Oviposition Tests of Ant Preference in a Myrmecophilous Butterfly

Total Page:16

File Type:pdf, Size:1020Kb

Oviposition Tests of Ant Preference in a Myrmecophilous Butterfly Oviposition tests of ant preference in a myrmecophilous butterfly A. M. FRASER,* T. TREGENZA,à N. WEDELL,à M. A. ELGARà &N.E.PIERCE* *Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA Faculty of Environmental Sciences, Griffith University, Nathan, Queensland, Australia àDepartment of Zoology, University of Melbourne, Victoria, Australia. Present address: School of Biology, University of Leeds, Leeds, UK Keywords: Abstract diversification; Butterflies in the family Lycaenidae that have obligate associations with ants Formicidae; frequently exhibit ant-dependent egg laying behaviour. In a series of field geographical specialization; and laboratory choice tests, we assessed oviposition preference of the host selection; Australian lycaenid Jalmenus evagoras in response to different species and host shift; populations of ants. Females discriminated between attendant and nonat- local adaptation; tendant ant species, between attendant ant species, and to some extent, Lycaenidae; between populations of a single ant species. When preferences were found, myrmecophily; ovipositing butterflies preferred their locally predominant attendant ant oviposition preference. species and geographically proximate attendant ant populations. A reciprocal choice test using adults from a generation of butterflies reared in the absence of ants indicated a genetic component to oviposition preference. Individual females were flexible with respect to oviposition site choice, often ovipositing on more than one treatment during a trial. Preferences arose from a hierarchical ranking of ant treatments. These results are discussed in terms of local adaptation and its possible significance in the diversification of ant- associated lycaenids. The evolution of oviposition preference is seen as a Introduction driving force in the divergence of phytophagous insect Diversification within the butterfly family Lycaenidae is populations (Futuyma, 1986; Diehl & Bush, 1989; thought to have been enhanced by the tendency for the Thompson & Pellmyr, 1991). Preference, in this majority of its members to associate with ants (Pierce, context, refers to both the order in which females 1984). Associations range from mutualistic to parasitic rank different hosts and the specificity or degree to interactions, and vary in their specificity for, and which they prefer one host over another (Wiklund, dependence on, ant partners (Cottrell, 1984; Pierce, 1981; Singer, 1986). Thus, shifts in ant preference by 1987; Fiedler, 1991, 1997; Pierce et al., 2002). If ant ovipositing lycaenid butterflies may contribute to association has influenced lycaenid diversification, it divergence in ant-associated lycaenid populations. should be most evident among the obligately myrme- Ultimately, this may lead to speciation events if, for cophilous species, which account for 15–20% of lycaenid example, genetic divergence in host preference has species diversity (Fiedler, 1991, 1997). Their associations pleiotropic consequences for reproductive isolation with ants tend to be species-specific (Cottrell, 1984; (Funk, 1998). Pierce, 1989; Thomas et al., 1989; Fiedler, 1991; East- A phylogenetic study of the lycaenid genus Ogyris wood & Fraser, 1999) and adult females use their ant suggests that shifts in ant partners have been accom- partners as cues during oviposition (e.g. Atsatt, 1981a; panied by speciation events (N.E. Pierce, unpublished Pierce & Elgar, 1985; Seufert & Fiedler, 1996; van Dyck data). Association patterns between ants and at least et al., 2000). two other obligately ant-associated lycaenid genera, Maculinea (Thomas et al., 1989; Elmes et al., 1994) and Jalmenus (Pierce, 1989; Eastwood & Fraser, Correspondence: Ann Fraser, Biology Department, The University of the South, 735 University Ave., Sewanee, TN 37383, USA. 1999; Braby, 2000) further suggest that shifts in ant Tel.: +1 931 598 3354; fax: +1 931 598 1145; partners may contribute to population divergence and e-mail: [email protected] diversification. J. EVOL. BIOL. 15 (2002) 861–870 ª 2002 BLACKWELL SCIENCE LTD 861 862 A. M. FRASER ET AL. The degree to which ovipositing butterflies discrimin- commonly associated with Iridomyrmex species in the ate between different ant species, as