNA sequences and genetic analysis. origins, pathways to self-fertilization. The primary pathway from outcrossing to selfing involves the stochastic loss of the short-styled morph (S-morph) from trimorphic populations, followed by the spread of selfing variants of the mid-styled morph (M-morph). However, the discovery of selfing variants of the long-styled morph (L-morph) in Central America indicates a secondary pathway and distinct origin for selfing. Comparisons of multi-locus nucleo- tide sequences from 27 populations sampled from throughout the geographical range suggest multiple transitions to selfing. Genetic analysis of selfing variants of the L- and M-morphs demonstrates recessive control of the loss of herkogamy, although the number of factors appears to differ between the forms.
    [Show full text]
  • Genetic Diversity and Reproductive Biology in Warea Carteri (Brassicaceae), a Narrowly Endemic Florida Scrub Annual Author(S): Margaret E
    Genetic Diversity and Reproductive Biology in Warea carteri (Brassicaceae), a Narrowly Endemic Florida Scrub Annual Author(s): Margaret E. K. Evans, Rebecca W. Dolan, Eric S. Menges, Doria R. Gordon Source: American Journal of Botany, Vol. 87, No. 3 (Mar., 2000), pp. 372-381 Published by: Botanical Society of America Stable URL: http://www.jstor.org/stable/2656633 . Accessed: 22/10/2011 09:41 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Botanical Society of America is collaborating with JSTOR to digitize, preserve and extend access to American Journal of Botany. http://www.jstor.org AmericanJournal of Botany 87(3): 372-381. 2000. GENETIC DIVERSITY AND REPRODUCTIVE BIOLOGY IN WAREA CARTERI (BRASSICACEAE), A NARROWLY ENDEMIC FLORIDA SCRUB ANNUAL1 MARGARET E. K. EVANS,25 REBECCA W. DOLAN,3 ERIC S. MENGES,2 AND DORIA R. GORDON4 2ArchboldBiological Station,PO. Box 2057, Lake Placid, Florida 33862 USA; 3FriesnerHerbarium, Butler University,Indianapolis, Indiana 46208 USA; and 4The Nature Conservancy,Department of Botany,PO. Box 118526, Universityof Florida, Gainesville, Florida 32611 USA Carter's mustard(Warea carteri) is an endangered,fire-stimulated annual endemic of the Lake Wales Ridge, Florida, USA. This species is characterizedby seed banks and large fluctuationsin plant numbers,with increases occurringin postdisturbancehabitat.
    [Show full text]
  • Winter 2014-2015 (22:3) (PDF)
    Contents NATIVE NOTES Page Fern workshop 1-2 Wavey-leaf basket Grass 3 Names Cacalia 4 Trip Report Sandstone Falls 5 Kate’s Mountain Clover* Trip Report Brush Creek Falls 6 Thank yous memorial 7 WEST VIRGINIA NATIVE PLANT SOCIETY NEWSLETTER News of WVNPS 8 VOLUME 22:3 WINTER 2014-15 Events, Dues Form 9 Judy Dumke-Editor: [email protected] Phone 740-894-6859 Magnoliales 10 e e e visit us at www.wvnps.org e e e . Fern Workshop University of Charleston Charleston WV January 17 2015, bad weather date January 24 2015 If you have thought about ferns, looked at them, puzzled over them or just want to know more about them join the WVNPS in Charleston for a workshop led by Mark Watson of the University of Charleston. The session will start at 10 A.M. with a scheduled end point by 12:30 P.M. A board meeting will follow. The sessions will be held in the Clay Tower Building (CTB) room 513, which is the botany lab. If you have any pressed specimens to share, or to ask about, be sure to bring them with as much information as you have on the location and habitat. Even photographs of ferns might be of interest for the session. If you have a hand lens that you favor bring it along as well. DIRECTIONS From the North: Travel I-77 South or 1-79 South into Charleston. Follow the signs to I-64 West. Take Oakwood Road Exit 58A and follow the signs to Route 61 South (MacCorkle Ave.).
    [Show full text]
  • The Phytochemistry of Cherokee Aromatic Medicinal Plants
    medicines Review The Phytochemistry of Cherokee Aromatic Medicinal Plants William N. Setzer 1,2 1 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected]; Tel.: +1-256-824-6519 2 Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA Received: 25 October 2018; Accepted: 8 November 2018; Published: 12 November 2018 Abstract: Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines. Keywords: Cherokee; Native American; traditional herbal medicine; chemical constituents; pharmacology 1. Introduction Natural products have been an important source of medicinal agents throughout history and modern medicine continues to rely on traditional knowledge for treatment of human maladies [1]. Traditional medicines such as Traditional Chinese Medicine [2], Ayurvedic [3], and medicinal plants from Latin America [4] have proven to be rich resources of biologically active compounds and potential new drugs.
