Australian Journal of Botany 65, 646–660 © CSIRO 2017 http://dx.doi.org/10.1071/BT17154_AC

Supplementary material

Benefits of adopting seed-based technologies for rehabilitation in the mining sector: a Pilbara perspective

Todd E. EricksonA,B,J, Miriam Muñoz-RojasA,B,C, Olga A. KildishevaA,B, Brad A. StokesD, Stephen A.

WhiteE, Joanne L. HeyesF, Emma L. DalziellG,B,A,, Wolfgang LewandrowskiA,B, Jeremy J. JamesH,

Matthew D. MadsenI, Shane R. TurnerA,B, and David J. MerrittB,A

A School of Biological Sciences, The University of , Crawley, WA, 6009, Australia. B Science Directorate, Kings Park and Botanic Garden, Kings Park, WA, 6005, Australia. C School of Biological, Earth and Environmental Sciences, University of New South Wales, Randwick, NSW, 2052, Australia D Newcrest Mining Pty Ltd., Perth, WA, 6000, Australia. E BHP Western Australia Iron Ore Pty Ltd., Perth, WA, 6000, Australia. F BHP Billiton Pty Ltd., Melbourne, VIC, 3000, Australia. G Department of Environment and Agriculture, Curtin University, Bentley, WA, 6102, Australia. H Sierra Foothill Research and Extension Center, University of California, Browns Valley, California, 95918, USA. I Department of and Wildlife Sciences, Brigham Young University, Provo, 84602, Utah, USA. J Corresponding author Email. [email protected]

Seed dormancy classification methods used in this study

Seed dormancy status can be determined by assessing various attributes of mature, freshly collected seeds. These include the seed or fruit coat permeability to water, embryo size and developmental stage (e.g. confirmation of embryo growth prior to germination), and the initial germination capability over a range of suitable environmental conditions (Baskin and Baskin 2004c). Seeds can then be routinely assigned into one of six dormancy classes: non- dormant (ND), physical (PY), physiological (PD), morphological (MD), morphophysiological (MPD), and combinational (PY + PD), and if required, further sub-classified into different levels and types (Baskin and Baskin 2004b; Baskin and Baskin 2004c; Erickson 2015). Species classified in this study followed the methods outlined below.

Seed collection

Seeds of 105 species from 54 genera and 26 families (Table 3) were collected from the Pilbara (bioregion). To ensure a wide representation of key species were present in this study, collections targeted areas of the Pilbara that received adequate seasonal rainfall to initiate consistent flowering and seed production. Specific landscape positions and a range of dominant community assemblages (i.e. mesa outcrops, alluvial flats, drainage gullies, creek lines), plant forms (i.e. trees, shrubs, herbs, and grasses), and life cycles (i.e. annuals and perennials) were sampled to achieve the targeted high-diversity seed collections. Out of the ten most dominant families and genera recognised in the Pilbara bioregion, nine of these families and eight of these genera were represented in this study (Erickson and Merritt 2016). At a species level, this study assesses approximately 6% of the Pilbara flora (DPaW 2007 -; Erickson and Merritt 2016).

Seeds were obtained from a minimum of 30 (to 1000+) over the whole population, except for collections of Mirbelia viminalis, Senna venusta, and leucophloia, where limited plant numbers, or insufficient mature seeds, were available at the time of collection. All species were cleaned to pure seeds, except the three Aristida species (A. contorta, A. inaequiglumis and A. latifolia), which remained in the florets, and Astrotricha hamptonii, Boerhavia coccinea, and Tribulus suberosus, which remained in indehiscent fruits. For ease of reference, all collected material was referred to as seeds. For validation of the taxonomic status of each species, herbarium specimens for all seed collections were lodged at the Western Australian Herbarium with nomenclature following FloraBase listings (Western Australian Herbarium 1998 -). Prior to experimental set-up, seed material was stored in 15°C/15% RH (controlled environment [CE] room), or at -18°C, after a minimum of

four weeks drying in the CE room.

2

Seed viability

Viability was assessed using a Faxitron MX-20 Digital X-ray Cabinet (Tucson, Arizona, USA). For each species, 3-5 replicates of 50 seeds were x-rayed to assess whether seeds contained fully-developed embryos/endosperm (i.e. filled) or whether these tissues were absent (i.e. non-filled). ‘Filled’ embryos/endosperm that were deemed viable appear uniformly white/grey in the x-ray images. Seeds that had questionable clarity in the image were dissected under a microscope to determine the condition of the embryo/endosperm. On occasions, seed collections required further cleaning to ensure the highest viability possible was utilised in the germination experiments (noted in the ‘Viability % (X-ray Fill)’ column, Table 3).

Seed characteristics

For all species, seed weight was determined from five replicates of 50 seeds, or from one replicate of 250 seeds for very small seeds, and extrapolated to obtain a 1000-seed weight (in grams). For species from plant genera or families in which the presence of physical dormancy has been established, and for seeds for which < 75% germination was recorded (see Germination experiments section), seed coat permeability to water was assessed via an imbibition test. All species in this study that belonged to families known to possess PY (Gama-Arachchige et al. 2013) were treated with near boiling water (95°C for 1-5 mins) to alleviate PY. Occasionally, multiple techniques to alleviate PY were assessed, such as

immersion in concentrated sulphuric acid (98% H2SO4 for 1-8 h), or physically nicking the fruit or seed coat with a scalpel blade. For all species, confirmation of water uptake was assessed by testing the fruits and/or seeds of each species (see imbibition examples in Erickson 2015; Erickson et al. 2016b).

Embryo classification followed Martin (1946) and Baskin and Baskin (2007) whereby the embryo shape, location within the seed, and embryo to seed length ratio (E:S ratio) were determined. A minimum of five fully imbibed seeds were longitudinally dissected under a stereo microscope with the embryo morphology and position within the seed visually

3

assessed and matched to the modified-Martin key embryo types identified in Baskin and Baskin (2007). To calculate the E:S ratio, the maximum lengths of the seed coat (from the internal seed wall) and embryo were measured. For embryos that exceeded the internal seed length measurement (e.g. peripheral embryos that circumnavigate the inner seed coat wall), multiple straight line measurements were taken to capture the overall length of the embryo, and therefore an E:S ratio of > 1 was possible (Table 3; Erickson et al. 2016b).