well as the extent to anceps and rufoniger groups (Eastwood & Fraser, 1999; which oviposition behaviour has diverged among but- Pierce & Nash, 1999). The geographical distributions of terfly populations, has not been explored. We conducted these ants are not fully known, but in areas where a series of field and laboratory experiments that address several attendant ant species overlap, a given ÔcolonyÕ of these questions in the Australian lycaenid, Jalmenus J. evagoras is predominantly associated with only a single evagoras. In choice tests, we assessed oviposition prefer- ant species (Costa et al., 1996; Pierce & Nash, 1999). ence at three levels: in response to attendant and Adult butterflies tend to remain in their natal area (Elgar nonattendant ant species, in response to different species & Pierce, 1988), creating potential for the evolution of of attendant ants, and in response to different popula- specialization in ant preference. tions of a single attendant ant species. A reciprocal choice Adult females lay eggs on Acacia host plants in response test was also conducted to determine whether females to the presence of attendant ants (Pierce & Elgar, 1985). exhibited local adaptation in oviposition preference, and Typically, gravid females that land on host plants follow a whether oviposition preference had a genetic compo- sequence of behaviours leading to oviposition. These nent. include: (a) dragging, in which a female walks up and down the branches of the plant dragging the tip of her Methods and results abdomen along the substrate – a behaviour that is typical among Lepidoptera searching for suitable oviposition sites (Renwick & Chew, 1994); (b) probing, in which a Natural history dragging female stops, extrudes her ovipositor and probes Jalmenus comprises at least 10 species, distributed across a crevice and (c) oviposition, in which she remains the Australian continent (Braby, 2000). All species feed stationary with the tip of her abdomen inserted into a on the plant genus Acacia (some feed on additional plant crack or crevice and during which she pumps her genera), and all have specialized associations with one or abdomen. For the behavioural analysis in this study, more species of Iridomyrmex or Froggattella ants (subfamily we grouped dragging, probing and oviposition into a Dolichoderinae). There is little overlap in the ant species single category of oviposition-related behaviour. that Jalmenus species associate with (Eastwood & Fraser, 1999), and where Jalmenus species overlap geographi- Collection and identification of material cally, they are separated ecologically by their ant partners (Pierce, 1989; Costa et al., 1996; Braby, 2000). Butterflies and ants were collected from various localities Jalmenus evagoras inhabits coastal and inland areas of in eastern Australia (Fig. 1, Table 1). Ant identifications eastern Australia (Fig. 1). Immature stages are tended by were assigned in consultation with Dr Steve Shattuck, different ant species in different geographical regions Australian National Insect Collection (ANIC), Canberra (Costa et al., 1996; Pierce & Nash, 1999), but are most and voucher specimens have been deposited at the ANIC QUEENSLAND 2 Mt. Nebo Brisbane Paluma 1 Nathan 3 Armidale Ebor 6,7,8 4,5 NEW SOUTH WALES Distribution of Jalmenus evagoras AUSTRALIAN CAPITAL Sydney TERRITORY 9 Canberra VICTORIA 10 11,12 13 Melbourne 0200400 Fig. 1 Distribution of Jalmenus evagoras km and localities from which ant species were collected. J. EVOL. BIOL. 15 (2002) 861–870 ª 2002 BLACKWELL SCIENCE LTD Ant preference in a myrmecophilous butterfly 863 Table 1 Summary of material collected to assess levels of oviposition discrimination exhibited by Jalmenus evagoras butterflies in response to ants. The outcome of each experiment is summarized in the far righthand column. Geographical distance refers to the approximate geographical distance separating each test ant collection locality from the butterfly population used in the experiment. All ant species except I. purpureus and F. kirbii naturally attend J. evagoras. Butterfly locality Treatment Ant locality Geographical Experiment (site no.)* offered (site no.)