    [Show full text]
  • Campanulaceae): Review, Phylogenetic and Biogeographic Analyses
    PhytoKeys 174: 13–45 (2021) A peer-reviewed open-access journal doi: 10.3897/phytokeys.174.59555 RESEARCH ARTICLE https://phytokeys.pensoft.net Launched to accelerate biodiversity research Systematics of Lobelioideae (Campanulaceae): review, phylogenetic and biogeographic analyses Samuel Paul Kagame1,2,3, Andrew W. Gichira1,3, Ling-Yun Chen1,4, Qing-Feng Wang1,3 1 Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China 4 State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China Corresponding author: Ling-Yun Chen ([email protected]); Qing-Feng Wang ([email protected]) Academic editor: C. Morden | Received 12 October 2020 | Accepted 1 February 2021 | Published 5 March 2021 Citation: Kagame SP, Gichira AW, Chen L, Wang Q (2021) Systematics of Lobelioideae (Campanulaceae): review, phylogenetic and biogeographic analyses. PhytoKeys 174: 13–45. https://doi.org/10.3897/phytokeys.174.59555 Abstract Lobelioideae, the largest subfamily within Campanulaceae, includes 33 genera and approximately1200 species. It is characterized by resupinate flowers with zygomorphic corollas and connate anthers and is widely distributed across the world. The systematics of Lobelioideae has been quite challenging over the years, with different scholars postulating varying theories. To outline major progress and highlight the ex- isting systematic problems in Lobelioideae, we conducted a literature review on this subfamily. Addition- ally, we conducted phylogenetic and biogeographic analyses for Lobelioideae using plastids and internal transcribed spacer regions.
    [Show full text]
  • Extraordinary Genome Stability in the Ciliate Paramecium Tetraurelia
    Extraordinary genome stability in the ciliate Paramecium tetraurelia Way Sunga,1, Abraham E. Tuckera, Thomas G. Doaka, Eunjin Choia, W. Kelley Thomasb, and Michael Lyncha aDepartment of Biology, Indiana University, Bloomington, IN 47405; and bDepartment of Molecular Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824 Edited by Detlef Weigel, Max Planck Institute for Developmental Biology, Tübingen, Germany, and approved October 10, 2012 (received for review June 21, 2012) Mutation plays a central role in all evolutionary processes and is also from this experiment), or ∼30–50 fissions when starved (9), P. the basis of genetic disorders. Established base-substitution muta- tetraurelia undergoes a self-fertilization process known as au- tion rates in eukaryotes range between ∼5 × 10−10 and 5 × 10−8 per togamy (9), at which time the old macronucleus is destroyed and site per generation, but here we report a genome-wide estimate for replaced by a processed version of the new micronuclear genome Paramecium tetraurelia that is more than an order of magnitude (10). When in contact with compatible mating types, P. tetraurelia lower than any previous eukaryotic estimate. Nevertheless, when can also undergo conjugation (10), although, this can be pre- the mutation rate per cell division is extrapolated to the length of vented in the laboratory by using a stock consisting of only one the sexual cycle for this protist, the measure obtained is comparable mating type. Under conditions of exclusive autogamy, all muta- to that for multicellular species with similar genome sizes. Because tions arising in the micronucleus during clonal propagation Paramecium has a transcriptionally silent germ-line nucleus, these should accumulate in a completely neutral fashion, with the fit- results are consistent with the hypothesis that natural selection ness effects only being realized after sexual reproduction.
    [Show full text]
  • (Lobelia, Campanulaceae) of Alabama and Adjacent States
    Spaulding, D.D. and T.W. Barger 2016. Keys, distribution, and taxonomic notes for the Lobelias (Lobelia , Campanulaceae) of Alabama and adjacent states. Phytoneuron 2016-76: 1–60. Published 29 November 2016. ISSN 2153 733X KEYS, DISTRIBUTION, AND TAXONOMIC NOTES FOR THE LOBELIAS (LOBELIA , CAMPANULACEAE) OF ALABAMA AND ADJACENT STATES DANIEL D. SPAULDING Anniston Museum of Natural History 800 Museum Drive/P.O. Box 1587 Anniston, Alabama 36202 [email protected] T.WAYNE BARGER Alabama Dept. of Conservation and Natural Resources State Lands Division, Natural Heritage Section 64 North Union Street Montgomery, Alabama 36130 [email protected] ABSTRACT The genus Lobelia (Campanulaceae) is represented by 22 species and one hybrid in the five-state region of Alabama, Georgia, Florida, Mississippi, and Tennessee. Lobelia rogersii , formerly regarded as a hybrid, is recognized here as a distinct species. Keys, distribution maps, photographs, and taxonomic notes are provided for each species. North American species of Lobelia are annual or perennial herbs with alternate, simple leaves and conspicuous blue, white, red or purplish flowers (Fig. 1). The corolla is tubular, often fenestrate, bilabiate, and five lobed (Fig. 2). The upper two lobes are usually erect and the lower three lobes are typically fanned out. Five stamens are united to create a diagnostic matchstick-like structure. The longer, lower portion forms the filament tube and the upper, darker part is the anther tube (Fig. 3). The style passes through the center of the structure and the 2-lobed stigma is exserted at the top. (1a) Photo: Wayne Barger (1b) Photo: Dan Spaulding Figure 1.