Germination experiments

The initial germination of seeds was tested on water agar (control), and the effects of

germination stimulants, gibberellic acid (GA3) and karrikinolide (KAR1), were determined with seeds incubated over a range of temperatures (10–35°C) that approximate environmental conditions of the Pilbara arid zone. As far as practical, initial germination was carried out within 4-6 weeks of seed collection. Germination responses to temperature and

the stimulants aided in understanding what the drivers of dormancy break (i.e. GA3) and/or

germination stimulation (i.e. KAR1) were for each species (see ‘Germination signature’ assignment and classification tree analysis section of Erickson 2015 for a full synthesis). For species identified to have an impermeable seed/fruit coat layer (i.e. PY and PY + PD classes), PY was broken prior to germination testing predominantly using wet heat treatments.

Four replicates of 20-25 seeds were plated in 90 mm plastic Petri dishes containing: (1)

water agar (0.7% w/v), (2) water agar + 289 µM GA3 (Sigma-Aldrich Co., Australia), (3) or

water agar + 0.67 µM KAR1 (3-methyl-2H-furo[2,3-c]pyran-2-one, synthesized following

Flematti et al. 2005). The concentrations of GA3 and KAR1 used in this study are consistent with recently applied concentrations used in other arid zone seed biology studies in Western Australia (Commander et al. 2009; Erickson et al. 2016c). Plates were wrapped with plastic film to prevent moisture loss. Prior to plating, seeds were surface sterilised in 2%

(w/v) calcium hypochlorite (Ca[OCl]2) under vacuum for 30 mins (10 min on-off-on, at -70 kPA), and rinsed multiple times in sterilised de-ionised water. Seeds were incubated at constant 10, 15, 20, 25, 30, and 35°C on an alternating 12 h day/night cycle. Light was delivered via cool white fluorescent tubes (30W) with a photon flux density of 30 μ mol m-2

4 s-1, 400-700 nm. Germination was scored weekly for 28 d and defined as radicle emergence greater than one-third of the seed coat length (Appendix A).

Seed dormancy classification

The widely accepted dormancy classification scheme (Baskin and Baskin 2004c) was used to assign species to different dormancy classes, specifically following the simplified dichotomous key outlined in Baskin and Baskin (2004b). To assist in assigning dormancy classes, the dormancy classification scheme was modified to include a threshold level of germination of 75% for seeds incubated in water across a range of temperatures, with seeds exceeding this germination percentage deemed ND (Erickson 2015). The separation between ‘dormant’ and ND species is often reported for germination levels of approximately 70-80% (Thompson et al. 2003; Baskin and Baskin 2004b; Jurado and Flores 2005; Flores et al. 2006) but does not currently exist in any of the published dichotomous keys (Baskin and Baskin 2003; Baskin and Baskin 2004b; Baskin and Baskin 2004a).

To confirm species with MD/MPD and separate from a ND/PD species, evidence of embryo growth prior to radicle emergence must be demonstrated (Baskin and Baskin 2005). Therefore, species that exhibited an E:S ratio < 0.5 (i.e. an underdeveloped embryo; Baskin and Baskin 2007), but germinated to ≥ 75% under any germination treatment after 28 days, were re-tested to assess for embryo growth. The same E:S ratio measurements were taken at 1 day after hydration and just prior to germination occurring (e.g. seed coat split and radicle emergence at 3-9 d) (Table S1). Any internal growth of the embryo at the cotyledon end prior to radicle emergence was used as confirmation of ‘embryo growth’, which separated MD/MPD species from the ND class. Germination above the 75% level with GA3 or KAR1, but not under control conditions, separated MPD from the MD class. Specifically, three rules were adhered to: (1) ND ≥ 75% > PD, (2) MD ≥ 75% > MPD, and (3) PY ≥ 75% > PY + PD (with the PY component treated to alleviate seed coat impermeability), after germination testing for 28 d.

5

Table S1. Initial embryo to seed length (E:S) ratio, final E:S ratio at the time the seeds coats split prior to radicle emergence, and total percentage increase in the E:S ratio for Hibbertia glaberrima, Stylidium desertorum and Wahlenbergia tumidifructa (adapted from Erickson et al. 2016b). Numbers in parentheses depict the initial and final embryo lengths (μm) of the embryos. Seeds of all species were incubated in constant 25°C on water agar, except S. desertorum which was incubated on water agar + KAR1. Underdeveloped embryos and the subsequent placement in the MPD class, for Astrotricha hamptonii and Trachymene oleracea have been inferred due to the very low E:S ratio and low germination (see Table 3 and Appendix A). E:S ratio (embryo length in μm)

Prior to radicle % increase in E:S Species Initial* emergence** ratio

Dilleniaceae Hibbertia glaberrima 0.112 ± 0.03 > 1.1*** > 882.1*** (205 ± 42.1) ) (> 2887) Stylidiaceae Stylidium desertorum 0.256 ± 0.02 0.803 ± 0.05 213.7 (78 ± 5.5) (286 ± 33.1) Campanulaceae Wahlenbergia tumidifructa 0.539 ± 0.01 0.687 ± 0.02 27.5 (256 ± 6.7) (328 ± 9.8) * 1d after hydration; **3-9d after hydration; *** Experiments with H. glaberrima did not capture the full extent of embryo growth prior to radicle emergence and at times took up to 43d for embryo growth to be detected, however embryo growth in this species is consistent with growth observed in other species of Hibbertia occurring in Western Australia (Hidayati et al. 2012).

6

1 Appendix A. Raw mean germination data (± s.e.) for all 105 species after germination testing on water agar ± GA3 or KAR1 tested across constant 10°C, 15°C, 20°C, 25°C, 2 30°C, and 35°C. Species are sorted in family order.