* distance (km) Outcome Experiment I: Mt. Nebo I. anceps Mt. Nebo (2) 0 Butterflies discriminate Choice of (2) I. rufoniger Mt. Nebo (2) 1 between ant species; prefer attendant and I. purpureus Mt. Nebo (2) 1 attendant I. anceps over nonattendant F. kirbii Paluma (1) 1200 I. rufoniger and nonattendant ant species ant species (Table 2) Experiment II: Nathan I. anceps Nathan (3) 0 Butterflies discriminate Choice of local (3) I. rufoniger Armidale (7) 350 between treatments; prefer and foreign (two trials) I. anceps Canberra (9) 950 local I. anceps over attendant ant No ant – – I. rufoniger and foreign species I. anceps (Fig. 2) Experiment III: Nathan I. anceps Nathan (3) 0 Butterflies do not show Choice of (3) I. anceps Mt. Nebo (2) 30 clear or consistent local and (three trials) I. anceps Ebor (4) 350 preference; when foreign No ant – – preference shown, local attendant ant ant always among populations Ebor I. anceps Ebor (4) 0 preferred populations (4) I. anceps Nathan (3) 350 (Fig. 3) (two trials) I. anceps Mt. Nebo (2) 350 No ant – – Experiment IV: Armidale/Ebor I. rufoniger Armidale/Ebor (5–8) 0 Naı¨ve butterflies prefer
Recommended publications
  • Exploitation of Lycaenid-Ant Mutualisms by Braconid Parasitoids
    31(3-4):153-168,Journal of Research 1992 on the Lepidoptera 31(3-4):153-168, 1992 153 Exploitation of lycaenid-ant mutualisms by braconid parasitoids Konrad Fiedler1, Peter Seufert1, Naomi E. Pierce2, John G. Pearson3 and Hans-Thomas Baumgarten1 1 Theodor-Boveri-Zentrum für Biowissenschaften, Lehrstuhl Zoologie II, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany 2 Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138-2902, USA 3 Division of Natural Sciences and Mathematics, Western State College, Gunnison, CO 81230, USA Abstract. Larvae of 17 Lycaenidae butterfly species from Europe, North America, South East Asia and Australia were observed to retain at least some of their adaptations related to myrmecophily even after parasitic braconid larvae have emerged from them. The myrme- cophilous glandular organs and vibratory muscles of such larval carcasses remain functional for up to 8 days. The cuticle of lycaenid larvae contains extractable “adoption substances” which elicit anten- nal drumming in their tending ants. These adoption substances, as well, appear to persist in a functional state beyond parasitoid emer- gence, and the larval carcasses are hence tended much like healthy caterpillars. In all examples, the braconids may receive selective advantages through myrmecophily of their host larvae, instead of being suppressed by the ant guard. Interactions where parasitoids exploit the ant-mutualism of their lycaenid hosts have as yet been recorded only from the Apanteles group in the Braconidae- Microgasterinae. KEY WORDS: Lycaenidae, Formicidae, myrmecophily, adoption sub- stances, parasitoids, Braconidae, Apanteles, defensive mechanisms INTRODUCTION Parasitoid wasps or flies are major enemies of the early stages of most Lepidoptera (Shaw 1990, Weseloh 1993).
    [Show full text]
  • A Thesis Entitled Influence of Soil-Quality on Coffee-Plant Quality
    A Thesis entitled Influence of Soil-Quality on Coffee-Plant Quality and a Complex Tropical Insect Food Web by David J. Gonthier Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science in Biology (Ecology track) Dr. Stacy Philpott, Committee Chair Dr. Scott Heckathorn, Committee Member Dr. Ivette Perfecto, Committee Member Dr. Patricia Komuniecki, Dean College of Graduate Studies The University of Toledo May 2010 Copyright 2010, David J. Gonthier This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Influence of Soil-Quality on Coffee-Plant Quality and a Complex Tropical Insect Food Web by David J. Gonthier Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science in Biology (Ecology track) The University of Toledo May 2010 Tropical systems are complex, species diverse, and are often regulated by top-down forces (higher trophic levels control lower trophic levels). In many ecosystems insects, especially herbivores and their mutualists, may be strongly affected by plant quality and other bottom-up controls (nutrient availability, plant genetic variation, ect.). Yet few have asked how plant quality (nutritional and defensive plant traits) can contribute to the population regulation and the complexity of these systems. In this thesis, I investigate the importance of soil-quality to both the elemental and secondary metabolite content in coffee and ask how changes to plant quality can influence hemipteran herbivores, their ant-mutualists, predators, and insect communities in a tropical coffee agroecosystem.