    [Show full text]
  • Somatic Deleterious Mutation Rate in a Woody Plant: Estimation from Phenotypic Data
    Heredity (2013) 111, 338–344 & 2013 Macmillan Publishers Limited All rights reserved 0018-067X/13 www.nature.com/hdy ORIGINAL ARTICLE Somatic deleterious mutation rate in a woody plant: estimation from phenotypic data K Bobiwash1,3, ST Schultz2,3 and DJ Schoen1 We conducted controlled crosses in populations of the long-lived clonal shrub, Vaccinium angustifolium (lowbush blueberry) to estimate inbreeding depression and mutation parameters associated with somatic deleterious mutation. Inbreeding depression level was high, with many plants failing to set fruit after self-pollination. We also compared fruit set from autogamous pollinations (pollen collected from within the same inflorescence) with fruit set from geitonogamous pollinations (pollen collected from the same plant but from inflorescences separated by several meters of branch growth). The difference between geitonogamous versus autogamous fitness within single plants is referred to as ‘autogamy depression’ (AD). AD can be caused by somatic deleterious mutation. AD was significantly different from zero for fruit set. We developed a maximum-likelihood procedure to estimate somatic mutation parameters from AD, and applied it to geitonogamous and autogamous fruit set data from this experiment. We infer that, on average, approximately three sublethal, partially dominant somatic mutations exist within the crowns of the plants studied. We conclude that somatic mutation in this woody plant results in an overall genomic deleterious mutation rate that exceeds the rate measured to date for annual plants. Some implications of this result for evolutionary biology and agriculture are discussed. Heredity (2013) 111, 338–344; doi:10.1038/hdy.2013.57; published online 19 June 2013 Keywords: somatic mutation; deleterious mutation; inbreeding depression; long-lived plants INTRODUCTION meristems divide to produce additional stem cells and somatic tissue Plants violate the Weismann’s doctrine of the separation of germ line (Klekowski et al., 1985; Pineda-Krch and Lehtila, 2002).
    [Show full text]
  • The Influence of Natural Variation in Population Size on Ecological and Quantitative Genetics of the Endangered Endemic Plant Hypericum Cumulicola
    Int. J. Plant Sci. 176(1):11–19. 2015. q 2014 by The University of Chicago. All rights reserved. 1058-5893/2015/17601-0002$15.00 DOI: 10.1086/677946 THE INFLUENCE OF NATURAL VARIATION IN POPULATION SIZE ON ECOLOGICAL AND QUANTITATIVE GENETICS OF THE ENDANGERED ENDEMIC PLANT HYPERICUM CUMULICOLA Christopher G. Oakley1,* *Department of Biological Science, Florida State University, Tallahassee, Florida 323065-4295, USA Editor: Susan J. Mazer Premise of research. Genetic variation for ecologically important traits is necessary for populations to adapt to environmental change. Many authors have called for a greater emphasis on directly measuring quantitative genetic variation in rare species, which are expected to have reduced amounts of genetic variation due to genetic drift in small populations. The extent of among-population differentiation for quantitative traits may also help to evaluate the likelihood that genetic rescue/translocation will be a successful conservation strategy. Despite these merits, relatively few studies measure quantitative genetic variation for ecologically important traits as a function of population size. Methodology. Sixteen populations of the endangered plant Hypericum cumulicola were sampled, capi- talizing on previous work that has estimated relative effective population sizes and demonstrated minimal migration between populations. This context allows more direct inference about the role of drift in small populations on quantitative genetic variation, the focus of this study. Using controlled pollinations and a greenhouse common garden, quantitative genetic variation within populations and differentiation among pop- ulations were estimated for six putatively ecologically important traits. Pivotal results. There were few significant estimates of genetic variation for most traits irrespective of population size.
    [Show full text]
  • Indian Tobacco Lobelia Inflata by Madison Woods Loamy Soils of the Deep-Shaded Forests
    SUMMER 2017, VOLUME 18, ISSUE 3 A PUBLICATION OF THE NORTH AMERICAN NATIVE PLANT SOCIETY Native Plant to Know Indian Tobacco Lobelia inflata by Madison Woods loamy soils of the deep-shaded forests. The plant consists of a single, Lobelia inflata is one of those coarse-haired main stem, which wildflowers that only a dedicated plant becomes branched. Sometimes more enthusiast could love. than one plant grows in the same She has no outstanding attributes to space, making her appear to be a draw the average eye. Her flowers are multi-branched plant. Total height tiny and insignificant. At the peak of averages about one to three fecundity, with swollen seed-bellies, feet (one-third to one scraggly growth and browning leaf metre) at peak growth. tips, she still isn’t a pretty sight. She dies back in winter. With a common name like puke This plant is listed as weed, it’s hard to muster appreciation. biennial or annual. I’ve But the name is apt, since one of her seen her referenced across actions is the ability to invoke sources as both, as if no one powerful vomiting. Indian tobacco is really knows for sure. She is the common name generally used, but self-fertile, with male and there’s nothing in the historical female flowers on the same archives to suggest that Native plant. Americans ever smoked this herb. Rough, oblong-shaped, Most people don’t even notice her serrated leaves grow in enough to shrug or frown when they alternate positions. The pass. But to an herbalist, she is leaves near the lower end treasured for the beauty she is.
    [Show full text]