Family Control GA3 KAR1 Species (-aceae) 10°C 15°C 20°C 25°C 30°C 35°C 10°C 15°C 20°C 25°C 30°C 35°C 10°C 15°C 20°C 25°C 30°C 35°C

4 32 45 34 28 17 3 38 84 92 88 91 62 97 96 87 90 89 Amaranth- Gomphrena cunninghamii (1.6) (6.7) (4.7) (7.0) (1.6) (5.7) (1.0) (8.3) (1.6) (2.8) (1.6) (3.4) (7.4) (1.9) (2.3) (1.9) (3.5) (1.9)

54 75 77 81 82 84 76 81 89 97 100 98 60 81 88 95 95 84 Amaranth- Ptilotus auriculifolius (7.4) (6.0) (5.7) (1.9) (1.2) (2.8) (7.1) (4.1) (3.0) (1.9) (0.0) (1.2) (4.9) (4.7) (2.3) (5.0) (1.9) (5.7)

58 72 86 98 96 96 98 100 100 100 100 100 79 88 99 100 100 93 Amaranth- Ptilotus macrocephalus (3.5) (3.3) (3.5) (1.2) (2.8) (4.0) (1.2) (0.0) (0.0) (0.0) (0.0) (0.0) (6.6) (3.7) (1.0) (0.0) (0.0) (1.0)

98 96 93 94 97 100 100 100 100 100 100 100 98 97 98 97 97 98 Amaranth- Ptilotus nobilis (1.2) (1.6) (2.5) (2.6) (1.9) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (1.2) (1.0) (1.2) (1.9) (1.9) (1.2)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 Arali- Astrotricha hamptonii (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (3.0) (0.0) (0.0)

0 0 0 0 0 0 0 0 2 3 5 1 0 3 5 4 1 5 Arali- Trachymene oleracea (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (1.2) (1.9) (1.9) (1.0) (0.0) (1.9) (2.5) (2.3) (1.0) (3.0)

Chrysocephalum 60 48 82 76 74 37 89 97 100 99 98 77 78 69 75 80 74 46 Aster- apiculatum (5.9) (3.3) (4.8) (5.4) (2.6) (1.9) (5.0) (1.0) (0.0) (1.0) (1.2) (1.0) (6.8) (6.2) (5.3) (2.8) (6.6) (5.0)

12 9 5 23 65 9 78 93 61 60 84 88 52 46 46 57 82 78 Aster- Pterocaulon sphacelatum (4.3) (2.5) (1.0) (4.7) (6.4) (3.4) (4.8) (3.0) (3.4) (2.8) (2.8) (5.9) (6.9) (3.5) (5.3) (3.4) (3.8) (5.0)

1 29 89 99 21 0 2 39 92 97 35 0 1 49 81 89 19 0 Aster- Rhodanthe margarethae (1.0) (7.7) (3.0) (1.0) (4.1) (0.0) (1.2) (4.4) (2.3) (1.9) (6.6) (0.0) (1.0) (1.0) (8.2) (2.5) (3.4) (0.0)

4 4 30 98 68 92 61 100 42 100 100 55 66 100 100 100 100 100 Aster- Streptoglossa decurrens (4.0) (1.6) (11.6) (2.0) (13.2) (4.6) (13.0) (0.0) (6.8) (0.0) (0.0) (8.2) (9.6) (0.0) (0.0) (0.0) (0.0) (0.0)

7

4 16 8 1 0 1 7 19 21 1 0 0 1 1 2 0 1 1 Boragin- Trichodesma zeylanicum (2.8) (2.8) (3.3) (1.0) (0.0) (1.0) (3.4) (4.1) (4.4) (1.0) (0.0) (0.0) (1.0) (1.0) (1.2) (0.0) (1.0) (1.0)

Brassic- Lepidium catapycnon n/t 18^ n/t 0^ n/t n/t n/t 89^ n/t 89^ n/t n/t n/t n/t n/t n/t n/t n/t

94 97 97 95 97 75 85 95 97 98 98 97 97 97 100 95 88 83 Brassic- Lepidium echinatum (2.6) (1.9) (1.9) (1.9) (1.9) (4.1) (3.0) (1.9) (1.9) (1.2) (1.2) (1.9) (1.9) (1.0) (0.0) (3.0) (4.3) (4.7)

44 16 19 50 6 0 45 73 75 71 54 0 80 87 88 80 72 1 Brassic- Lepidium pedicellosum (5.2) (1.6) (5.3) (4.8) (3.8) (0.0) (10.8) (5.7) (5.5) (1.9) (2.0) (0.0) (3.7) (6.6) (4.3) (5.2) (3.7) (1.0)

92 92 81 85 88 0 83 84 78 84 92 8 76 82 78 70 71 0 Campanul- Wahlenbergia tumidifructa (1.6) (1.6) (3.0) (2.5) (3.3) (0.0) (5.0) (1.6) (8.1) (5.2) (4.3) (4.9) (3.7) (3.8) (2.6) (6.2) (5.0) (0.0)

3 79 100 98 96 98 7 81 94 94 95 96 3 96 100 97 97 95 Caryophyll- Polycarpaea corymbosa (1.9) (6.4) (0.0) (2.0) (1.6) (1.2) (1.0) (9.7) (2.0) (2.6) (3.0) (2.8) (1.9) (2.3) (0.0) (1.9) (1.0) (2.5)

2 32 6 9 2 4 10 35 28 20 24 33 11 23 6 4 7 4 Chenopodi- Dysphania rhadinostachya (2.0) (4.3) (1.2) (1.9) (1.2) (1.6) (2.0) (5.3) (5.9) (5.7) (3.3) (5.0) (3.0) (4.4) (3.5) (1.6) (3.4) (1.6)

0 0 16 3 3 5 0 0 42 24 14 22 0 0 36 26 23 31 Cleom- Cleome viscosa (0.0) (0.0) (1.6) (1.0) (1.0) (1.9) (0.0) (0.0) (8.4) (4.9) (2.0) (2.0) (0.0) (0.0) (5.2) (2.9) (1.9) (4.1)

53 87 92 89 88 96 90 93 91 92 96 95 94 82 87 97 98 97 Convolvul- Convolvulus clementii (5.0) (2.5) (4.3) (1.9) (3.7) (0.0) (1.2) (1.9) (4.1) (2.3) (2.3) (3.0) (3.8) (2.0) (1.0) (1.9) (1.2) (1.0)