    [Show full text]
  • CPY Document Title
    OIKOS 62: 363-369. Copenhagen 1991 Cost and evolution of a facultative mutualism between ants and lycaenid larvae (Lepidoptera) Robert K. Robbins Robbins, R.K. 1991. Cost and evolution of a facultative mutualism between ants and lycaenid larvae (Lepidoptera). - Oikos 62: 363-369. Larvae of Arawacus lincoides (Lycaenidae) reared in the lab with ants took 0.68 d longer to complete development than larvae without ants. Pupal weight was inde- pendent of whether a larva had been ant-tended. A 0.68 d delay in reaching age of first reproduction represents an estimated 1.0%-2.2% lowered intrinsic rate of increase for this continuously brooded species. I show that mutualism will be favored when the ratio of larval survival with ants to that without ants is greater than exp (dr), where d is the additional larval development time caused by feeding ants and r is the intrinsic rate of increase. Other things being equal, species with higher intrinsic rates of increase will be less likely to be mutualistic than their relatives with lower rates of increase. R. K. Robbins, Entomology, NHB Stop 127, Smithsonian Inst., Washington, DC 20560, USA. Butterfly larvae in the families Lycaenidae and Riodini- difficulties are partially overcome by examining facul- dae may interact mutualistically with ants (Pierce and tative mutualisms in which larvae in nature are some- Young 1986, Friedler and Maschwitz 1989a, Thomas et times tended and sometimes not tended by ants. al. 1989, DeVries 1990a). The benefit for ants is that Facultative larva-ant mutualisms vary among eu- they may obtain a significant portion of their energy maeine hairstreak butterflies (Lycaenidae: Theclinae: budget by eating larval secretions (Fiedler and Masch- Eumaeini) (DeVries 1990a).
    [Show full text]
  • The Consequences of a Management Strategy for the Endangered Karner Blue Butterfly
    THE CONSEQUENCES OF A MANAGEMENT STRATEGY FOR THE ENDANGERED KARNER BLUE BUTTERFLY Bradley A. Pickens A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2006 Committee: Karen V. Root, Advisor Helen J. Michaels Juan L. Bouzat © 2006 Bradley A. Pickens All Rights Reserved iii ABSTRACT Karen V. Root, Advisor The effects of management on threatened and endangered species are difficult to discern, and yet, are vitally important for implementing adaptive management. The federally endangered Karner blue butterfly (Karner blue), Lycaeides melissa samuelis inhabits oak savanna or pine barrens, is a specialist on its host-plant, wild blue lupine, Lupinus perennis, and has two broods per year. The Karner blue was reintroduced into the globally rare black oak/lupine savannas of Ohio, USA in 1998. Current management practices involve burning 1/3, mowing 1/3, and leaving 1/3 of the lupine stems unmanaged at each site. Prescribed burning generally kills any Karner blue eggs present, so a trade-off exists between burning to maintain the habitat and Karner blue mortality. The objective of my research was to quantify the effects of this management strategy on the Karner blue. In the first part of my study, I examined several environmental factors, which influenced the nutritional quality (nitrogen and water content) of lupine to the Karner blue. My results showed management did not affect lupine nutrition for either brood. For the second brood, I found that vegetation density best predicted lupine nutritional quality, but canopy cover and aspect had an impact as well.
    [Show full text]
  • ACT, Australian Capital Territory
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • UC Riverside UC Riverside Electronic Theses and Dissertations
    UC Riverside UC Riverside Electronic Theses and Dissertations Title Food Preference, Survivorship, and Intraspecific Interactions of Velvety Tree Ants Permalink https://escholarship.org/uc/item/75r0k078 Author Hoey-Chamberlain, Rochelle Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Food Preference, Survivorship, and Intraspecific Interactions of Velvety Tree Ants A Thesis submitted in partial satisfaction of the requirements for the degree of Master of Science in Entomology by Rochelle Viola Hoey-Chamberlain December 2012 Thesis Committee: Dr. Michael K. Rust, Chairperson Dr. Ring Cardé Dr. Gregory P. Walker Copyright by Rochelle Viola Hoey-Chamberlain 2012 The Thesis of Rochelle Viola Hoey-Chamberlain is approved: Committee Chairperson University of California, Riverside ACKNOWLEDGMENTS In part this research was supported by the Carl Strom Western Exterminator Scholarship. Thank you to Jeremy Brown for his assistance in all projects including collecting ant colonies, setting up food preference trials, setting up and collecting data during nestmate recognition studies and supporting other aspects of the field work. Thank you also to Dr. Les Greenburg (UC Riverside) for guidance and support with many aspects of these projects including statistics and project ideas. Thank you to Dr. Greg Walker (UC Riverside) and Dr. Laurel Hansen (Spokane Community College) for their careful review of the manuscript. Thank you to Dr. Subir Ghosh for assistance with statistics for the survival study. And thank you to Dr. Paul Rugman-Jones for his assistance with the genetic analyses. iv ABSTRACT OF THE THESIS Food Preference, Survivorship, and Intraspecific Interactions of Velvety Tree Ants by Rochelle Viola Hoey-Chamberlain Master of Science, Graduate Program in Entomology University of California, Riverside, December 2012 Dr.
    [Show full text]
  • Hymenoptera: Formicidae: Formicinae)
    Zootaxa 3669 (3): 287–301 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3669.3.5 http://zoobank.org/urn:lsid:zoobank.org:pub:46C8F244-E62F-4FC6-87DF-DEB8A695AB18 Revision of the Australian endemic ant genera Pseudonotoncus and Teratomyrmex (Hymenoptera: Formicidae: Formicinae) S.O. SHATTUCK1 & A.J. O’REILLY2 1CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, ACT 2601, Australia. E-mail: [email protected] 2Centre for Tropical Biodiversity & Climate Change, School of Marine & Tropical Biology, James Cook University, Townsville, Queensland 4811 Abstract The Australian endemic formicine ant genera Pseudonotoncus and Teratomyrmex are revised and their distributions and biologies reviewed. Both genera are limited to forested areas along the east coast of Australia. Pseudonotoncus is known from two species, P. eurysikos (new species) and P. hirsutus (= P. turneri, new synonym), while Teratomyrmex is known from three species, T. greavesi, T. substrictus (new species) and T. tinae (new species). Distribution modelling was used to examine habitat preferences within the Pseudonotoncus species. Key words: Formicidae, Pseudonotoncus, Teratomyrmex, Australia, new species, key, MaxEnt Introduction Australia has a rich and diverse ant fauna, with over 1400 native species assigned to 100 genera. Of these 100 genera, 18 are endemic to Australia. These include Adlerzia, Anisopheidole, Austromorium, Doleromyrma, Epopostruma, Froggattella, Machomyrma, Mesostruma, Myrmecorhynchus, Nebothriomyrmex, Nothomyrmecia, Notostigma, Melophorus, Onychomyrma, Peronomyrmex, Pseudonotoncus, Stigmacros and Teratomyrmex. In the present study we revise two of these endemic genera, Pseudonotoncus and Teratomyrmex. Pseudonotoncus is found along the Australian east coast from the wet tropics in North Queensland to southern Victoria in rainforest and wet and dry sclerophyll forests.
    [Show full text]
  • Karner Blue Butterfly
    Environmental Entomology Advance Access published April 22, 2016 Environmental Entomology, 2016, 1–9 doi: 10.1093/ee/nvw036 Plant–Insect Interactions Research Article The Relationship Between Ants and Lycaeides melissa samuelis (Lepidoptera: Lycaenidae) at Concord Pine Barrens, NH, USA Elizabeth G. Pascale1 and Rachel K. Thiet Department of Environmental Studies, Antioch University New England, 40 Avon St., Keene, NH 03431 ([email protected]; [email protected]) and 1Corresponding author, e-mail: [email protected] Received 5 December 2015; Accepted 20 April 2016 Abstract Downloaded from The Karner blue butterfly (Lycaeides melissa samuelis Nabokov) (Lepidoptera: Lycaenidae) is a federally listed, endangered species that has experienced dramatic decline over its historic range. In surviving populations, Karner blue butterflies have a facultative mutualism with ants that could be critically important to their survival where their populations are threatened by habitat loss or disturbance. In this study, we investigated the effects of ants, wild blue lupine population status (native or restored), and fire on adult Karner blue butterfly abundance http://ee.oxfordjournals.org/ at the Concord Pine Barrens, NH, USA. Ant frequency (the number of times we collected each ant species in our pitfall traps) was higher in restored than native lupine treatments regardless of burn status during both Karner blue butterfly broods, and the trend was statistically significant during the second brood. We observed a posi- tive relationship between adult Karner blue butterfly abundance and ant frequency during the first brood, partic- ularly on native lupine, regardless of burn treatment. During the second brood, adult Karner blue butterfly abun- dance and ant frequency were not significantly correlated in any treatments or their combinations.