0 0 2 30 54 84 0 0 2 18 67 87 0 0 2 15 68 86 Cyper- Cyperus ixiocarpus (0.0) (0.0) (1.2) (6.6) (8.7) (7.83) (0.0) (0.0) (1.2) (5.0) (5.3) (4.4) (0.0) (0.0) (1.2) (1.9) (4.6) (2.6)

0 0 0 0 Dilleni- Hibbertia glaberrima n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t (0.0) (0.0) (0.0) (0.0)

59 99 100 100 99 100 64 100 100 100 100 100 43 99 100 100 100 100 Fab- acradenia (12.1) (1.3) (0.0) (0.0) (1.3) (0.0) (7.2) (0.0) (0.0) (0.0) (0.0) (0.0) (9.2) (1.3) (0.0) (0.0) (0.0) (0.0)

98 Fab- Acacia adoxa var. adoxa n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t (1.2)

8

95 99 99 100 99 100 99 98 100 98 98 96 99 95 100 99 100 99 Fab- Acacia adsurgens (2.0) (1.3) (1.3) (0.0) (1.3) (0.0) (1.3) (2.5) (0.0) (1.4) (2.5) (2.4) (1.3) (3.5) (0.0) (1.3) (0.0) (1.3)

80 90 98 97 98 97 82 90 98 96 96 96 76 90 96 96 95 93 Fab- Acacia ancistrocarpa (1.6) (2.6) (2.0) (1.9) (1.2) (3.0) (2.6) (2.6) (1.2) (1.6) (1.6) (1.6) (1.6) (3.5) (2.3) (1.6) (3.0) (3.4)

97 90 98 95 96 49 92 99 100 99 99 28 94 97 98 97 97 74 Fab- Acacia bivenosa (3.0) (5.8) (2.0) (1.9) (1.6) (19.6) (1.6) (1.0) (0.0) (1.0) (1.0) (12.3) (2.0) (1.0) (1.2) (1.9) (1.9) (9.0)

93 94 99 100 100 96 95 100 98 95 98 100 93 95 99 100 96 99 Fab- Acacia citrinoviridis (2.5) (3.2) (1.3) (0.0) (0.0) (2.4) (2.9) (0.0) (1.4) (2.0) (1.4) (0.0) (3.2) (2.0) (1.3) (0.0) (2.4) (1.3)

98 98 99 98 99 99 100 97 98 97 75 92 99 100 100 98 99 95 Fab- Acacia cowleana (1.2) (2.0) (1.0) (1.2) (1.0) (1.0) (0.0) (1.9) (1.2) (3.0) (4.1) (2.8) (1.0) (0.0) (0.0) (2.0) (1.0) (1.9)

97 94 100 97 100 97 97 97 97 95 98 99 96 98 98 92 97 98 Fab- Acacia dictyophleba (1.0) (2.0) (0.0) (1.9) (0.0) (1.9) (1.9) (1.0) (1.9) (1.0) (1.2) (1.0) (1.6) (1.2) (1.2) (3.3) (1.0) (1.2)

49 100 100 100 100 99 45 97 100 100 99 98 58 97 100 100 100 100 Fab- Acacia eriopoda (9.9) (0.0) (0.0) (0.0) (0.0) (1.0) (2.5) (1.0) (0.0) (0.0) (1.0) (1.2) (6.8) (1.0) (0.0) (0.0) (0.0) (0.0)

99 99 100 100 99 97 99 99 99 100 98 100 97 98 99 100 98 99 Fab- Acacia hamersleyensis (1.0) (1.0) (0.0) (0.0) (1.0) (1.9) (1.0) (1.0) (1.0) (0.0) (1.2) (0.0) (1.0) (1.2) (1.0) (0.0) (1.2) (1.0)

94 98 98 97 98 95 Fab- Acacia hilliana n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t (2.6) (1.2) (1.2) (1.9) (1.2) (2.5)

98 97 97 100 97 99 95 100 95 97 100 100 98 99 97 100 99 97 Fab- Acacia inaequilatera (1.2) (1.0) (1.9) (0.0) (1.9) (1.0) (1.9) (0.0) (1.9) (1.9) (0.0) (0.0) (2.0) (1.0) (1.9) (0.0) (1.0) (3.0)

61 98 99 99 99 95 59 98 98 98 98 98 53 97 99 99 99 93 Fab- Acacia monticola (5.7) (1.2) (1.0) (1.0) (1.0) (2.5) (8.1) (1.2) (1.2) (2.0) (1.2) (2.0) (10.4) (1.9) (1.0) (1.0) (1.0) (5.7)

97 Fab- Acacia ptychophylla n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t (1.0)

9

Acacia pyrifolia var. 95 100 99 98 99 98 98 97 94 95 85 99 95 92 95 96 97 99 Fab- pyrifolia (1.9) (0.0) (1.0) (1.2) (1.0) (2.0) (1.2) (1.9) (2.6) (3.8) (2.5) (1.0) (2.5) (3.7) (2.5) (2.8) (1.9) (1.0)

Acacia sclerosperma subsp. 47 66 72 82 87 58 31 60 78 78 87 54 39 71 80 81 88 79 Fab- sclerosperma (7.0) (2.6) (3.3) (2.6) (3.0) (7.8) (4.4) (3.7) (3.5) (4.2) (5.3) (7.8) (3.4) (6.8) (2.8) (2.5) (3.3) (3.4)

85 94 99 96 96 99 87 94 97 98 97 96 83 98 98 97 97 98 Fab- Acacia stellaticeps (2.5) (1.2) (1.0) (1.6) (1.6) (1.0) (4.1) (2.6) (1.0) (2.0) (1.0) (1.6) (4.1) (1.2) (1.2) (1.0) (1.9) (1.2)

95 97 99 99 99 98 94 98 97 97 99 98 98 99 100 99 98 96 Fab- Acacia tenuissima (2.5) (1.0) (1.0) (1.0) (1.0) (1.2) (2.56) (1.2) (1.9) (1.9) (1.0) (1.2) (1.2) (1.0) (0.0) (1.0) (1.2) (2.8)

Acacia tumida 75 93 93 99 93 93 78 99 99 96 91 92 78 97 98 98 99 97 Fab- var. pilbarensis (3.0) (3.0) (3.4) (1.0) (3.4) (1.9) (3.8) (1.0) (1.0) (2.8) (2.5) (4.3) (1.2) (1.9) (2.0) (1.2) (1.0) (1.9)

Gompholobium 70.0 Fab- n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t oreophilum* (5.0)

5 9 11 2 5 5 4 3 9 8 4 5 3 3 8 6 5 9 Fab- Indigofera monophylla (3.0) (4.4) (4.1) (1.2) (2.5) (2.5) (2.3) (1.9) (1.0) (2.8) (4.0) (1.9) (1.0) (1.9) (2.8) (2.6) (1.0) (4.1)

32 96 89 85 91 96 Fab- Mirbelia viminalis n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t (13.6) (2.3) (3.4) (1.9) (1.0) (2.8)

96 Fab- Petalostylis labicheoides n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t (1.6)

Senna artemisioides 0 79 79 75 74 77 0 76 77 78 82 76 0 75 75 65 80 68 Fab- subsp. oligophylla (0.0) (1.9) (5.5) (4.4) (2.6) (9.9) (0.0) (5.9) (4.4) (4.8) (3.5) (4.9) (0.0) (6.4) (3.0) (7.2) (3.3) (9.1)

Senna glutinosa 23 94 90 92 84 51 36 93 95 96 82 69 54 88 90 89 94 95 Fab- subsp. pruinosa (1.0) (2.6) (2.6) (1.6) (3.7) (9.6) (5.9) (1.9) (3.8) (1.6) (6.6) (6.0) (3.5) (1.6) (3.5) (3.0) (3.8) (3.0)

96 98 100 100 100 100 89 91 98 100 100 100 89 95 100 100 100 99 Fab- Senna notabilis (1.6) (1.2) (0.0) (0.0) (0.0) (0.0) (4.1) (2.5) (1.2) (0.0) (0.0) (0.0) (1.9) (2.5) (0.0) (0.0) (0.0) (1.0)

10

58 88 83 78 92 98 49 88 81 73 91 90 44 89 100 72 85 96 Fab- Senna venusta (3.8) (4.3) (5.3) (3.5) (4.9) (1.2) (3.4) (5.4) (3.4) (5.7) (3.8) (1.2) (9.5) (5.5) (0.0) (5.4) (7.5) (2.3)

Tephrosia sp. Fortescue 0 1 0 2 4 0 0 0 1 2 5 4 0 0 0 2 6 1 Fab- (A.A. Mitchell 606) (0.0) (1.0) (0.0) (2.0) (1.6) (0.0) (0.0) (0.0) (1.0) (1.2) (3.0) (0.0) (0.0) (0.0) (0.0) (2.0) (3.8) (1.0)

9 27 59 84 25 3 45 91 97 95 89 43 45 93 97 97 71 18 Goodeni- Goodenia armitiana (1.9) (3.4) (5.0) (2.8) (6.0) (1.0) (3.8) (2.5) (1.9) (1.9) (1.9) (1.0) (3.8) (1.0) (1.9) (1.9) (2.5) (3.5)

0 1 2 0 1 0 0 31 86 70 45 33 0 3 2 2 0 0 Goodeni- Goodenia stobbsiana (0.0) (1.0) (1.2) (0.0) (1.0) (0.0) (0.0) (7.6) (4.8) (4.2) (6.4) (5.7) (0.0) (3.0) (2.0) (2.0) (0.0) (0.0)

6 66 79 98 98 77 13 74 96 99 99 88 34 92 97 100 96 88 Goodeni- Goodenia triodiophila (3.8) (1.2) (4.1) (1.2) (1.2) (9.0) (5.3) (3.5) (1.6) (1.0) (1.0) (4.3) (4.8) (2.3) (1.0) (0.0) (1.6) (4.3)

0 3 2 0 1 1 3 18 25 23 31 33 0 18 5 6 12 6 Goodeni- Goodenia vilmoriniae (0.0) (1.9) (1.2) (0.0) (1.0) (1.0) (3.0) (6.8) (6.0) (4.4) (6.4) (4.1) (0.0) (2.6) (3.8) (3.5) (1.6) (1.2)

0 2 0 1 0 0 0 1 7 12 1 0 0 7 1 9 3 0 Goodeni- Velleia panduriformis (0.0) (2.0) (0.0) (1.0) (0.0) (0.0) (0.0) (1.0) (1.9) (2.8) (1.0) (0.0) (0.0) (3.4) (1.0) (1.9) (1.0) (0.0)

Lami- Newcastelia cladotricha n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t

Newcastelia sp. Hamersley Lami- Range (S. van Leeuwen n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t 4264)

40 64 57 51 55 50 67 62 64 62 58 57 48 60 57 61 51 60 Malv- Abutilon otocarpum (1.6) (7.5) (4.4) (3.0) (7.7) (8.3) (7.7) (4.2) (4.3) (2.0) (4.8) (5.7) (5.9) (5.9) (9.0) (7.9) (4.1) (7.5)

35 83 78 74 53 62 37 82 81 60 48 57 25 81 72 65 60 64 Malv- Androcalva luteiflora (4.1) (4.7) (7.0) (4.8) (7.7) (5.3) (3.0) (3.8) (5.5) (3.3) (3.7) (12.3) (8.1) (2.5) (4.3) (6.6) (7.1) (5.4)

86 Malv- Corchorus crozophorifolius n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t (4.8)

11

20 65 87 91 89 84 19 91 95 92 92 95 1 73 93 95 96 97 Malv- Corchorus aff. lasiocarpus (1.6) (5.3) (4.7) (1.9) (9.7) (3.3) (3.8) (3.0) (1.9) (2.8) (2.3) (2.5) (1.0) (5.5) (1.9) (1.9) (2.3) (1.0)

38 Malv- Gossypium australe* n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t (5.7)

72 Malv- Gossypium robinsonii* n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t (0.0)

0 18 44 45 40 19 7 64 85 87 71 62 0 12 36 46 56 42 Malv- Hibiscus haynaldii (0.0) (6.8) (6.7) (4.4) (7.5) (5.7) (3.0) (5.9) (1.9) (3.0) (3.4) (7.8) (0.0) (3.7) (5.2) (2.0) (6.3) (5.0)