    [Show full text]
  • Lycaenidae): Phylogeny, Ecology, and Conservation John Mathew Old Dominion University
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Summer 2003 Aphytophagy in the Miletinae (Lycaenidae): Phylogeny, Ecology, and Conservation John Mathew Old Dominion University Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Ecology and Evolutionary Biology Commons, Entomology Commons, and the Genetics Commons Recommended Citation Mathew, John. "Aphytophagy in the Miletinae (Lycaenidae): Phylogeny, Ecology, and Conservation" (2003). Doctor of Philosophy (PhD), dissertation, Biological Sciences, Old Dominion University, DOI: 10.25777/v7rh-mb21 https://digitalcommons.odu.edu/biology_etds/74 This Dissertation is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. APHYTOPHAGY IN THE MILETINAE (LYCAENIDAE): PHYLOGENY, ECOLOGY, AND CONSERVATION by John Mathew B.Sc. June 1990, Madras Christian College M.Sc. June 1992, Madras Christian College M.Phil. May 1994, Madras University A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirement for the Degree of DOCTOR OF PHILOSOPHY ECOLOGICAL SCIENCES OLD DOMINION UNIVERSITY August 2003 Approved by: Deborah A. Waller (Co-Director) »mi E. Pierce (Co-Director) H. Savitzky (Member) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ABSTRACT APHYTOPHAGY IN THE MILETINAE (LYCAENIDAE): PHYTOGENY, ECOLOGY AND CONSERVATION John Mathew Old Dominion University, 2003 Co-Directors of Advisory Committee: Dr. Deborah A. Waller Dr. Naomi E. Pierce Less than 1% of all Lepidoptera are aphytophagous; of these, a considerable proportion is found in the family Lycaenidae.
    [Show full text]
  • Do Ants Enhance Diversification in Lycaenid Butterflies? Phylogeographic Evidence from a Model Myrmecophile, Jalmenus Evagoras
    Evolution, 60(2), 2006, pp. 315±327 DO ANTS ENHANCE DIVERSIFICATION IN LYCAENID BUTTERFLIES? PHYLOGEOGRAPHIC EVIDENCE FROM A MODEL MYRMECOPHILE, JALMENUS EVAGORAS ROD EASTWOOD,1,2 NAOMI E. PIERCE,3,4 R. L. KITCHING,1,5 AND JANE M. HUGHES1,6 1Australian School of Environmental Studies, Grif®th University, Nathan 4111, Queensland, Australia 2E-mail: r.eastwood@grif®th.edu.au 3Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts 02138 4E-mail: [email protected] 5E-mail: r.kitching@grif®th.edu.au 6E-mail: jane.hughes@grif®th.edu.au Abstract. The ant-tended Australian butter¯y, Jalmenus evagoras, has been a model system for studying the ecology and evolution of mutualism. A phylogeographic analysis of mitochondrial DNA cytochrome oxidase I sequences from 242 butter¯ies (615 bp) and 66 attendant ants (585 bp) from 22 populations was carried out to explore the relationship between ant association and butter¯y population structure. This analysis revealed 12 closely related butter¯y haplotypes in three distinct clades roughly corresponding to three allopatric subpopulations of the butter¯ies. Minimal genetic diversity and widespread haplotypes within biogeographical regions suggest high levels of matrilineal gene ¯ow. Attendant ants are signi®cantly more diverse than was previously thought, with at least seven well-de®ned clades corresponding to independent morphological determinations, distributed throughout the range of the butter¯ies. Nested analysis of molecular variance showed that biogeography, host plant, and ant associate all contribute signi®cantly in explaining variation in butter¯y genetic diversity, but these variables are not independent of one another.