79 94 95 92 82 95 100 100 97 93 91 94 80 90 88 81 82 98 Malv- Sida echinocarpa (4.4) (2.6) (5.0) (1.6) (3.5) (1.9) (0.0) (0.0) (1.9) (3.0) (6.6) (2.0) (3.3) (2.6) (2.3) (4.4) (5.8) (2.0)

77 71 65 77 80 79 68 60 75 75 68 74 66 72 83 83 77 80 Myrt- Eucalyptus gamophylla (4.1) (7.4) (9.2) (2.5) (1.6) (3.8) (5.7) (5.4) (1.9) (5.3) (2.3) (5.0) (2.6) (1.6) (3.0) (3.4) (3.0) (2.8)

Eucalyptus leucophloia 80 93 98 97 98 96 90 96 97 100 98 95 88 97 98 100 100 97 Myrt- subsp. leucophloia (4.3) (2.5) (1.2) (1.0) (1.2) (1.6) (3.5) (2.8) (3.0) (0.0) (2.0) (2.5) (2.8) (1.0) (1.2) (0.0) (0.0) (1.9)

63 100 99 90 96 97 30 83 95 93 94 95 19 100 99 93 92 93 Myrt- Melaleuca glomerata (8.9) (0.0) (1.0) (2.6) (4.0) (1.0) (12.3) (6.6) (1.9) (1.9) (3.8) (1.9) (7.6) (0.0) (1.0) (2.5) (3.7) (2.5)

0 0 20 13 4 0 0 0 2 16 12 12 0 10 45 38 15 11 Nyctagin- Boerhavia coccinea (0.0) (0.0) (2.3) (4.1) (1.6) (0.0) (0.0) (0.0) (1.2) (2.3) (1.6) (4.3) (0.0) (3.5) (3.0) (6.0) (6.2) (2.5)

0 0 9 41 31 30 2 9 25 61 39 32 0 0 17 10 22 30 Po- Aristida contorta (0.0) (0.0) (3.8) (6.0) (1.9) (2.6) (2.0) (2.7) (3.5) (4.8) (1.3) (4.6) (0.0) (0.0) (2.5) (3.8) (4.2) (4.8)

89 91 90 97 82 80 86 85 98 87 84 81 84 84 91 95 87 88 Po- Aristida inaequiglumis (3.4) (3.8) (4.8) (1.9) (3.5) (5.2) (3.8) (4.4) (2.0) (2.5) (2.8) (1.9) (3.3) (5.9) (3.4) (3.8) (2.5) (3.7)

23 67 74 61 22 10 79 95 95 89 86 69 20 78 76 57 21 7 Po- Aristida latifolia (10.9) (6.8) (4.8) (5.0) (2.0) (2.6) (3.0) (2.5) (3.0) (4.4) (1.2) (5.3) (4.3) (2.6) (4.3) (5.7) (6.8) (3.4)

12

8 89 78 90 89 89 51 88 91 82 84 91 4 86 90 93 94 90 Po- Cymbopogon ambiguus (1.6) (2.5) (5.3) (4.8) (3.0) (2.5) (1.0) (3.3) (2.5) (3.5) (2.8) (3.8) (2.8) (4.2) (4.8) (3.4) (3.5) (1.2)

0 64 93 94 89 91 10 85 97 99 95 97 3 79 90 95 94 95 Po- Cymbopogon obtectus (0.0) (3.7) (2.5) (1.2) (3.0) (3.4) (4.2) (4.1) (1.9) (1.0) (1.9) (1.9) (1.9) (4.1) (2.0) (2.5) (2.0) (3.8)

0 0 3 10 15 21 0 0 15 40 40 69 0 0 0 9 11 26 Po- Cynodon convergens (0.0) (0.0) (1.9) (3.8) (3.4) (4.4) (0.0) (0.0) (4.7) (6.3) (5.7) (4.7) (0.0) (0.0) (0.0) (4.1) (3.0) (2.0)

1 6 31 57 36 34 3 19 39 62 63 46 0 1 2 5 8 14 Po- Enneapogon caerulescens (1.0) (4.8) (8.7) (8.7) (6.3) (3.5) (1.9) (1.0) (5.3) (8.3) (5.0) (2.0) (0.0) (1.0) (2.0) (1.9) (5.7) (2.6)

0 4 11 19 23 15 7 16 19 54 56 74 0 0 8 7 21 9 Po- Enneapogon polyphyllus (0.0) (1.6) (3.0) (1.0) (3.0) (4.4) (2.5) (3.7) (1.9) (9.6) (2.8) (4.2) (0.0) (0.0) (1.6) (4.4) (4.7) (2.5)

8 50 52 81 78 66 69 78 82 99 99 97 9 53 83 81 85 60 Po- Enneapogon robustissimus (1.6) (4.2) (3.7) (4.7) (6.0) (4.2) (8.4) (5.8) (6.2) (1.0) (1.0) (1.9) (4.4) (1.0) (3.4) (4.4) (4.1) (7.1)

0 0 0 0 2 0 0 0 3 0 2 2 0 0 0 1 0 2 Po- Eragrostis dielsii (0.0) (0.0) (0.0) (0.0) (1.2) (0.0) (0.0) (0.0) (1.0) (0.0) (1.2) (2.0) (0.0) (0.0) (0.0) (1.0) (0.0) (1.2)

0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 Po- Eragrostis eriopoda (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (2.0) (1.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

0 0 0 2 1 1 0 0 0 21 1 2 0 0 1 2 1 8 Po- Eragrostis tenellula (0.0) (0.0) (0.0) (2.0) (1.0) (1.0) (0.0) (0.0) (0.0) (7.2) (1.0) (1.2) (0.0) (0.0) (1.0) (1.2) (1.0) (3.3)

Eriachne pulchella 0 0 24 71 67 84 0 0 96 96 96 100 0 0 14 96 85 89 Po- subsp. dominii (0.0) (0.0) (13.9) (4.7) (4.1) (2.8) (0.0) (0.0) (1.6) (2.3) (2.3) (0.0) (0.0) (0.0) (4.8) (1.6) (1.9) (2.5)

0 2 4 10 6 4 7 62 75 77 77 79 0 0 3 12 13 7 Po- Neurachne muelleri (0.0) (1.2) (1.6) (2.6) (2.6) (1.6) (3.0) (6.2) (3.4) (1.9) (2.5) (1.9) (0.0) (0.0) (1.0) (1.6) (2.5) (3.0)

0 0 1 4 3 6 0 7 10 10 22 23 0 12 29 45 38 45 Po- Triodia angusta (0.0) (0.0) (1.0) (2.3) (1.0) (2.0) (0.0) (3.0) (4.8) (2.6) (4.2) (5.3) (0.0) (1.6) (1.0) (1.9) (6.0) (2.5)

13

0 2 15 18 18 19 0 13 19 32 27 28 0 18 42 54 40 40 Po- Triodia basedowii (0.0) (1.2) (3.4) (4.8) (2.6) (1.0) (0.0) (5.3) (3.4) (1.6) (1.9) (7.1) (0.0) (2.6) (2.6) (8.1) (5.9) (4.6)

0 6 9 5 10 10 0 14 24 29 11 17 0 60 70 62 74 68 Po- Triodia brizoides (0.0) (2.6) (6.4) (1.0) (2.6) (2.0) (0.0) (5.8) (4.3) (8.9) (3.0) (3.0) (0.0) (5.9) (5.3) (4.8) (7.4) (3.3)

0 15 55 59 39 57 0 14 56 66 62 68 0 23 69 63 69 75 Po- Triodia epactia (0.0) (3.8) (4.4) (3.4) (10.3) (8.7) (0.0) (3.5) (5.9) (6.8) (3.5) (4.9) (0.0) (6.0) (3.0) (4.7) (1.9) (3.4)

0 30 42 57 47 57 0 22 43 61 73 59 Po- Triodia melvillei n/t n/t n/t n/t n/t n/t (0.0) (4.2) (6.8) (3.4) (3.4) (5.5) (0.0) (3.5) (3.4) (7.0) (6.6) (1.9)

0 33 38 37 33 35 0 36 40 55 60 56 0 70 89 89 92 80 Po- Triodia pungens (0.0) (3.4) (5.0) (5.5) (1.0) (1.9) (0.0) (5.9) (4.3) (4.4) (7.1) (5.9) (0.0) (7.6) (1.0) (2.5) (2.8) (2.8)

Triodia sp. Shovelanna Hill 0 19 40 20 35 29 6 35 61 50 48 43 0 28 67 43 34 39 Po- (S. van Leeuwen 3835) (0.0) (4.1) (1.0) (1.6) (7.2) (5.0) (3.5) (6.4) (4.4) (3.8) (4.9) (4.4) (0.0) (6.3) (4.1) (5.3) (7.4) (1.9)

23 21 28 25 33 31 31 28 42 42 42 45 57 61 74 63 82 71 Po- Triodia wiseana (3.4) (1.9) (5.9) (3.8) (6.6) (5.7) (1.9) (6.3) (4.8) (7.0) (3.8) (4.4) (4.1) (4.4) (7.4) (1.9) (6.2) (1.9)

32 70 91 81 88 79 74 82 83 89 94 64 29 64 69 88 79 27 Portulac- Calandrinia schistorhiza (6.7) (6.6) (1.9) (2.5) (2.8) (7.2) (2.0) (3.5) (4.1) (2.5) (2.6) (7.1) (6.6) (6.7) (9.6) (4.3) (1.9) (10.9)

0 0 0 1 0 0 0 40 95 93 89 96 0 0 0 0 0 0 Portulac- Portulaca oleracea (0.0) (0.0) (0.0) (1.0) (0.0) (0.0) (0.0) (14.0) (1.0) (1.9) (4.4) (1.6) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Grevillea pyramidalis 39 74 100 98 94 90 Prote- n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t subsp. leucadendron (5.5) (3.9) (0.0) (1.2) (2.4) (4.1)

Grevillea refracta 0 28 61 80 35 28 Prote- n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t subsp. refracta (0.0) (10.1) (10.7) (4.6) (3.5) (6.0)

10 97 77 1 0 0 18 95 94 7 0 0 57 99 100 49 0 0 Prote- Grevillea stenobotrya (6.2) (1.0) (6.0) (1.0) (0.0) (0.0) (4.8) (1.9) (1.2) (1.9) (0.0) (0.0) (2.5) (1.0) (0.0) (4.4) (0.0) (0.0)

14

Grevillea wickhamii 1 2 40 76 6 11 0 6 41 60 12 22 0 54 98 98 46 31 Prote- subsp. hispidula (1.0) (2.0) (6.3) (2.8) (1.2) (4.1) (0.0) (3.5) (4.4) (5.4) (1.6) (4.8) (0.0) (8.9) (1.2) (1.2) (2.6) (5.7)

Grevillea wickhamii 3 25 76 68 22 22 15 55 86 84 34 31 8 79 93 91 53 41 Prote- subsp. macrodonta (1.0) (1.9) (5.9) (7.8) (2.0) (3.5) (3.4) (5.7) (2.6) (2.3) (1.2) (4.4) (1.6) (1.9) (3.0) (1.0) (4.7) (1.9)

91 44 17 Prote- Hakea lorea subsp. lorea n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t (4.1) (5.8) (5.7)

Diplopeltis stuartii var. Sapind- n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t stuartii

0 88 91 91 95 93 Sapind- Dodonaea coriacea n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t n/t (0.0) (2.8) (4.1) (5.3) (3.0) (3.4)

0 0 0 0 0 0 0 0 12 10 5 7 0 0 15 2 1 2 Solan- Solanum dioicum (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (3.3) (2.6) (1.9) (1.0) (0.0) (0.0) (4.4) (2.0) (1.0) (1.2)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Solan- Solanum diversiflorum (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