    [Show full text]
  • The Fluctuating Asymmetry of the Butterfly Wing Pattern Does Not Change Along an Industrial Pollution Gradient
    S S symmetry Article The Fluctuating Asymmetry of the Butterfly Wing Pattern Does Not Change along an Industrial Pollution Gradient Vitali Zverev and Mikhail V. Kozlov * Department of Biology, University of Turku, 20014 Turku, Finland; vitzve@utu.fi * Correspondence: mikoz@utu.fi Abstract: The rapid and selective responses to changes in habitat structure and climate have made butterflies valuable environmental indicators. In this study, we asked whether the decline in butterfly populations near the copper-nickel smelter in Monchegorsk in northwestern Russia is accompanied by phenotypic stress responses to toxic pollutants, expressed as a decrease in body size and an increase in fluctuating asymmetry. We measured the concentrations of nickel and copper, forewing length, and fluctuating asymmetry in two elements of wing patterns in Boloria euphrosyne, Plebejus idas, and Agriades optilete collected 1–65 km from Monchegorsk. Body metal concentrations increased toward the smelter, confirming the local origin of the collected butterflies. The wings of butterflies from the most polluted sites were 5–8% shorter than those in unpolluted localities, suggesting adverse effects of pollution on butterfly fitness due to larval feeding on contaminated plants. However, fluctuating asymmetry averaged across two hindwing spots did not change systematically with pollution, thereby questioning the use of fluctuating asymmetry as an indicator of habitat quality in butterfly conservation projects. Keywords: copper-nickel smelter; fluctuating asymmetry; Kola Peninsula; Lepidoptera; phenotypic Citation: Zverev, V.; Kozlov, M.V. stress responses; wing length The Fluctuating Asymmetry of the Butterfly Wing Pattern Does Not Change along an Industrial Pollution Gradient. Symmetry 2021, 13, 626. https://doi.org/10.3390/sym13040626 1.
    [Show full text]
  • (Hymenoptera: Formicidae: Dolichoderinae) from Canadian Late Cretaceous Amber
    New ants (Hymenoptera: Formicidae: Dolichoderinae) from Canadian Late Cretaceous amber RYAN C. MCKELLAR, JAMES R.N. GLASIER & MICHAEL S. ENGEL A new genus and species are described within the ant subfamily Dolichoderinae (Formicidae). Chronomyrmex medicinehatensis gen. et sp. nov. McKellar, Glasier & Engel provides a solid example of Dolichoderinae within the Campanian Grassy Lake amber of southern Alberta (Late Cretaceous, 78–79 Ma). The new species fills a void in the dolichoderine fossil record left by Eotapinoma canadensis Dlussky, a putative dolichoderine whose taxonomic place- ment has been questioned, and whose type material has been lost. As such, C. medicinehatensis provides a constraint for divergence times of the subfamily and Leptomyrmecini, one of its recently resurrected tribes. This discovery greatly ex- tends the proposed divergence time for Dolichoderinae, and likely Leptomyrmecini, to more than 78 Ma – contrary to some of the more recent estimates inferred from molecular phylogenies. • Key words: fossil Hymenoptera, Aculeata, Campanian, Grassy Lake amber, divergence times. MCKELLAR, R.C., GLASIER, J.R.N. & ENGEL, M.S. 2013. New ants (Hymenoptera: Formicidae: Dolichoderinae) from Canadian Late Cretaceous amber. Bulletin of Geosciences 88(3), 583–594 (4 figures). Czech Geological Survey, Prague. ISSN 1214-1119. Manuscript received February 28, 2013; accepted in revised form May 10, 2013; published online June 10, 2013; issued July 3, 2013. Ryan C. McKellar (corresponding author), Division of Entomology (Paleoentomology), Natural History Museum, and Department of Ecology & Evolutionary Biology, 1501 Crestline Drive – Suite 140, University of Kansas, Lawrence, Kansas 66045, USA; and Department of Earth and Atmospheric Sciences, University of Alberta, 1-26 Earth Sciences Building, Edmonton, Alberta, T6G 2E3 Canada; [email protected] • James R.N.
    [Show full text]