0 10 3 26 25 8 0 62 74 95 97 86 0 61 55 72 92 35 Stylidi- Stylidium desertorum (0.0) (5.0) (1.9) (2.6) (1.0) (3.3) (0.0) (9.5) (7.4) (1.0) (1.0) (2.6) (0.0) (11.6) (7.2) (7.1) (2.3) (4.8)

2 63 81 77 81 78 1 63 78 86 88 85 4 72 73 79 78 73 Surian- Stylobasium spathulatum (1.2) (3.4) (3.4) (5.0) (3.0) (3.5) (1.0) (8.7) (1.2) (3.8) (4.3) (3.4) (4.0) (1.6) (3.0) (1.9) (3.8) (5.0)

0 0 0 2 0 1 1 0 1 Zygophyll- Tribulus suberosus n/t n/t n/t n/t n/t n/t n/t n/t n/t (0.0) (0.0) (0.0) (2.0) (0.0) (1.0) (1.0) (0.0) (1.0)

3 n/t = not tested; ^ = standard error information unavailable; * species clearly possess seeds with physical dormancy, however, there is potential evidence of combinational 4 dormancy being present due to germination not exceeding 75% and variable responses to multiple heat treatments (Erickson et al. 2016a).

15

5 References

6 Baskin CC, Baskin JM (2004a) Determining dormancy-breaking and germination requirements from 7 the fewest seeds. In 'Ex situ plant conservation: supporting species survival in the wild. (Eds EO 8 Guerrant Jr., K Havens and M Maunder) pp. 162-179. (Island Press, Washington, DC).

9 10 Baskin CC, Baskin JM (2004b) Germinating seeds of wildflowers, an ecological perspective. 11 HortTechnology 14, 467-473.

12 13 Baskin CC, Baskin JM (2005) Underdeveloped embryos in dwarf seeds and implications for 14 assignment to dormancy class. Seed Science Research 15, 357-360.

15 16 Baskin CC, Baskin JM (2007) A revision of Martin's seed classification system, with particular 17 reference to his dwarf-seed type. Seed Science Research 17, 11-20.

18 19 Baskin JM, Baskin CC (2003) Classification, biogeography, and phylogenetic relationships of seed 20 dormancy. In 'Seed conservation: turning science into practice. (Eds RD Smith, JB Dickie, SH 21 Linington, HW Pritchard and RJ Probert) pp. 517-544. (The Royal Botanic Gardens, Kew).

22 23 Baskin JM, Baskin CC (2004c) A classification system for seed dormancy. Seed Science Research 14, 1- 24 16.

25 26 Commander LE, Merritt DJ, Rokich DP, Dixon KW (2009) Seed biology of Australian arid zone species: 27 germination of 18 species used for rehabilitation. Journal of Arid Environments 73, 617-625.

28 29 DPaW (2007 -) NatureMap: Mapping Western Australia's Biodiversity. Department of Parks and 30 Wildlife, URL: http://naturemap.dpaw.wa.gov.au/default.aspx

31 32 Erickson TE (2015) Seed dormancy and germination traits of 89 arid zone species targeted for mine- 33 site restoration in the Pilbara region of Western Australia. PhD Thesis, University of Western 34 Australia.

35 36 Erickson TE, Barrett RL, Symons DR, Turner SR, Merritt DJ (2016a) An atlas to the plants and seeds of 37 the Pilbara region. In 'Pilbara seed atlas and field guide: plant restoration in Australia's arid 38 northwest. (Eds TE Erickson, RL Barrett, DJ Merritt and KW Dixon) pp. 43-256. (CSIRO Publishing: 39 Dickson, Australian Capital Territory).

40 41 Erickson TE, Merritt DJ (2016) Introduction to plant diversity of the Pilbara. In 'Pilbara seed atlas and 42 field guide: plant restoration in Australia's arid northwest. (Eds TE Erickson, RL Barrett, DJ Merritt 43 and KW Dixon) pp. 1-6. (CSIRO Publishing: Dickson, Australian Capital Territory).

44 45 Erickson TE, Merritt DJ, Turner SR (2016b) Seed dormancy and germination of arid zone species. In 46 'Pilbara seed atlas and field guide: plant restoration in Australia's arid northwest. (Eds TE Erickson, RL

16

47 Barrett, DJ Merritt and KW Dixon) pp. 17-34. (CSIRO Publishing: Dickson, Australian Capital 48 Territory).

49 50 Erickson TE, Shackelford N, Dixon KW, Turner SR, Merritt DJ (2016c) Overcoming physiological 51 dormancy in seeds of Triodia (Poaceae) to improve restoration in the arid zone. Restoration Ecology 52 24, S64-S76.

53 54 Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD (2005) Synthesis of the seed germination 55 stimulant 3-methyl-2H-furo[2,3-c]pyran-2-one. Tetrahedron Letters 46, 5719-5721.

56 57 Flores J, Jurado E, Arredondo A (2006) Effect of light on germination of seeds of Cactaceae from the 58 Chihuahuan Desert, Mexico. Seed Science Research 16, 149-155.

59 60 Gama-Arachchige NS, Baskin JM, Geneve RL, Baskin CC (2013) Identification and characterization of 61 ten new water-gaps in seeds and fruits with physical dormancy and classification of water-gap 62 complexes. Annals of Botany 112, 69-84.

63 64 Hidayati SN, Walck JL, Merritt DJ, Turner SR, Turner DW, Dixon KW (2012) Sympatric species of 65 Hibbertia (Dilleniaceae) vary in dormancy break and germination requirements: implications for 66 classifying morphophysiological dormancy in Mediterranean biomes. Annals of Botany 109, 1111- 67 1123.

68 69 Jurado E, Flores J (2005) Is seed dormancy under environmental control or bound to plant traits? 70 Journal of Vegetation Science 16, 559-564.

71 72 Martin AC (1946) The comparative internal morphology of seeds. American Midland Naturalist 36, 73 513-660.

74 75 Thompson K, Ceriani RM, Bakker JP, Bekker RM (2003) Are seed dormancy and persistence in soil 76 related? Seed Science Research 13, 97-100.

77 78 Western Australian Herbarium (1998 -) FloraBase - the Western Australian Flora. Department of 79 Biodiversity, Conservation and Attractions, URL: http://florabase.dpaw.wa.gov.au/

80

81

17